碱基

DNA图谱 / 问答 / 标签

下列各项过程中,遵循“碱基互补配对原则”的有

【答案】A【答案解析】试题分析:DNA复制:DNA→DNA,碱基互补配对原则是A—T、C—G;RNA复制:RNA→RNA,碱基互补配对原则是A—U、G—C;转录:DNA→RNA,碱基互补配对原则是A—U、T—A、C—G、G—C;翻译:RNA→多肽,碱基互补配对原则是A—U、G—C;逆转录:RNA→DNA,A—T、U—A、C—G、G—C;故选A。考点:碱基互补配对原则。点评:本题考查相对综合,是学生能力提升的较好选择。

简述DNA双螺旋结构模型特点及碱基互补原则。

我来说说吧,不知阁下是高中生还是大学生,如果是高中生的话,看生物必修2就解决了,课本上说的很清楚,如果是大学生的话,就可以进一步了解:1.DNA双螺旋结构特征(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。2.碱基互补配对原则theprincipleofcomplementarybasepairing:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C

rna逆转录遵循碱基互补配对

①DNA复制过程遵循碱基互补配对,①正确;  ②RNA复制过程遵循碱基互补配对,②正确;  ③转录过程遵循碱基互补配对原则,③正确;  ④翻译过程遵循碱基互补配对原则,④正确;  ⑤逆转录过程遵循碱基互补配对原则,⑤正确. 故选:A.

DNA的碱基互补配对原则:任意两个不互补的碱基和占总碱基的50%. 两个不互补的碱基是什么?求解答

碱基配对是A-T,G-C,那么A和G,C;T和G,C;G和A,T;C和A,T就是不配对的碱基。A和T中的一个,加上,G和C中的一个就是不配对碱基。A或者T占(A+T)的一半,G或C占(G+C)的一半,那么A/T + G/C 占(A+T+G+C)的一半

反密码子遵循碱基互补配对原则吗?

RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有3个碱基,每个tRNA(transfer RNA)的这3个碱基可以与mRNA上的密码子互补配对。反密码子配对遵循碱基互补配对原则,核酸分子中各核苷酸残基的碱基按A与T、A与U和G与C的对应关系互相以氢键相连。它是沃森和克里克首先在DNA双螺旋结构模型中提出来的,后来发现,不仅在DNA复制中有这种规律,在转录过程DNA和RNA关系中也有类似的规律。甚至单链RNA中凡在空间靠近、可以氢键互相结合的碱基,也能这样配对。所以,这个原则具有极其重要的生物学意义。复制、转录、逆转录和转译等遗传信息传递的基本生物过程都遵循这个原则。判断规则另外,在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1、将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可。2、将非模板链的T改为U即可。如:DNA:ATCGAATCG (将此为非模板链)。UAGCUUAGC(将此为模板链);转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。以上内容参考:百度百科-反密码子、百度百科-碱基互补配对原则

关于生物碱基互补配对原则

关于双链DNAA=T C=GA+G=T+C=A+C=T+G=碱基对数其他比值类问题可遵循“补则等,不补则倒”

判断题:在转录过程中,碱基互补配对原则是:A与T配对,G与C配对.

错,在转录过程中A与U配对,G与C配对. 在复制过程中A与T配对,G与C配对.

碱基互补规律的名词解释

互补碱基,碱基间的一一对应的关系叫做碱基互补配对原则就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。扩展资料:根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。因此,可推知多条用于碱基计算的规律。规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;2)将非模板链的T改为U即可。如:DNA:ATCGAATCG(将此为非模板链)TAGCTTAGC(将此为模板链)转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。)参考资料来源:百度百科——互补碱基

什么是碱基互补原则

在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是A(腺嘌呤)一定与T(胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。这一原则在解题中如何应用呢?本人在教学中做了如下的尝试,收到良好的教学效果。⒈明确原则的含义及拓展规律:DNA分子是由两条脱氧核苷酸链构成的。根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C;反之如此。因此,可推知多条用于碱基计算的规律。规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G,变形为 或 。也就是说,嘌呤碱基总数等于嘧啶碱基总数。规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等,即DNA分子中 与该DNA分子每一单链中的这一比值相等。规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。即 双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%。DNA A T G CT A C G⒉应用规律解题:⒉1解题的思路:⒉⒈1列出DNA分子碱基间的关系,如图:⒉⒈2根据题意找出相应的关系,计算要求的值。⒉2例题:例⒈测定一个DNA分子中的碱基组成,知道它所含碱基T的含量为10%,则它含的碱基C的量应是( )A.10% B.20% C.30% D.40%解析:按上述解题思路列出DNA分子碱基间的关系,如上图。根据规律一有A=T=10%,则有G=C= 。即C的量为40%,选择D。例⒉⑴若DNA分子的一条单链中 ,则上述比例在其互补链和整个DNA分子中分别是( )A.0.4,1 B.2.5,1 C.0.4,0.4 D.0.6,1⑵若DNA分子的一条单链中 ,则上述比例在其互补链和整个DNA分子中分别是( )A.0.4,1 B.2.5,1 C.0.4,0.4 D.0.6,1解析:根据规律三,互补链中 即 ;又根据规律一,整个DNA分子中 。因此,⑴小题选择B。当DNA分子的一条单链中 时,根据规律二,上述比例在其互补链和整个DNA分子中都是0.4,⑵小题应选择C。DNA A T G C ――――――aT A C G ――――――b例:⒊双链分子中G占38%,其中一条链中T占15%,那么另一条链的T占该链的多少( )?解析:设a链的T=5%。根据已知条件有如下的碱基关系,即:在整个DNA分子中有G=C=38%,则有:G+C=76%,A+T=24%。又根据规律四,双链(A+T)% =任意单链 (A+T)%。故b链中有A+T=24%。而根据已知条件有Ta=Ab=5%,因此,Tb=24%-5%=19%。例:⒋某mRNA分子中的碱基中U占20%,A占10%,则转录该mRNA的DNA分子片断中C占( )A.35% B.30% C.70% D.无法确定解析:mRNA是以DNA的一条链为模板,按照碱基互补配对原则合成的。由于mRNA没有T,只有碱基U(尿嘧啶)。因此,在以DNA为模板合成mRNA时,需以U替代T与A配对。如图所示:DNA A T G C ――――――aT A C G ――――――bRNA A U G C设b链为模板链,已知有如图的关系,则mRNA中的A+U=30%。根据规律四,在DNA分子中有(T+A)b=(T+A)(a+b)=30%,所以在整个DNA分子中有G+C=70%。又根据规律一,G=C= =35%。因此,转录该mRNA的DNA分子片断中C占35%,即选择A。值的注意的是,在解题中一定要找对DNA分子中碱基间的对应关系或DNA与RNA分子中碱基的相应关系,再灵活应用碱基互补配对的原则及相关规律,那么一切有关这一方面的问题就迎刃而解了。

碱基互补配对原则

在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。

在dna双螺旋结构中互补碱基的配对规律是

碱基互补配对是指核酸分子中各核苷酸残基的碱基按A与T、A与U和G与C的对应关系互相以氢键相连的现象。它是沃森和克里克首先在DNA双螺旋结构模型中提出来的,后来发现,不仅在DNA复制中有这种规律,在转录过程DNA和RNA关系中也有类似的规律。甚至单链RNA中凡在空间靠近、可以氢键互相结合的碱基,也能这样配对。所以,这个原则具有极其重要的生物学意义。复制、转录、逆转录和转译等遗传信息传递的基本生物过程都遵循这个原则。甚至单链RNA中凡在空间靠近、可以氢键互相结合的碱基,也能这样配对。所以,这个原则具有极其重要的生物学意义。复制、转录、逆转录和转译等遗传信息传递的基本生物过程都遵循这个原则。

DNA双链中碱基为什么必须遵循碱基互补配对原则?

DNA的核糖和磷酸围成双链结构骨架后,其内部空间是有限的,四个碱基也有一定的空间构型,大小不一,只有A与T配对、G与C配对,才能正好在DNA内部“装下”,另外,A与T各有两个氢键,G与C各有三个氢键,它们通过氢键相连,这样配对也比较稳定. 如果在DNA之外,其它碱基配对方式也是可以有的.但是在DNA结构中,由于上述原因,只能遵守碱基配对原则.

14.下列各项过程中,遵循“碱基互补配对原则”的有( )

【答案】A【答案解析】试题分析:DNA复制:DNA→DNA,碱基互补配对原则是A—T、C—G、T—A、G—C;RNA复制:RNA→RNA,碱基互补配对原则是A—U、U—A、G—C、C—G;转录:DNA→RNA,碱基互补配对原则是A—U、T—A、C—G、G—C;翻译:mRNA→tRNA,碱基互补配对原则是A—U、U—A、G—C、C—G;逆转录:RNA→DNA,A—T、U—A、C—G、G—C。所以以上过程均遵循碱基互补配对原则。故选A。考点:本题考查碱基互补配对原则,涉及了中心法则中的五个内容,意在考查考生识记并理解所学知识的要点,把握知识间的内在联系的能力。

DNA双链中碱基为什么必须遵循碱基互补配对原则

因为在dna分子结构中,由于碱基之间的氢键具有固定的数目和dna两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是(a,腺嘌呤)一定与(t,胸腺嘧啶)配对,(g,鸟嘌呤)一定与(c,胞嘧啶)配对,反之亦然。而碱基间的这种一一对应的关系就叫做碱基互补配对原则。

碱基互补配对原则的判断

另外,在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;2)将非模板链的T改为U即可。如:DNA:ATCGAATCG (将此为非模板链)UAGCUUAGC(将此为模板链)转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。)

怎么理解碱基互补配对原则。

这种初等的应试生物学,真是中国的特色啊碱基互补配对原则 嘌呤-嘧啶A-T或U(RNA)G-C非互补碱基之和的比例在整个DNA分子中为1 意思是A+C=T+G 不互补配对的碱基相加的 比例 是1:1非互补碱基之和的比例 在 两条 互补链 中互为倒数A+C/T+G = T+G/A+C就这个意思,你自己动手算算其实是没有什么意义的,是根据碱基互补配对原则变形出来的。

碱基互补配对原则的计算

关于碱基互补配对规律的计算,其生物学知识基础是:基因控制蛋白质的合成。由于基因控制蛋白质的合成过程是:⑴微观领域———分子水平的复杂生理过程,学生没有感性知识为基础,学习感到非常抽象。⑵涉及到多种碱基互补配对关系,DNA分子内部有A与T配对,C与G配对;DNA分子的模板链与生成的RNA之间有A与U配对,T与A配对,C与G配对。学习过程中,学生不易认识清楚。⑶涉及许多数量关系(规律),在DNA双链中,①A等于T,G等于C,A+G=T+CA+G/T+C 等1。②一条单链的A+G/T+C的值与另一条互补单链的A+G/T+C的值互为倒数。③一条单链的A+T/C+G的值,与另一条互补链的A+T/C+G的值相等。④在双链DNA及其转录的RNA之间有下列关系:一条链上的(A+T)等于另一条链上的(A+T)等于RNA分子中(A+U)等于12DNA双链中的(A+T)等,

转录、翻译时碱基互补配对具体过程

转录时: DNA双链解旋,以DNA一条链为模板,从5‘端开始游离的脱氧核苷酸按碱基互补配对原则排列,即A-T,G-C,DNA聚合酶负责连接子链中的A,G,C,T. 翻译: 以mRNA为模板,从5‘端开始游离的核糖核苷酸按碱基互补配对原则排列,即A-U,G-C,RNA 聚合酶负责连接子链中的A,G,C,U

DNA复制和遗传信息转录过程中为什么碱基互补配对的原则不完全相同

RNA中的U在DNA中变成了T,因此配对原则不相同.这里面涉及几个基本的问题. 1.为什么RNA里面是U,而DNA里面是T. T碱基比U多了一个甲基,甲基的疏水性可以使DNA的双螺旋更稳定,这有利于保持遗传信息的稳定性.那么T从U进化而来还是U从T退化而来呢? 2.先有RNA还是先有DNA的问题. 分子进化的观点大多认为先有RNA,因为RNA既具有储存遗传信息的功能,还能具有酶活性.而DNA则是从RNA进化而来,因为DNA形成了双螺旋,结构更加稳定,U变成T也增强了稳定性. 但是,不管是T还是U,它们和A都是形成同样的两个氢键,所以都能和A配对.

DNA分子中的碱基互补配对原则,是怎样的

不同生物的DNA分子中;(T1+C1)=(T2+C2)/,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,Guanine(G。 规律五。(A1+G1)/(A2+G2) 规律四。也就是说:规律一,各占全部碱基总数的50%。即双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%。 规律二,在RNA中与Uracil(U。(A1+A2+T1+T2)/哪些过程需要遵循碱基互补配对原则,胞嘧啶)配对;(G+C)不同。在DNA或某些双链RNA分子结构中,使得碱基配对必须遵循一定的规律:在双链DNA分子中,胸腺嘧啶);(G2+C2) 规律三,这就是Adenine(A;(G1+G2+C1+C2)=(A1+T1)/,其互补配对的碱基之和的比值(A+T)/:在双链DNA分子中,A=T,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数:A+G=T+C或A+C=T+G,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值;(G1+C1)=(A2+T2)/。 基互补配对原则规律:在人体细胞的线粒体,代表了每种生物DNA分子的特异性。碱基间的这种一一对应的关系叫做碱基互补配对原则,细胞核内均可发生碱基互补配对行为。即,且等于其转录形成的mRNA中该种比例的比值:在一个双链DNA分子中,嘌呤碱基总数等于嘧啶碱基总数,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等:DNA分子一条链中,尿嘧啶)配对,腺嘌呤)一定与Thymine(T,鸟嘌呤)一定与Cytosine(C、G=C,反之亦然。微观领域———分子水平的复杂生理过程,核糖体

核糖体在合成蛋白质的过程中一定遵循碱基互补配对原则吗?

不一定!看一看密码子表不难发现,每一种氨基酸一般对应多个密码子,且这几个密码子前两位相同,第三位不同,但它们对应同一种反密码子.这是因为第三位密码子和tRNA上的反密码子的配对不严格,此即所谓的摇摆现象.

逆转录的过程中遵循碱基互补配对吗

①DNA复制过程遵循碱基互补配对原则,①正确;  ②转录过程遵循碱基互补配对原则,②正确;  ③翻译过程遵循碱基互补配对原则,③正确;  ④逆转录过程遵循碱基互补配对原则,④正确. 故选:A.

关于生物碱基互补配对原则 详细解说碱基配对互补原则的计算公式?

关于双链DNA A=T C=G A+G=T+C=A+C=T+G=碱基对数 其他比值类问题可遵循“补则等,不补则倒”

碱基互补配对原则

应该是:在双链DNA分子中,互补的两种碱基所占全部碱基的比值,等于两种互补碱基中任意一种占DNA单链所有碱基的比值。举个例子,若A+T占双链DNA的N%,那么不论是A还是T,都占单链中碱基的N%。

单链环状dna复制过程中遵循碱基互补配对原则吗

遵循,DNA的复制和基因的表达(转录翻译)都遵循碱基互补配对原则

DNA复制,转录,翻译的原料,场所及遵循的碱基互补配对原则依次是什么?

原料:脱氧核糖核苷酸核糖核苷酸核糖核苷酸场所:细胞核细胞核核糖体原则:A-T这个是DNA中的A-U这个是RNA中的G-C都有

RNA是否遵循碱基互补配对原则

遵守,只不过是 在RNA 中没有T,而是 U(尿嘧啶)代替T 总结如下RNA复制 中 A-U,U-A,C-G,G-C;(模板是RNA,产物也是RNA)DNA复制 中 A-T,T-A,C-G,G-C;(模板是DNA,产物也是DNA)转录 中 A-U,T-A,C-G,G-C;(模板是DNA,产物是RNA)翻译 中 A-U,U-A,C-G,G-C;(模板是RNA,产物是多肽,但是利用工具tRNA)逆转录 中 A-T,U-A,C-G,G-C;(模板是RNA,产物是DNA)

为什么人工合成目的基因需要碱基互补配对原则?

碱基互补配对原则是在自然界就存在的规则。。。因为碱基之间有识别性。。。。腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T, G≡C根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。因此,可推知多条用于碱基计算的规律。规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。即双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%。 规律五:不同生物的DNA分子中,其互补配对的碱基之和的比值(A+T)/(G+C)不同,代表了每种生物DNA分子的特异性。

碱基互补配对原则是对于dna来说还是rna来说的?

对DNA和RNA都适用。碱基互补配对原则是指在DNA或某些双链RNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律。这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,在RNA中与Uracil(U,尿嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。特点:①稳定性:DNA分子中脱氧核糖与磷酸交替排列的顺序稳定不变②多样性:DNA分子中碱基对的排列顺序多种多样(主要的)、碱基的数目和碱基的比例不同③特异性:DNA分子中每个DNA都有自己特定的碱基对排列顺序扩展资料在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;2)将非模板链的T改为U即可。如:DNA:ATCGAATCG (将此为非模板链);UAGCUUAGC(将此为模板链);转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。参考资料来源:百度百科-碱基互补配对原则

什么是碱基互补配对原则?

碱基互补配对原则就是在DNA复制的时候碱基A和T,C和G配对而在DNA转录成mRNA的时候A和U,C和G配对

DNA分子中的碱基互补配对原则,是怎样的

根据双链DNA分子(假设一条链为1链,另一条链为2链)的碱基互补配对原则,如总有、A1=T2 A2=T1 C1=G2 C2=G1可推出以下规律: ①互补碱基两两相等,即A=T,C=G; ②任意两个不互补配对的碱基之和相等,占碱基总量的50%,即A+G=C+T=50%或A+C=T+G=50%; ③DNA分子的一条链上(A+T)/(C+G)= a (A+C/(T+G)= b,则该链的互补链上相应比例应为a和1/b; ④DNA分子中,两个互补配对的碱基之和的比等于其中任何一条单链中的相同项目之比,如(A+T)/(C+G)=(A1+T1)/(C1+G1)= (A2+T2)/(C2+G2) ⑤DNA分子中,两个互补配对的碱基之和占整个DNA分子的百分比等于其中任何一条链中相应项目占该链的百分比,(A+T)/(A+T+C+G)=(A1+T1)/(A1+T1+C1+G1)=(A2+T2)/(A2+T2+C2+G2); ⑥不同生物的DNA分子中其互补配对的碱基之和的比值不同,即(A+T)/(C+G)的值不同。

碱基的互补原则

(the principle of complementary base-pairing)在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C。根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;2)将非模板链的T改为U即可。如:DNA:ATCGAATCG(将此为非模板链)TAGCTTAGC(将此为模板链)转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。)

卡伽夫法则和碱基互补配对原则

卡伽夫法则(碱基互补配对原则)是指A与T配对,C与G配对。碱基互补配对原则是碱基间的一种一一对应的关系,在DNA或某些双链RNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶),在RNA中与Uracil(U,尿啶)配对。Guanine(G,鸟嘌呤)一定与Cytosine(C,胞啶)配对,反之亦然。碱基互补配对原则实际应用于利用双脱氧核苷酸进行DNA测序。

生物必修2碱基互补配对原则的计算规律

  碱基互补配对原则的计算在高中生物计算题的考试中经常会考到,也是学生遇到的一个难点问题,下面是我给大家带来的生物必修2碱基互补配对原则的计算规律,希望对你有帮助。   生物碱基互补配对原则的计算规律   规律一:互补碱基两两相等,即A=T,C=G;互补的碱基之和相等,即A+T(或C+G)=A+T(或C+G)。   规律二:两不互补的碱基之和比值相等,即(A+G)/(T+C)=(A+C)/(T+G)=1   规律三:任意两不互补的碱基之和占碱基总量的50%,即:(A+C)%=(T+G)%=50%   规律四:DNA分子的一条链上(A+T)/(C+G)=a,(A+C)/(T+G)=b,则该链的互补链上相应比例应分别为a和1/b。   DNA复制前后某种碱基数量的计算   若某DNA分子含某碱基x个,则该DNA分子进行n次复制,需含该碱基的脱氧核苷酸分子数=互补的碱基的脱氧核苷酸分子数=(2n-1)x个。   DNA分子复制链数的计算   一个标记的DNA分子,放在没有标记的环境中培养,复制n次后,脱氧核苷酸链的总数为2n+1;标记的脱氧核苷酸链占1/2n;标记的DNA分子占DNA分子总数的2/2n。   碱基互补配对原则概念

tRNA常见的4种修饰碱基

核酸中除含有a、t、c、u、g等碱基外,还含有稀有碱基,而稀有碱基多含于trna中。trna中的稀有碱基可高达10%,其中黄嘌呤及衍生物,例如:次黄嘌呤、1-甲基次黄嘌呤。

有谁能给我讲讲TRNA二级结构的几个环,和他们的功能什么的。额外环是什么环,稀有碱基存在于哪个环

稀有碱基在额外环

碱基转换和碱基颠换是什么意思?

1、碱基颠换(transversion)是指在碱基置换中嘌呤与嘧啶之间的替代,而转换(transition)则是一个嘌呤被另一个嘌呤,或者是一个嘧啶被另一个嘧啶替代。2、DNA分子中某一个碱基为另一种碱基置换,导致DNA碱基序列异常,是基因突变的一种类型。可分为转换和颠换两类。转换是同类碱基的置换(AT→GC及GC→AT),颠换是不同类碱基的置换(AT→TA或CG,GC→CG或TA)。3、碱基置换的后果可能是:①同义突变(silent mutation),位于密码子第三碱基的置换,由于遗传密码的简并,经转录和翻译所对应的氨基酸不变。②错义突变(missense mutation),碱基置换使密码子的意义改变,经转录和翻译所对应的氨基酸改变。③无义突变(nonsense mutation),碱基置换使密码子成为终止密码,导致肽链延长提前结束。④终止密码突变(terminator codon mutation),碱基置换使终止密码转变成某种氨基酸密码,指导合成的肽链将延长到出现第二个终止密码才结束。引起碱基置换的致突变物称为碱基置换型致突变物(basesubstitutionmutation)。扩展资料:1、嘌呤有两个环(鸟嘌呤G、腺嘌呤A),嘧啶只有一个环(胸腺嘧啶T、胞嘧啶C),DNA碱基的替换保持环数不变,就是转换,如A→G、T→C;环数发生改变,就是颠换,如A→C、T→G。在进化过程中,转换发生的频率远比颠换高。2、碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。3、除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。

人体含N碱基有几种核苷酸有几种

含N碱基有五种:胞嘧啶,胸腺嘧啶,鸟嘌呤,腺嘌呤,尿嘧啶核苷酸有八种:胞嘧啶核糖核苷酸 尿嘧啶核糖核苷酸 鸟嘌呤核糖核苷酸 腺嘌呤核糖核苷酸 胞嘧啶脱氧核糖核苷酸 胸腺嘧啶脱氧核糖核苷酸 鸟嘌呤脱氧核糖核苷酸 腺嘌呤脱氧核糖核苷酸没有为什么,人就是这么长的.

三种不同的rna他们的含氮碱基都一样吗

可以这样理解。三种不同的RNA中所含的碱基都相同。RNA就是核糖核酸,缩写为RNA。RNA存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。一个核糖核苷酸分子由磷酸,核糖和碱基构成。构成RNA的碱基主要有4种,即A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶)。核糖核酸在体内的作用主要是引导蛋白质的合成。其中,核糖体RNA(rRNA)和信使RNA(mRNA)中所含的碱基完全相同,都是A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶)。但第三种RNA,也就是转运RNA(tRNA)中可能含有与上面四种碱基不同的稀有碱基。如:甲基化的嘌呤(mG和mA)、二氢尿嘧啶(DHU)以及次黄嘌呤(6-羟基嘌呤)等。但这些碱基含量并不高,称为“稀有碱基”。所以,如果问“三种不同的RNA中所含的碱基是否相同?”可以回答“相同”。如果问题是“三种不同的RNA中所含的碱基是否完全相同?”就应该回答“不完全相同。其中tRNA中可能含有某些稀有碱基。”

请看下图,胸腺嘧啶,只有DNA中才有的碱基,这里说的是RNA,怎么会有胸腺嘧啶环?

如图,tRNA的特殊结构TΨC环中是含有胸腺嘧啶的(Ψ是稀有碱基,中文名叫假尿嘧啶核苷,这一区域因为无法碱基互配而形成环状结构)。但根据我多年的考试经验,一般默认RNA中不含胸腺嘧啶。

碱基修饰

ATCG是主要碱基. 修饰碱基:除主要碱基外,核酸中也有一些含量很少的稀有碱基.稀有碱基的结构多种多样,多半是主要碱基的衍生物,所以也叫修饰碱基. tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%. Primary bases are incorporated into the growing chain during RNA and/or DNA synthesis.Apart from adenine (A),cytosine (C),guanine (G),thymine (T) and uracil (U),DNA and RNA also contain bases that have been modified after the nucleic acid chain has been formed.In DNA,the most common modified base is 5-methylcytidine (m5C).In RNA,there are many modified bases,including pseudouridine (Ψ),dihydrouridine (D),inosine (I),ribothymidine (rT) and 7-methylguanosine (m7G). 英文来自WIKIPEDIA 和中文不完全对英,但也差不多.你高中应该看的懂的

核苷酸有哪8种,碱基有哪几种?

脱氧核糖核苷酸A脱氧核糖核苷酸C脱氧核糖核苷酸T脱氧核糖核苷酸G核糖核苷酸A核糖核苷酸C核糖核苷酸T核糖核苷酸G碱基碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。  除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 A G C T U

生物上的遗传物质碱基有什用,有什么功能?

碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。 除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 DNA是由四种碱基组成的螺旋结构 DNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。 在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、C(CYTOSINE 胞嘧啶)、G(GUANINE 鸟嘌呤),另有U(URACIL尿嘧啶)。DNA与RNA共有的碱基是腺嘌呤、胞嘧啶和鸟嘌呤。胸腺嘧啶存在于DNA中,而尿嘧啶则存在于RNA中。每种碱基分别与另一种碱基的化学性质完全互补,嘌呤是双环,嘧啶是单环,两个嘧啶之间空间太大,而嘌呤之间空间不够。这样A总与T配对,G总与C配对。这四种化学"字母"沿DNA骨架排列。“字母”(碱基)的一种独特顺序就构成一个"词"(基因)。每个基因有几百甚至几万个碱基对。 嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则 有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。

tRNA曾经被称为“可溶性RNA”是因为它具有更多的稀有碱基

trna上的碱基主要是反密码子,rna上的是密码子。能指导蛋白质合成的,当然是有密码子的rna。

通常既不出现在dna分子中,又不出现在rna分子中的碱基是什么

通常既不出现在DNA分子中,又不出现在RNA分子中的碱基通常是一些稀有碱基,例如二氢尿嘧啶(D),假尿嘧啶Ψ,次黄嘌呤(I)。

为什么核酸中含有稀有碱基和核苷?有何生物学意义?

为什么 核酸中会含有稀有碱基和核苷 这个问题这个就像问为什么地球上会有人类……至于生物意义嘛,因为核酸是遗传物质,含有碱基和核苷,因为核苷酸和碱基和磷酸组成一个核苷酸分子,然后好多好多核苷酸分子配对并排列在一起,为转录提供模板,转录后翻译成蛋白质供人体所需,也就说传递了遗传信息,没记错的话,是这样的

关于tRNA二级结构的叙述,不正确的是 A.三叶草形B.有二氢尿嘧啶环,含有稀有碱基 DHU

【答案】:C本题要点是tRNA的二级结构特点。tRNA二级结构特点是整体上呈三叶草形,含有反密码环:环上含有反密码子;含有二氢尿嘧啶环:含有稀有碱基二氢尿嘧啶(DHU);氨基酸臂及可变环、T0dC环。

以下核酸中含有稀有碱基最多的是()

以下核酸中含有稀有碱基最多的是() A.rRNAB.mRNAC.tRNAD.hnRNAE.线粒体DNA正确答案:C

什么是稀有核苷酸碱基?

trna中经典碱基经过各种化学修饰所产生的不同于经典a、c、g、t、u的其他碱基,如假尿嘧啶核苷(ψ),各种甲基化的嘌呤和嘧啶核苷,二氢尿嘧啶(hu或hd)和胸腺嘧啶(ht)核苷等。对绝大多数原核细胞和真核细胞一个trna分子来说,一般有10-15个稀有碱基。这些稀有碱基的功能不十分清楚。

下列哪一个属于稀有碱基

除主要碱基外,核酸中也有一些含量很少的稀有碱基.稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物.tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%. 所以说应该是tRNA中含有稀有碱基.

含有较多的稀有碱基,它有何作用

trna上的稀有碱基是普通碱基转录后修饰产生的。这些稀有碱基的功能不十分清楚。其中反密码子上的次黄嘌呤(i)可与与u,c和a配对,与密码子的简并性有关,能提高密码子-反密码子识别时的容错率。说实在的我正想设计实验验证其中某个修饰的功能……

稀有碱基在哪类核酸中多见

转录形成的RNA。稀有碱基主要存在于转录形成的RNA中。稀有碱基又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

D I等稀有碱基与谁配对 麻烦把谁和谁配对说清楚

I可和C、A配对 不是说了么,I 可以和C、A配对.

()含有稀有碱基比例较多的核酸是?

()含有稀有碱基比例较多的核酸是? A.胞核DNAB.线粒体DNAC.tRNAD.mRNA正确答案:C

含稀有碱基较多的核酸是什么

含稀有碱基较多的核酸是tRNA,tRNA一般指转运RNA,又称传送核糖核酸、转移核糖核酸,通常简称为tRNA,是一种由76-90个核苷酸所组成的RNA,其3"端可以在氨酰-tRNA合成酶催化之下,接附特定种类的氨基酸。rna一般指核糖核酸。核糖核酸(缩写为RNA,即RibonucleicAcid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。

七甲基鸟嘌呤是稀有碱基吗

不是。稀有碱基,称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成,七甲基鸟嘌呤是人工合成碱基。稀有碱基又称修饰碱基,这些碱基在核酸分子中含量比较少,他们是天然存,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

含稀有碱基较多的核酸是:()

含稀有碱基较多的核酸是:() A.核DNA B.线粒体DNA C.tRNA D.mRNA E.rRNA 正确答案:C

稀有碱基主要存在于哪一种核酸?

稀有碱基主要存在于转运核糖核酸(tRNA)中。稀有碱基又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。相关信息:多半是主要碱基的甲基衍生物,如:5-甲基胞苷、5,6-双氢脲苷等。另外有一种比较特殊的的核苷:假尿嘧啶核苷是由于碱基与核糖连接方式的与众不同,即尿嘧啶5位碳与核苷形成的C-C糖苷键。tRNA中含有修饰碱基比较多,有的tRNA含有的稀有碱基达到10%。

DNA分子中的碱基有多少种??

如果是细胞中,那么有四种,腺嘌呤(A)鸟嘌呤(G)胞嘧啶(C)胸腺嘧啶(T)但是人工合成的可能有U(尿嘧啶)属于DNA中的稀有碱基,还有其他的比如假尿苷什么的,都是很少见的。最常提到的还是上面四周种

核苷酸有哪8种,碱基有哪几种?

脱氧核糖核苷酸C 脱氧核糖核苷酸T 脱氧核糖核苷酸G 核糖核苷酸A 核糖核苷酸C 核糖核苷酸T 核糖核苷酸G碱基碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分.DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的. 除主要碱基外,核酸中也有一些含量很少的稀有碱基.稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物.tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%.嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收.

trna中为何含有较多的稀有碱基,它有何作用?

tRNA上的稀有碱基是普通碱基转录后修饰产生的。这些稀有碱基的功能不十分清楚。其中反密码子上的次黄嘌呤(I)可与与U,C和A配对,与密码子的简并性有关,能提高密码子-反密码子识别时的容错率。说实在的我正想设计实验验证其中某个修饰的功能……

含稀有碱基较多的核酸是?

你好/含稀有碱基最多的核酸是tRNA。大学《生物化学》教材上的原话。

含有稀有碱基比例较多的核酸是

含有稀有碱基比例较多的核酸是tRNA,核酸是一类生物聚合物,是所有已知生命形式必不可少的组成物质。核酸是脱氧核糖核酸(DNA)和核糖核酸(RNA)的总称。碱基在化学中本是碱性基团的简称。有机物中大部分的碱性基团,都含有N原子,成为含氮碱基,碱基是最简单的含氮碱基。含稀有碱基较多的核酸是tRNA,tRNA一般指转运RNA,又称传送核糖核酸、转移核糖核酸,通常简称为tRNA,是一种由76-90个核苷酸所组成的RNA,其3"端可以在氨酰-tRNA合成酶催化之下,接附特定种类的氨基酸。rna一般指核糖核酸。核糖核酸(缩写为RNA,即Ribonucleic Acid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。

含有稀有碱基最多的RNA是

【答案】:C[考点]tRNA组成[分析]tRNA含有大量的稀有碱基如甲基化的嘌呤mG和mA、二氢尿嘧啶DHU以及次黄嘌呤等。

核酸中稀有碱基的生物学功能?~大神们帮帮忙

稀有碱基是指除A。G。U。C外的一些碱基,包括双氢尿嘧啶,假尿嘧啶和甲基化的嘌呤等 大多数是甲基化碱基。tRNA中含稀有碱基高达10%。 我个人认为稀有碱基主要与形成核酸的高级结构有关。尤其在RNA中。有些RNA是有自主催化能力的,特殊的结构决定了它的功能。如果你学过生物化学,尤其是学习过蛋白质结构之后,你应该会有这样的体会,就是许多蛋白质功能都是有它的高级结构所决定的,但形成这些高级结构的基础又是其所具有的一级结构,也就是组成蛋白质的氨基酸种类、数目和排列方式。在学习核算时随没有类似说明,但我认为要应该有这样的规则。 所以我个人认为,稀有碱基的存在主要是决定核算的高级结构,使其具有特定的功能

哪种rna中含有的稀有碱基最多

tRNA富含稀有碱基。碱基: 一类带碱性的有机化合物,是嘌呤和嘧啶的衍生物,DNA中的碱基主要有腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶;RNA中的碱基主要有腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。此外,DNA和RNA中都发现有许多稀有碱基,在转移核糖核酸中含量最高。扩展资料:在典型的双螺旋DNA中,每个碱基对都含有一个嘌呤和一个嘧啶:A与T配对通过2个氢键相连,C与G配对或Z配P或S配B是通过3个氢键相连。这些嘌呤-嘧啶间的配对现象被称为碱基互补,连接DNA两条链的碱基通常被比喻成梯子中的横档梯级。嘌呤和嘧啶间配对的部分原因是受到空间的限制,因为这种配对组合使得DNA螺旋成为一个具有恒定宽度的几何形状。 A-T和C-G配对在互补碱基的胺和羰基之间形成双或三氢键。参考资料来源:百度百科-碱基

真核生物mrna中含有稀有碱基么

含有。又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

含有较多的稀有碱基,它有何作用

碱基(base)指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 例如少量5-甲基胞嘧啶(m5C)或5-羟甲基胞嘧啶(om5C)等稀有碱基二氢尿嘧啶(DHU)、核糖胸腺嘧啶(rT)和假尿苷(ψ)以及不少碱基被甲基化, 其3"端为CCA-OH,5"端多为pG, 分子中大约30%的碱基是不变的或半不变的,也就是说它们的碱基类型是保守的。

稀有碱基主要存在于哪一种核酸中

稀有碱基主要存在于转录形成的RNA中。稀有碱基又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。从化学成分上来看,稀有碱基多半是主要碱基的甲基衍生物。如:5-甲基胞苷、5,6-双氢脲苷等。另外有一种比较特殊的的核苷:假尿嘧啶核苷是由于碱基与核糖连接方式的与众不同,即尿嘧啶5位碳与核苷形成的C-C糖苷键。tRNA中含有修饰碱基比较多,有的tRNA含有的稀有碱基达到10%。

稀有碱基常出现于

【答案】:B又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。转移核糖核酸中发现最多,有近百种,主要是甲基化碱基,如:5-甲基胞苷、5,6-双氢脲苷等。在核酸中有特定的生物功能。tRNA中含有修饰碱基比较多,有的tRNA含有的稀有碱基达到10%。故选B。

稀有碱基名词解释生物化学

稀有碱基又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

稀有碱基主要见于

稀有碱基主要存在于转录形成的RNA中。稀有碱基又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。从化学成分上来看,稀有碱基多半是主要碱基的甲基衍生物。

稀有碱基存在于哪种rna

稀有碱基主要存在于tRNA(转移RNA、转运RNA)。稀有碱基又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。多半是主要碱基的甲基衍生物。如:5-甲基胞苷、5,6-双氢脲苷等。tRNA中含有修饰碱基比较多,有的tRNA含有的稀有碱基达到10%。

稀有碱基有什么作用

碱基(base)指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分.DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的. 除主要碱基外,核酸中也有一些含量很少的稀有碱基.稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物.tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%.嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收. 例如少量5-甲基胞嘧啶(m5C)或5-羟甲基胞嘧啶(om5C)等稀有碱基 二氢尿嘧啶(DHU)、核糖胸腺嘧啶(rT)和假尿苷(ψ)以及不少碱基被甲基化, 其3"端为CCA-OH,5"端多为pG, 分子中大约30%的碱基是不变的或半不变的,也就是说它们的碱基类型是保守的.

稀有碱基Am结构式是什么样的?

你好稀碱基称修饰碱基些碱基核酸含量比较少存工合核酸转录经甲基化、乙酰化、氢化、氟化及硫化半主要碱基甲基衍物:5-甲基胞苷、56-双氢脲苷等另外种比较特殊核苷:假尿嘧啶核苷由于碱基与核糖连接式与众同即尿嘧啶5位碳与核苷形C-C糖苷键tRNA含修饰碱基比较tRNA含稀碱基达10%

在tRNA分子中,除四种基本碱基?外,还含有稀有碱基?

所谓稀有就是通常含量极少的意思,胸腺嘧啶对RNA来说是非常稀有的,尿嘧啶则对DNA来说非常稀有,含稀有碱基比较多的是tRNA,含量达到10%左右,主要是碱基的甲基衍生物,如甲基尿嘧啶,配对的话还是和腺嘌呤进行配对。当然DNA中也有甲基化的碱基,会对基因表达产生影响,从而改变性状。

含稀有碱基最多的rna是什么

转运RNA(Transfer RNA),又称传送核糖核酸、转移核糖核酸,通常简称为tRNA,是一种由76-90个核苷酸所组成的RNA,其3"端可以在氨酰-tRNA合成酶催化之下,接附特定种类的氨基酸。转译的过程中,tRNA可借由自身的反密码子识别mRNA上的密码子,将该密码子对应的氨基酸转运至核糖体合成中的多肽链上。每个tRNA分子理论上只能与一种氨基酸接附,但是遗传密码有简并性(degeneracy),使得有多于一个以上的tRNA可以跟一种氨基酸接附。tRNA的结构特征之一是含有较多的修饰成分,如上面提到的 D、T、 Ψ等;核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。

rdna一个分子有多少个稀有碱基

I—次黄嘌呤碱基 T—胸腺嘧啶碱基 Cm—甲基化胞嘧啶碱基 Ψ——稀有碱基 其中解释下T,应为RNA中的嘧啶碱多为A和U,因此T也算稀有碱基.

含有稀有碱基比例较多的核酸是什么?

含稀有碱基最多的核酸是tRNA。大学《生物化学》教材上的原话。

在tRNA分子中,除四种基本碱基?外,还含有稀有碱基?

是的,理论上DNA有AGCT,RNA有AGCU,但实际上DNA中可能有少量U,这对DNA就是稀有碱基,同样的RNA中也会有除AGCU之外的碱基,而tRNA中含有的稀有碱基比例比其他类型的核酸更高,如T、甲基化碱基、溴化碱基等。
 首页 上一页  1 2 3 4 5 6 7 8  下一页  尾页