磷酸

DNA图谱 / 问答 / 标签

什么是磷酸盐,会对人体不利吗?

磷酸盐就是由磷酸根和其他基团组成的化合物如磷酸钠磷酸钾磷酸二铵磷酸盐首先对身体有一定的毒副作用具体多大视另一个基团而定磷酸氰根组成的化合物则有剧毒生活中磷酸盐的危害主要体现在环境方面磷是植物生长的三大营养之一,进而促进水中藻类的繁殖和生长。大量繁殖的藻类枯死后,释放出糜烂恶臭造成水中缺氧,水质污染,给水生生物的生长带来不良影响。所以,磷元素的排放受到环保方面的严格限制。补充一下:磷酸根易跟活性低的金属离子产生沉淀,这是磷酸根对身体危害的原因.食盐为什么是氯化钠,胃酸为什么是氯化氢(盐酸)就是这个道理

磷酸盐矿物

磷酸盐矿物是金属阳离子与磷酸根[PO4]3-相化合而成的含氧盐类矿物。本类矿物的种类较多,已知的磷酸盐矿物约有410种,但除极少数矿物(如磷灰石)在自然界有广泛分布并可形成有工业价值的矿床外,大多数都为量极少,分布比较局限。磷灰石族磷灰石(Apatite)CaⅨ2CaⅦ3[PO4]3(F,Cl,OH)六方晶系。单晶体呈六方柱状或厚板状(图4-63)。集合体呈块状、粒状、结核状等。颜色多种多样,其中以黄、绿、黄绿、浅蓝和褐色等为常见,含有机质则可染成深灰至黑色;玻璃光泽,断口呈油脂光泽。硬度5;解理平行{0001}及 不完全;参差状或贝壳状断口。密度2.9~3.2g/cm3。加热后常可见磷光发光性。图4-63磷灰石的晶形和实际晶体c{0001}平行双面;m 六方柱;x 六方双锥作为副矿物见于许多岩浆岩中,有时在碱性岩、基性岩以及与之密切相关的碳酸盐岩中呈致密粒状或块状富集成有经济价值的磷矿床。在伟晶岩、接触交代矿床和热液矿脉中有时也可见粗大的柱状晶体磷灰石生成。海相沉积成因主要形成胶磷矿,并往往富集成最有经济价值的磷矿床。胶磷矿在受区域变质作用后可变为显晶质细粒磷灰石。我国磷矿资源较丰富,云南昆阳、贵州开阳、湖北襄阳是著名的沉积成因的磷矿产地;江苏海州等地是沉积变质成因的磷矿产地;河北矾山等处则是岩浆成因的磷矿产地。★磷灰石以其柱状晶形、光泽和硬度作为鉴定特征。但对于结核状磷灰石和胶磷矿则不易识别,可用HNO3滴于其上,再加少许钼酸铵粉末,如粉末由白色变为黄色,则指示有磷的存在。用于制造磷肥以及化学工业上的各种磷盐和磷酸。本章小结1.自然金往往为热液成因,而自然铜和自然银除热液成因以外,更常见于硫化物矿床氧化带中。2.金刚石结晶发生于高温高压条件下,是岩浆作用的产物;石墨也往往在高温条件下形成,但分布最广的是沉积变质成因的石墨,系由富含有机质或炭质的沉积岩经受区域变质作用而成。3.方铅矿是自然界分布最广的含铅矿物。黄铁矿是地壳中分布最广的硫化物矿物,形成于多种不同地质条件下,外生成因的黄铁矿常指示还原的沉积环境。4.萤石和石盐是地壳上最主要的卤化物矿物。石盐是典型的化学沉积成因的矿物,主要形成于干热气候条件下的内陆盆地盐湖和滨海浅水潟湖中。5.纯净无色透明的石英晶体,称水晶;烟黄色称烟水晶;暗棕色称茶晶;黑色者称墨晶;紫色者称紫水晶;黄色者称黄水晶;浅红色、粉红色的石英称蔷薇石英;乳白色者称乳石英。6.黑钨矿成因上与花岗岩关系密切,主要产于高温热液石英脉及云英岩化花岗岩中。我国是世界上最大的产钨国。7.铝土矿并不是一个矿物种,而是以三水铝石、硬水铝石或软水铝石为主要组分,并包含数量不等的高岭石、蛋白石、赤铁矿、针铁矿等组成的混合物。8.硅酸盐矿物结构中的基本构造单元是稳定的[SiO4]4-四面体型的硅酸根离子,它既可以孤立地存在,也可以通过共用四面体角顶上氧离子的方式,彼此相接而形成多种复杂的络阴离子。9.根据[SiO4]4-在结构中连接方式的不同,可以分为岛状络阴离子、环状络阴离子、链状络阴离子、层状络阴离子、架状络阴离子等5种基本的络阴离子类型。10.橄榄石是地幔岩的主要组成矿物之一,也是基性、超基性岩中的主要造岩矿物。11.蓝晶石多由泥质岩经变质而成,主要形成于中级变质作用压力较高的条件下,是典型区域变质矿物之一。12.石英柱面上发育有横纹。电气石柱面上常有纵纹,晶体的横断面呈球面三角形。13.辉石矿物常呈柱状晶体形态,其横截面呈假正方形或八边形,解理夹角为93°和87°。14.角闪石常呈长柱状或针状形态,晶体横截面常呈六边形,解理交角分别为56°和124°。15.蒙脱石吸水后体积急剧膨胀,并分散成糊状。受热脱水后产生体积收缩。这种膨胀性和体积收缩性对建筑地基危害性很大。16.白云母是分布很广的造岩矿物之一,在三大岩类中均有产出。17.透长石、正长石、微斜长石统称为钾长石。钠长石、奥长石、中长石、拉长石、培长石、钙长石统称为斜长石。18.霞石是富钠质碱性岩中的典型矿物,不与石英共生。作业及思考题1.金刚石和石墨的成分都是C,它们的形态、物理性质有什么区别?2.黄铁矿的晶形有时呈立方体、八面体或五角十二面体等,它们之间是同质多象吗?3.从晶形、解理、光泽、颜色等特征,如何区分石英、绿柱石与萤石?4.石英族矿物有何特殊的物理特性?有哪些变种?各自有何用途?5.试从地质产状、形态特征与解理交角分析辉石和角闪石之间有何异同?6.白云母最显著的物理性质是什么?此性质有何工业用途?7.碱性长石包括哪几个矿物种?斜长石是如何分类的?肉眼如何区分和鉴别碱性长石与斜长石?哪些长石可具有钠长石律聚片双晶?8.蒙脱石、石膏、硬石膏最显著的特点是什么?在工业用途和工程地质上有何意义?9.什么是冰洲石?如何区别方解石、文石与白云石?10.何谓粘土矿物?它们有哪些特殊性质?11.何谓似长石?霞石、白榴石在成分和成因上有何特点?12.如何区分和鉴别金红石、锡石和锆石?

关于磷酸盐的溶解

磷酸盐是一种广泛存在于自然界和生物体内的化合物,它们可以在水中溶解。磷酸盐的溶解度取决于其化学结构和溶液中的条件,如pH、温度、离子强度和存在其他离子的情况。一般来说,磷酸盐的溶解度随着pH值的升高而降低。在中性或弱碱性条件下,磷酸盐通常易于溶解。然而,在酸性条件下,磷酸盐的溶解度可能会降低。此外,温度的变化也会影响磷酸盐的溶解度,一般来说,温度越高,溶解度越高。另外,当溶液中存在其他离子时,也会影响磷酸盐的溶解度。例如,存在高浓度的钙离子会降低磷酸盐的溶解度,因为钙离子和磷酸根离子可以结合形成难溶的钙磷酸盐沉淀。总的来说,磷酸盐的溶解度受多种因素的影响,需要具体情况具体分析。

磷酸盐的作用和用途是什么?

磷酸盐的作用和用途:农业行业在农业上,磷酸盐是植物的三种主要养分之一,且是肥料的主要成份。磷矿粉是从沉积岩的磷层中开采,开采后不用加工便可使用,但未加工的磷酸盐只会用在有机耕种上。一般化学加工制成过磷酸石灰、重过磷酸钙或磷酸二氢铵,它们的浓度都较磷酸盐高,且较易溶于水,所以植物可以较快吸收。食品行业磷是人体所必需的重要的矿物质元素,人体摄入磷的主要来源为天然食物或食品磷酸盐添加剂,它充分发挥充分发挥与其他添加剂之间的协同增效的作用,因此磷酸盐是最广泛、用量较大的食品添加剂门类之一,作为重要的食品配料和功能添加剂广泛应用于肉制品、禽肉制品、海产品、水果、蔬菜、乳制品、焙烤制品、饮料、土豆制品、调味料、方便食品等的加工过程中。耐火材料磷酸盐在耐火材料中用作结合剂,磷酸与碱金属或碱土金属氧化物及其氢氧化物反应制成的结合剂多数为气硬性结合剂,即不须加热在常温下即可发生凝结与硬化作用。酸盐用作耐火材料的结合剂在产生陶瓷结合之前的中、低温范围内具有较强的结合强度,被广泛用作不定形耐火材料和不烧耐火材料的结合剂。在锅炉水处理磷酸盐除可用作锅炉的防垢剂外,还可作 缓蚀剂,能够有效锅炉中产生水垢和碱性腐蚀。

磷酸盐的作用和用途是什么?

磷酸盐的作用:1、在工业上,磷酸盐一般会用在清洁剂中作为软水剂。2、在农业上,磷酸盐是植物的三种主要养分之一,且是肥料的主要成份。3、在制造业上,磷酸盐在耐火材料中用作结合剂。磷酸盐结合剂是以酸性正磷酸盐或缩聚磷酸盐为主要化合物并具有胶凝性能的耐火材料结合剂。4、在食品业上,磷是人体所必需的重要的矿物质元素,人体摄入磷的主要来源为天然食物或食品磷酸盐添加剂,磷酸盐是几乎所有食物的天然成分之一。磷酸盐的用途:磷酸盐是所有食物的天然成分之一,可以用作食品加工中,而且还能用于化学产业,对于化工,化肥有一定的作用。同时磷酸盐在耐火材料中做一种结合剂,它还是一种品质改良剂。

磷酸盐在香肠中的作用

磷酸盐在香肠中最重要的作用是保水。它们是一个庞大的家族,GB2760里有约18种磷酸盐,有兴趣的朋友可以 点击这里 。 磷酸盐在肉制品中应用十分广泛,经常使用的有焦磷酸钠,三聚磷酸钠,六偏磷酸钠等; 其中焦磷酸钠(E450iii)是一种白色结晶粉末,易溶于水,有吸湿性,其1%水溶液pH为10(碱性),在香肠中的添加量一般为3-5g/kg,常和三聚磷酸钠混用。 三聚磷酸钠(E452i)是一种白色粉末,易溶于水,水溶液也呈碱性,它的特点是黏着,能防止肉制品变色分散,对脂肪也有乳化性,添加三聚磷酸钠的肉制品,加热后水分流失少,肉质柔嫩易切片,切面有光泽。 磷酸盐的保水机理——就是靠自带的大量磷酸根离子(阴离子)与肉馅中的钙镁离子(阳离子)结合,通过一系列作用使得蛋白质空间结构变得松弛,最终增加了肉馅的持水能力。 除了保水作用外,磷酸盐还有另一个重要的功能—— 乳化和分散作用 ; 众所周知,香肠是由原料肉,脂肪,水等物质,经过斩拌乳化而成的。要获得高质量的产品,稳定乳化程序非常重要。磷酸盐能稳定肉的乳化,同时具有粘合性,使得产品在烟熏,煮熟后仍具有质感。 根据原料的不同,添加磷酸盐的方式有两种:1、注射;2、干粉拌入; 块肉可选择盐水注射,香肠中则直接拌入即可。 以上就是磷酸盐的简要介绍,供您品读。

磷酸盐的作用和用途是什么?

磷酸盐的作用是乳化和分散:由于磷酸盐能使蛋白质的水溶胶质在脂肪球上形成一种胶膜,从而使脂肪更有效地分散在水中,因而被广泛应用于淀粉的磷酸化处理、色素的分散、乳化食品(乳制品、冰淇淋、色拉、调味汁等)以及用作香肠、肉糜制品、鱼糜制品的分散稳定剂。对直链的聚磷酸盐而言,其乳化、分散能力随着链长的增加而增强。用途:几乎所有食物的天然成分中都会有磷酸盐,被广泛用于食品加工中,在无机化学、生物化学及生物地质化学上是很重要的物质。在农业上磷酸盐是植物的三种主要养分之一,且是肥料的主要成分,但现在未加工的磷酸盐只会用在有机耕种上。处理磷酸盐水样时需要注意的细节分析水中磷酸盐时亚硝酸盐会对结果造成干扰,大家可以事先用氨基磺酸进行消除,一般100mg氨基磺酸能处理32.9mg/L的亚硝酸盐。水中如果存在H3AsO4盐会产生正干扰,大家可以使用硫代硫酸钠将其还原为H3AsO4盐以消除干扰。水样中氟化物大于200mg/L时会抑制显色。水样中铁离子含量小于10mg/L时产生的影响不超过5%;钒酸盐会引起颜色加深的情况,Cr3+在10mg/L内不会产生干扰,只有达到50mg/L时会使水样吸光度增加5%。

磷酸盐详细资料大全

磷酸盐是几乎所有食物的天然成分之一,作为重要的食品配料和功能添加剂被广泛用于食品加工中。它是磷酸的盐,在无机化学、生物化学及生物地质化学上是很重要的物质。 2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,磷-32,磷酸盐形式在一类致癌物清单中。 基本介绍 中文名 :磷酸盐 外文名 :phosphorous salts 用途 :重要的食品配料和功能添加剂 分类 :正磷酸盐和缩聚磷酸盐 基本介绍,磷酸盐分类,正磷酸盐,偏磷酸盐,理化性质,主要形式,用途,化工化肥产业,耐火材料,食品行业,食品工业, 基本介绍 磷酸盐是几乎所有食物的天然成分之一,作为重要的食品配料和功能添加剂被广泛用于食品加工中。 天然存在的磷酸盐是磷矿石(含磷酸钙),用硫酸跟磷矿石反应,生成能被植物吸收的磷酸二氢钙和硫酸钙,可制得磷酸盐。磷酸盐可分为正磷酸盐和缩聚磷酸盐:在食品加工中使用的磷酸盐通常为钠盐、钙盐、钾盐以及作为营养强化剂的铁盐和锌盐,常用的食品级磷酸盐的品种有三十多种,磷酸钠盐是国内食品磷酸盐的主要消费种类,随着食品加工技术的发展,磷酸钾盐的消费量也在逐年上升。 磷酸盐 磷酸盐分类 磷酸盐可分为正磷酸盐和缩聚磷酸盐。 正磷酸盐 五价磷含氧酸的盐类,包括正磷酸盐、焦磷酸盐和偏磷酸盐,通常指正磷酸盐。 正磷酸是三元酸,有三种正磷酸盐:①磷酸二氢盐 ,又称一代磷酸盐,都溶于水;②磷酸氢盐 ,又称二代磷酸盐;③正磷酸盐 ,又称三代磷酸盐。后二者除钠、钾、铵盐外一般不溶于水。M 除为一价金属外,也可以是其他价态的金属。磷酸二氢钠用于控制溶液的氢离子浓度;磷酸氢二钠用于水处理,作为多价金属的沉淀剂;磷酸三钠用于制造肥皂和洗涤剂。 磷酸盐 焦磷酸是四元酸,有四种焦磷酸盐:其中 和 型是常见的。 偏磷酸盐 偏磷酸盐通常是聚成环状的化合物,通式是 ,常见的有二聚偏磷酸盐(六元环)和四聚偏磷酸盐(八元环),多聚偏磷酸盐不具备确定的晶体结构,又称磷酸盐玻璃体。六偏磷酸钠是最常见的磷酸盐玻璃体,它没有固定的熔点,在水中的溶解度不定,水溶液的pH在5.5~6.4之间,实际是一个具有20~100个 单元的长链化合物。链型磷酸盐可做锅炉用水的处理剂、颜料分散剂、泥浆分散剂和金属防腐剂。 磷酸根离子可生成特征的磷钼酸铵黄色沉淀,可用于分析检定(见磷酸)。 每年平均海水表面的磷酸盐浓度 理化性质 在酸性溶液下磷酸官能团的结构式。在碱性的溶液下,该官能团会释放两个氢原子,并离化磷酸盐带有-2的形式电荷。磷酸盐离子是一个多原子的离子,它包含一个磷原子,并由四个氧原子所包围,形成一个正四面体。磷酸盐离子带有-3的形式电荷,且是磷酸氢盐离子的共轭碱;磷酸氢盐离子则是磷酸二氢盐离子的共轭碱;而磷酸二氢盐离子又是磷酸的共轭碱。它是一个超价分子(磷原子在其价壳层有着10个电子)。磷酸盐亦是一个有机磷化合物,其化学式为OP(OR)3。 除了一些碱金属外,大部份磷酸盐,在标准状态下,都是不可溶于水的。 在稀释的水溶液中,磷酸盐以四种形式存在。在强碱环境下,磷酸盐离子会较多;而在弱碱的环境下,磷酸氢盐离子则较多。在弱酸的环境下,磷酸二氢盐离子较为普遍;而在强酸的环境下,则水溶的磷酸是主要存在的形式。 主要形式 磷酸盐是元素磷自然产生的形态,在多种磷酸盐矿物中可以找到。元素的磷或是磷化物是很难发现的(只有极少量在陨石中可以找到)。在矿物学及地质学,磷酸盐是指含有磷酸盐离子的石或矿石。 在酸性溶液下磷酸官能团的结构式。 在北美洲最大型的磷矿粉矿床位于美国的佛罗里达州中部、爱德荷州的索达斯普陵、北卡罗莱那州沿岸区域。而其次的是位于蒙大拿州、田纳西州、乔治亚州及南卡罗莱那州近查尔斯顿。诺鲁这个细少的岛国就曾经是有着大量高质素的磷酸盐矿产,但现时已被大量挖掘。磷矿粉亦可以在纳弗沙岛、摩洛哥、突尼西亚、以色列、多哥及约旦找到,这些地方亦有大量的磷酸盐矿业。 在生物中,磷是以溶液中游离的磷酸盐离子的形态出现,称为“无机磷酸盐”,这是要与其他在磷酸酯中的磷酸盐作出区别的。无机磷酸盐是会以Pi来表示,它可以是由焦磷酸盐(以PPi来表示)水解而得: 如左图。 但是,磷酸盐最普遍是以一磷酸腺苷(AMP)、二磷酸腺苷(ADP)、三磷酸腺苷(ATP)、脱氧核糖核酸(DNA)及核糖核酸(RNA)的形式出现,且可以经由水解ADP或ATP而被释放出来。对于其他的二磷或三磷核苷亦有相似的反应。在ADP及ATP,或其他二磷及三磷核苷中的磷酸酐键,包含着大量的能量,所以它们在生物中有着重要的地位。它们一般会被称为高能磷酸磷,就像在肌肉组织中的磷酸肌酸一样。一些如膦的化合物在有机化学上亦会被使用,但它却似乎没有自然的相应物。 磷酸石样本 由于磷酸盐对生物的重要性,所以在生态学上,它是高度被采集。因此,它在环境中往往是 *** 试剂,而它的可得性则决定生物成长的速度。将大量的磷酸盐加入缺乏磷酸盐的环境或微生物环境中,会对生态有着重大的影响。例如,某一种生物的瀑涨会使其他生物死亡,及某种生物数量的减少会令如氧等资源的缺乏等(参富营养化)。在污染的问题下,磷酸盐是总溶解固体量(一种主要的水质指标)的主要成份。 用途 化工化肥产业 磷酸盐一般会用在清洁剂中作为软水剂(water softener),但是因为藻类的繁荣衰退周期会影响磷酸盐在分水岭的排放,所以在某些地区磷酸盐清洁剂是受到管制的。 在农业上,磷酸盐是植物的三种主要养分之一,且是肥料的主要成份。磷矿粉是从沉积岩的磷层中开采。以前它在开采后不用加工便可使用,但现时未加工的磷酸盐只会用在有机耕种上。一般它都是会化学加工制成过磷酸石灰、重过磷酸钙或磷酸二氢铵,它们的浓度都较磷酸盐高,且较易溶于水,所以植物可以较快吸收。 肥料级数一般有三个数字:第一个是指氮的数量,第二个是指磷酸盐的数量,而第三个是指碱水。所以一个10-10-10的肥料就每种成份各有10%,而其他的则是填充物。 从过度施肥的农地迳流的磷酸盐会是富营养化、赤潮及其后缺氧的起因。这就像磷酸盐清洁剂一样会引起鱼类及其他水中生物的缺氧症。 耐火材料 磷酸盐在耐火材料中用作结合剂。磷酸盐结合剂是以酸性正磷酸盐或缩聚磷酸盐为主要化合物并具有胶凝性能的耐火材料结合剂。磷酸盐结合剂的结合形式属化学反应结合或聚合结合。磷酸与碱金属或碱土金属氧化物及其氢氧化物反应制成的结合剂多数为气硬性结合剂,即不须加热在常温下即可发生凝结与硬化作用。磷酸与两性氧化物及氢氧化物或酸性氧化物反应制成的结合剂多数为热硬性结合剂,即须经加热到一定温度发生反应后方可产生凝结与硬化作用。磷酸盐用作耐火材料的结合剂在产生陶瓷结合之前的中、低温范围内具有较强的结合强度,所以被广泛用作不定形耐火材料和不烧耐火材料的结合剂。 食品行业 磷是人体所必需的重要的矿物质元素,人体摄入磷的主要来源为天然食物或食品磷酸盐添加剂,磷酸盐是几乎所有食物的天然成分之一。由于磷酸盐能改善或赋予食品一系列优异性能,因此早在一百多年前就开始套用于食品加工中,而大量使用则在二十世纪七十年以后。磷酸盐是套用最广泛、用量较大的食品添加剂门类之一,作为重要的食品配料和功能添加剂广泛套用于肉制品、禽肉制品、海产品、水果、蔬菜、乳制品、焙烤制品、饮料、土豆制品、调味料、方便食品等的加工过程中。在食品加工中使用的磷酸盐通常为钠盐、钙盐、钾盐以及作为营养强化剂的铁盐和锌盐,常用的食品级磷酸盐的品种有三十多种,磷酸钠盐是中国食品磷酸盐的主要消费种类,随着食品加工技术的发展,磷酸钾盐的消费量也在逐年上升。 磷酸盐 为充分发挥各种磷酸盐以及磷酸盐与其他添加剂之间的协同增效作用,满足食品加工技术的发展需求,在实际套用中常常使用各种复配型磷酸盐作为食品配料和功能添加剂,复配型磷酸盐的研究与开发日益成为磷酸盐类食品添加剂开发与套用的发展方向。 磷酸盐 食品工业 根据美国食品化学药典(FCC)磷酸盐在食品工业中的功能可分为15类: 酸味剂:磷酸 抗结块剂:磷酸钙 抗氧化剂:次磷酸钙 4、缓冲剂:磷酸氢二铵、磷酸二氢铵、磷酸氢钙、磷酸钙、焦磷酸钙、磷酸二氢钾、磷酸氢二钾、酸式焦磷酸钠、磷酸二氢钠、磷酸氢二钠、磷酸钠、焦磷酸钠 面团改良剂:磷酸氢二铵、磷酸二氢铵、磷酸二氢钙、磷酸氢钙 乳化剂:磷酸钾、聚偏磷酸钾、焦磷酸钾、磷酸铝钠(碱性)、偏磷酸钠(不溶性)、磷酸二氢钠、磷酸氢二钠、聚磷酸钠(玻璃质)、焦磷酸钠 硬化剂:磷酸二氢钙 保湿剂:聚偏磷酸钾 发酵剂:磷酸氢二铵、磷酸二氢铵、酸式焦磷酸钠、磷酸铝钠(酸性)10、营养剂:磷酸二氢钙、磷酸氢钙、磷酸钙、焦磷酸钙、磷酸铁、焦磷酸铁、磷酸氢镁、磷酸镁、次磷酸锰、焦磷酸铁钠、磷酸二氢钠、磷酸氢二钠、磷酸钠、焦磷酸钠 防腐剂:次磷酸钠。 12、螯合剂:磷酸二氢钙、磷酸、磷酸二氢钾、磷酸氢二钾、酸式焦磷酸钠、偏磷酸钠(不溶性),聚磷酸钠(玻璃状)。13、改良淀粉添加剂:三偏焦磷酸、磷酸二氢钾。14、组织改良剂:焦磷酸钾、三聚磷酸钾、偏磷酸钠(不溶性)、磷酸氢二钠(玻璃质)、三聚磷酸钠。15、发酵食品:磷酸二氢铵、磷酸氢二铵、磷酸二氢钙、磷酸二氢钙、磷酸二氢钾、磷酸氢二钾。由上可看出:磷酸盐在食品加工中的功能主要有两点,一是品质改良剂,二是营养强化剂。

磷酸盐是什么?

问题一:磷酸盐是什么 “磷酸盐”是“磷的含氧酸盐”的通称,磷酸盐可以 分为简单磷酸盐和复杂磷酸盐两类。简单磷酸盐是指 正磷酸的各种盐类,如M3PO4、M2HPO4和MH2PO4(M为一 加金属离子,如磷酸二氢钾)。复杂磷酸盐包括:直 链的多磷酸盐、支链状的超磷酸盐和环状的聚偏磷酸 盐玻璃体。 问题二:磷酸盐是什么? 一种食品添加剂,常见于丸子,肠类的食品中,磷酸盐的厂家有河南隆霄,食品级的不会伤害人体 问题三:磷酸盐是什么 在农业上,磷酸盐是植物的三种主要养份之一,而且是肥料的主要成份,有利于植物长根和开花结实。 问题四:磷酸盐有什么作用? 用于食品:保水保油,改善口感,成型良好等等,自己可以查查隆霄生物,上面信息很多 问题五:食品级磷酸盐是什么 很多种 问题六:磷酸盐是什么意思 指 金属离子和磷酸根离子所组合成的化合物

磷酸二酯酶

3",5"-环核苷酸磷酸二酯酶[EC.1.4.17](简称PDE),在生物体内有重要的生化功能。它可水解环核苷酸为5"-核苷酸,并与核苷酸环化酶共同维持细胞内环核苷酸水平。根据性质的不同PDE分为多种形式,但总的可分为两大类:依赖于Ca(上标 2+)的PDE,可被钙调蛋白激活;不依赖于Ca(上标 2+)的PDE,不被钙调蛋白激活。开展对环核苷酸、钙调蛋白及药物杀虫机理的研究都需要分离制备这两类不同形式的PDE。本实验以新鲜的猪心为材料制备分离出这两种PDE,并进行了活性分析。 环核苷酸磷酸二酯酶(PDE)有五类同工酶,它们的结构相似,但各具有不同的生化特性及生理功能,它们的调节方式亦各异。目前开发的许多选择性PDE同工酶抑制剂有可能成为平喘药、强心药、血管扩张药、抗血栓药与抗抑郁药。 磷酸二酯酶可依以下的特性分类为11型,PDE1至PDE11。 氨基酸序列 底物特异性 调节性质 药理性质 细胞组织分布 磷酸二酯酶抑制剂是一种抑制磷酸二酯酶活性的药物。例如,西地那非是一种能高选择性地抑制人体内5型磷酸二酯酶(PDE5)活性的磷酸二酯酶抑制剂。 咖啡因同样抑制磷酸二酯酶活性,借此提高细胞内cAMP的浓度,使人较不想睡磷酸二酯酶(英语:Phosphodiesterase,简称PDE)具有水解细胞内第二信使(cAMP,环磷酸腺苷或cGMP,环磷酸鸟苷)的功能,降解细胞内cAMP或cGMP,从而终结这些第二信使所传导的生化作用。

由核糖-5 磷酸到腺苷酸、鸟苷酸的代谢途径大量积累肌苷酸的原理,

原理就是螯合作用。由核糖-5。磷酸到腺苷酸、鸟苷酸中的肌苷酸的转变就是把金属离子从鲜味感觉部位除去,而使谷氨酸钠在味觉神经上有效地作用。

环单磷酸鸟苷简介

目录 1 概述 2 环单磷酸鸟苷的别名 3 环磷鸟苷的医学检查 3.1 检查名称 3.2 分类 3.3 环磷鸟苷的测定原理 3.4 试剂 3.5 操作方法 3.6 正常值 3.7 化验结果临床意义 3.8 附注 3.9 相关疾病 这是一个重定向条目,共享了环磷鸟苷的内容。为方便阅读,下文中的 环磷鸟苷 已经自动替换为 环单磷酸鸟苷 ,可 点此恢复原貌 ,或 使用备注方式展现 1 概述 环磷鸟嘌呤核苷(cyclic guanosinc monophosphate,cGMP)广泛分布于各种组织中,其含量约为cAMP的1/10~1/100,由鸟苷酸环化酶催化GTP而生成,被磷酸二酯酶分解。cGMP与cAMP的作用相反,cGMP有乙酰胆堿的作用,抑制心肌收缩力,降低心率,增加神经兴奋性, *** 白细胞溶酶体释放水解酶, *** 淋巴细胞分裂增殖,抑制糖异生以及兴奋副交感神经的功能。 2 环单磷酸鸟苷的别名 环磷酸鸟苷;环鸟苷酸;环磷鸟苷;cGMP 3 环单磷酸鸟苷的医学检查 3.1 检查名称 环单磷酸鸟苷 3.2 分类 血液生化检查 > 氨基酸、氮化物、有机酸测定 3.3 环单磷酸鸟苷的测定原理 同3H-标记法原理。 3.4 试剂 同3H-标记法测定。 3.5 操作方法 同3H-标记法。 3.6 正常值 血浆:(4.75±0.31)nmol/L; 脑脊液:(3.1±0.42)nmol/L。 3.7 化验结果临床意义 在生物医学研究的许多领域,往往同时判定cAMP和cGMP两种物质的浓度。目前认为cAMP和cGMP是相互拮抗的物质,在正常生理状态下,组织或血浆中的cGMP和cAMP浓度的比值保持相对恒定。两者比例失调是某些疾病发病机制的一项客观指标。故测定cGMP主要用于医药学的基础理论研究如在下列疾病时cGMP浓度变化有一定临床意义。 (1)心血管疾病:急性心肌梗死,血浆cGMcGMP明显升高,最高可达20nmol/L以上,陈旧性心肌梗死一般升高不超过15nmol/L。高血压和冠心病血血浆cGMP平均值高于正常。 (2)甲状腺疾病:甲状腺功能亢进血血浆cGMP浓度略高于正常,甲状腺功能低下血浆cGMcGMP降低。 (3)肾病:慢性肾炎血血浆cGMP升高,尿毒症患者升高尤为显著,而cAMP/cGMP比值降低。 (4)免疫功能:cGMP能单独 *** 淋巴细胞增殖,参与促进淋巴细胞转化过程。 (5)中医医学:阴虚患者血浆cGMcGMP升高。阳虚则显著降低。 3.8 附注 有人提出cAMP/cGMP比值变化是虚症学说的物质基础。 3.9 相关疾病

只有一个磷酸基团的物质?RNA?DNA?ATP?磷脂?

楼上全正解,ATP有三个。核苷酸只有一个磷酸基团,但是一个RNA或DNA有很多个核苷酸单位。这是第一个人回答的。在RNA、DNA分子内磷酸会形成磷酸二酯键,只考虑游离的,这是第二个回答的。选RNA,否则没答案。

磷酸盐的化学式

磷酸盐的化学式是:Hu2083POu2084。磷酸盐矿物是金属阳离子与磷酸根相化合而成的含氧盐矿物。本类矿物的种数较多,有763种,但它们中除少数矿物(如磷灰石等)在自然界中有广泛分布并可形成有工业价值的矿床外,大多数都为量极少。磷酸盐也是DNA和RNA分子的构成部分,这些分子携带着生物体的基因信息。磷酸盐还参与到蛋白质的合成、细胞壁形成和细胞信号传递中。磷酸盐是一种含有磷酸根离子的化合物。它们是磷酸和金属离子的盐,具有重要的生物化学功能。磷酸盐在土壤、水体和生物体中都有广泛的分布,起着关键作用。在生物体中,磷酸盐是细胞形成的基本结构单元。它们是ATP(三磷酸腺苷)和ADP(二磷酸腺苷)等分子的组成部分,这些分子在各种代谢过程中发挥着关键作用。磷酸盐的用途1、清洁剂。在清洁剂的配方中会添加适量的磷酸盐,可以有效的提高清洁剂的润湿能力,磷酸盐可以在脂肪球上形成一层胶膜,能够让脂肪有效的分散在水中,具有一定的乳化能力,但是磷酸盐的主要作用还是软化水质。2、化肥原材料。在农业上,磷酸盐是非常重要的化肥原材料之一,能够给植物生长发育过程中提供很多养分。3、结合剂。磷酸盐在耐火材料里常常被当成结合剂。在常温下磷酸可以和碱金属以及碱性氢氧化物发生凝结和硬化反应,这种情况下的结合剂大部分被称为气硬性结合剂;在加热达到某温度时磷酸可以和两性氢氧化物以及酸性氢氧化物发生凝结和硬化反应。4、食品添加剂。磷元素是我们身体不可或缺的矿物质元素,人体中的磷元素主要就是从外界的食物中摄入的,非常多的天然食物中都会含有磷酸盐。磷酸盐在人体中不仅仅只是补充营养还是细胞膜的重要组成成分,能够有效的增强细胞膜的作用。

只有一个磷酸基团的物质?RNA?DNA?ATP?磷脂?

有些核苷酸分子中只有一个磷酸基,所以可称为一磷酸核苷(NMP),比如AMP,CMP等等RNADNA磷脂都是多聚大分子,每个分子有很多磷酸基团 ATP是又叫三磷酸腺苷(腺苷三磷酸)。结构简式A--P~P~P,有3个磷酸基

头孢唑肟钠与单磷酸阿糖腺苷可配伍

应该可以

孩孑打点滴刚滴完盐酸氨溴索,可以继续滴单磷酸阿糖腺苷吗

可以连续点滴的,氨溴索属于止咳化痰的药物,阿糖胞苷属于抗病毒的药物,两者都是针对上呼吸道感染治疗的。目前孩子有什么症状呢?体温正常吗精神状态好吗?

腺苷加上一个磷酸就是腺嘌呤核糖核苷酸吗?

因为atp是三磷酸腺苷,也就是一个腺苷连了三个磷酸基团,脱去两个,剩一个磷酸基团和一个腺苷,就是腺嘌呤核糖核苷酸基本单位

注射用单磷酸阿糖腺苷加生理盐水和利巴韦林涂抹软疣,哪个治疗效果好些??

疣疣是人类乳头瘤病毒所引起,以往认为这些疾病是慢性良性疾病,是一种发生在皮肤浅表的良性赘生物,电灼法在局部消毒麻醉下进行电灼,或激光治疗或冷冻为好,祝你健康

单磷酸阿糖腺苷针过敏后引起的咳嗽怎么办?

问题分析:你好,单磷酸阿糖腺苷针过敏后引起的咳嗽怎么办?这种情况比较特殊。意见建议:建议避免再次使用单磷酸阿糖腺苷;酮替芬或扑尔敏抗过敏。咳必清止咳。

单磷酸阿糖腺苷与阿糖腺苷的区别

1.单磷酸阿糖腺苷(Ara-AMP)是Ara-A溶解度的400倍,可做肌肉注射和静脉滴注,完全解决了临床水溶性问题。本品为抗脱氧核糖核酸(DNA)病毒药,其药理作用是与病毒的脱氧核糖核酸聚合酶结合,使其活性降低而抑制DNA合成。单磷酸阿糖腺苷进入细胞后,经过磷酸化生成阿糖腺苷二磷酸(Ara-ADP)和阿糖腺苷三磷酸(Ara-ATP)。抗病毒活性主要由阿糖腺苷三磷酸(Ara-ATP)所引起,Ara-ATP与脱氧腺苷三磷酸(dATP)竞争地结合到病毒DNAP上,从而抑制了酶的活性及病毒DNA的合成,同时抑制病毒核苷酸还原酶的活性而抑制病毒DNA的合成,还能抑制病毒DNA末端脱氧核苷酰转移酶的活性,使Ara-A渗入到病毒的DNA中并连接在DNA链3′-OH位置的末端,抑制了病毒DNA的继续合成。2.Ara-AMP是20世纪90年代国内首创的二类新药,它是Ara-A进一步单磷酸化合物,为人工合成的嘌呤核苷类化合物,可大大降低该产品的毒副作用,安全性更好。

ATP可以水解为一个核苷酸和两个磷酸. 这句话怎么理解?

一份子ATP(三磷酸腺苷)含有一个腺嘌呤(碱基),三分子磷酸. 或者说含有一分子单磷酸腺苷(即核苷酸AMP)和两分子磷酸 或者说含有一分子二磷酸腺苷(ADP)和一份子磷酸! 请看看ATP结构式一目了然了!

ATP脱去2个磷酸基团后是RNA的基本组成单位之一,这句话怎么理解,具体些,谢谢

这个简单。首先我们要知道,ATP是由一个腺嘌呤,一个核糖再加三个磷酸基团组成的。当ATP用于产能后,由于高能磷酸键被打断,失去一个磷酸变成ADP,也就是二磷酸腺苷。二磷酸腺苷再失去一个磷酸基团就变成了AMP,即单磷酸腺苷。一个腺嘌呤,一个核糖,一个磷酸基团,那不就是腺嘌呤核糖核苷酸吗?所以说这句话是对的,ATP脱去两个磷酸基团后生成的AMP其实就是腺嘌呤核糖核苷酸,RNA的基本组成单位之一。你就从成分上照我说的这么理解就好

ATP脱去2个磷酸基团后是RNA的基本单位之一,这句话是什么意思,ATP是什么

这个简单。首先我们要知道,atp是由一个腺嘌呤,一个核糖再加三个磷酸基团组成的。当atp用于产能后,由于高能磷酸键被打断,失去一个磷酸变成adp,也就是二磷酸腺苷。二磷酸腺苷再失去一个磷酸基团就变成了amp,即单磷酸腺苷。一个腺嘌呤,一个核糖,一个磷酸基团,那不就是腺嘌呤核糖核苷酸吗?所以说这句话是对的,atp脱去两个磷酸基团后生成的amp其实就是腺嘌呤核糖核苷酸,rna的基本组成单位之一。你就从成分上照我说的这么理解就好

关于三磷酸腺苷(ATP)降解产物

ATP——三磷酸腺苷(即腺嘌呤核苷三磷酸,因为还有鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶的)ADP——二磷酸腺苷(即腺嘌呤核苷二磷酸)AMP——一磷酸腺苷(即:磷酸腺苷)[注意这东西与腺嘌呤核糖核苷酸的区别]IMP——次黄嘌呤核苷酸XMP——黄嘌呤核苷酸HxR——网上给出的解释是“次黄嘌呤核苷酸”Hx——次黄嘌呤

一磷酸腺苷是核苷酸吗

一样.两者名称上好像有差异,其实是一样的. 一磷酸腺苷一般用做二磷酸腺苷水解后的产物名称,它由1分子磷酸基,1分子腺苷(即腺嘌呤+核糖)组成的 腺嘌呤核糖核苷酸往往用在说明RNA的基本单位时,也是由1分子磷酸基,1分子腺嘌呤和1分子核糖组成的 三磷酸腺苷是ATP,不是RNA. 回lc3366,磷酸基与腺嘌呤在核糖上的位置是固定的.

一磷酸腺苷的英文缩写

一磷酸腺苷的英文缩写是ampAMP。AMP是一磷酸腺苷,ADP是二磷酸腺苷,ATP是三磷酸腺苷。AMP、ADP、ATP同系产物,可以相互转化。AMP不含高能磷酸键,ADP含有1个高能磷酸键 ,ATP含有2个高能磷酸键。高能磷酸键可以起到储存能量的作用。生物体在能量代谢的过程中产生能量,以高能磷酸键的形式,储存在ATP和ADP中。当机体需要能量的时候,ATP转换成ADP,ADP再转化成AMP,水解高能磷酸键为机体提供能量。一磷酸腺苷具体概述:一磷酸腺苷是RNA的基本单位。 一磷酸腺苷, 简称AMP,也就是腺嘌呤核糖核苷酸,由一分子腺苷与一个磷酸根组成的化合物,是由ATP两次水解,供应能量后得到的。一磷酸腺苷是RNA的组成单位之一,AMP在不同的地方有不同的叫法,例如作为RNA的一个单体,就称为腺嘌呤核糖核苷酸,也是维生素B8,一种水溶性维生素。如果一磷酸腺苷被氧化生成尿酸,减少尿酸生成需要抑制黄嘌呤氧化酶。

单磷酸阿糖腺苷的用法与用量

临用前,每瓶加2ml灭菌生理盐水溶解后肌内注射或缓慢静脉注射,或遵医嘱。成人按体重一次5~10mg/kg,一日一次。用药过程中密切注意不良反应的发生并及时处理。

单磷酸阿糖腺苷有什么作用

临床主要用于治疗慢性乙型肝炎和其它病毒性感染如带状疱疹、单纯疱疹、生殖器疱疹等,此外在手足口病及儿童水痘方面也有一定的疗效。

ATP可以水解为一个核苷酸和两个磷酸.

一份子ATP(三磷酸腺苷)含有一个腺嘌呤(碱基),三分子磷酸。或者说含有一分子单磷酸腺苷(即核苷酸AMP)和两分子磷酸或者说含有一分子二磷酸腺苷(ADP)和一份子磷酸!请看看ATP结构式一目了然了!https://gss0.baidu.com/70cFfyinKgQFm2e88IuM_a/baike/pic/item/2f9cbdcc3c64a90300e92875.jpg

ATP分子中去掉两个磷酸基团后形成的物质是什么?

A 表示腺苷 T表示3个 P表示磷酸基团 三磷酸腺苷 A-腺苷是腺嘌呤与核糖脱水缩合的产物 注意ATP中的A不是单指腺嘌呤 在腺苷的基础上加上一个磷酸基团,称为腺嘌呤核糖核苷酸,是RNA的基本组成单位 在腺嘌呤核糖核苷酸的基础上加上两个磷酸基团,成为ATP,后加的这两个磷酸基团的化学键比一般化学键含能量高2倍以上,称为高能磷酸键。 核酸中的A只是指腺嘌呤

腺嘌呤单磷酸核苷

没有明确的规定.放前放后都可以.三磷酸腺苷也可以说是腺苷三磷酸.

ATP脱去2个磷酸基团后是RNA的基本单位之一,这句话是什么意思,ATP是什么

ATP是指三磷酸腺苷,是细胞的直接供能物质(葡萄糖是主要供能物质,葡萄糖氧化分解后的能量存储在ATP中,ATP在酶的催化下水解能释放大量能量)。ATP脱去两个磷酸基团之后是一种核糖核苷酸(腺嘌呤核糖核苷酸),因此是RNA的基本单位之一。

单磷酸胞苷和单磷酸腺苷有什么区别?

磷酸是一个完整的分子,h3po4。磷酸基团是磷酸中的—oh与其它物质脱水而连接起来后的结构,比磷酸少了—oh。

怎么说ATP脱去两个磷酸基团后是RNA的基本组成单位之一?

这个简单。首先我们要知道,atp是由一个腺嘌呤,一个核糖再加三个磷酸基团组成的。当atp用于产能后,由于高能磷酸键被打断,失去一个磷酸变成adp,也就是二磷酸腺苷。二磷酸腺苷再失去一个磷酸基团就变成了amp,即单磷酸腺苷。一个腺嘌呤,一个核糖,一个磷酸基团,那不就是腺嘌呤核糖核苷酸吗?所以说这句话是对的,atp脱去两个磷酸基团后生成的amp其实就是腺嘌呤核糖核苷酸,rna的基本组成单位之一。你就从成分上照我说的这么理解就好

单磷酸腺苷的生产及降解

一磷酸腺苷可以从腺苷酸激酶催化两个二磷酸腺苷(ADP)分子合成三磷酸腺苷(ATP)时生成:2mbox{ADP} ightarrow mbox{ATP} + mbox{AMP}或是经由水解ADP的高能磷酸键生成:mbox{ADP} ightarrow mbox{AMP} + mbox{P}_{mbox{i}}水解ATP亦可生成AMP及焦磷酸盐:mbox{ATP} ightarrow mbox{AMP} + mbox{PP}_{mbox{i}}当核糖核酸(RNA)被分解后,一磷酸核苷,包括一磷酸腺苷会被生成。而AMP可以从以下的方式再生成ATP:mbox{AMP} + mbox{ATP} ightarrow 2mbox{ADP}(腺苷酸激酶在另一方向)2mbox{ADP} + 2mbox{P}_{mbox{i}} ightarrow 2mbox{ATP}(此一步骤是经常被好氧性生物的三磷酸腺苷合成酶在氧化磷酸化采用)AMP亦可由肌腺苷酸脱胺酶释放一组氨基转为一磷酸肌苷。在分解代谢的过程中,AMP可以转化成为尿酸排出体外。

单磷酸腺苷在奶粉里面是什么成分

又名一磷腺苷酸,5"-腺嘌呤核苷酸或腺苷酸,是一种在核糖核酸(RNA)中发现的核苷酸。

单磷酸腺苷的介绍

单磷酸腺苷(英文:Adenosine monophosphate,简称AMP),又名一磷腺苷酸,5'-腺嘌呤核苷酸或腺苷酸,是一种在核糖核酸(RNA)中发现的核苷酸。它是一种磷酸及核苷腺苷的酯,并由磷酸盐官能团、戊糖核酸糖及碱基腺嘌呤所组成。一磷酸腺苷是由ATP两次水解得到的。一个碱基加一个五碳糖。是脱氧核苷酸还是核糖核苷酸要看五碳糖,有没有氧,与碱基无关。RNA的组成单位之一;也是维生素B8,一种水溶性维生素。

蛇毒磷酸二酯酶从5′端外切,切5′-磷酸酯键,得3′-单核苷酸。

蛇毒磷酸二酯酶从5′端外切,切5′-磷酸酯键,得3′-单核苷酸。 A.正确 B.错误 正确答案:B

单个核苷酸中 核糖和磷酸基团直接的化学键是什么 核苷酸中是否有磷酸键

单个核苷酸中,核糖与磷酸基团直接相连的化学键是酯键。核苷酸中没有磷酸键。

核苷和磷酸是什么连接键变成单核苷酸的

核苷和磷酸是通过磷酸酯键变成单核苷酸的且磷酸的位置是位于五碳糖的5位碳原子上

单核苷酸通过什么相连?是磷酸二酯键吗

是磷酸二酯键,DNA在复制时先保证碱基之间的氢键配对无误,然后在DNA连接酶的作用下形成磷酸二酯键,把单个脱氧核苷酸连接起来.RNA也是核糖核苷酸通过磷酸二酯键连接的

磷酸哌嗪宝塔糖能与复合乳酸菌胶囊同服吗

不能,要间隔2小时,否则宝塔糖会把乳酸菌杀死

鉴定磷酸和嘌呤碱组合时,加入VC和氨水的作用分别是什么

嘌呤碱在中性水中水溶性不太好,一般溶于碱液中,磷酸和氨水应该为缓冲液

组成DNA和RNAD的五碳糖,碱基,核苷酸和磷酸各共有几种?

碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。 除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 DNA是由四种碱基组成的螺旋结构 DNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。 在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、G(GUANINE 鸟嘌呤)、C(CYTOSINE 胞嘧啶)。每种碱基分别与另一种碱基的化学性质完全互补,这样A总与T配对,G总与C配对。这四种化学"字母"沿DNA骨架排列。"字母"(碱基)的一种独特顺序就构成一个"词"(基因)。每个基因有几百甚至几万个碱基对。 碱基对 形成DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T, G:C,A:U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳 糖、磷酸和一个碱基组成

在人体细胞中,磷酸、五碳糖、碱基代表的成分各共有几种

碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。 除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样508多半是主要碱基的甲基衍生物4073tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 DNA是由四种碱基组成的螺旋结构 DNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。 在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、G(GUANINE 鸟嘌呤)、C(CYTOSINE 胞嘧啶)。每种碱基分别与另一种碱基的化学性质完全互补,这样A总与T配对,G总与C配对。这四种化学"字母"沿DNA骨架排列。"字母"(碱基)的一种独特顺序就构成一个"词"(基因)。每个基因有几百甚至几万个碱基对。 碱基对 形成DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T,∏:C,A:U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳 糖、磷酸和一个碱基组成

各种生物都以三磷酸腺苷为其储存能和放能的中心物质。

在生物化学中,三磷酸腺苷(Adenosine triphosphate, ATP)是一种核苷酸,作为细胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。三磷酸腺苷,也称作腺苷三磷酸.、腺嘌呤核苷三磷酸。化学性质ATP由腺苷和三个磷酸基所组成,分子式C10H16N5O13P3,化学简式C10H8N4O2NH2(OH)2(PO3H)3H,分子量507.184。三个磷酸基团从腺苷开始被编为α、β和γ磷酸基。ATP的化学名称为5"-三磷酸-9-β-D-呋喃核糖基腺嘌呤,或者5"-三磷酸-9-β-D-呋喃核糖基-6-氨基嘌呤。合成ATP的立体结构ATP可通过多种细胞途径产生,最典型的如在线粒体中通过氧化磷酸化由ATP合成酶合成,或者在植物的叶绿体中通过光合作用合成。ATP合成的主要能源为葡萄糖和脂肪酸。每分子葡萄糖先在胞液中产生2分子丙酮酸同时产生2分子ATP,最终在线粒体中通过三羧酸循环产生最多36分子ATP人体中的ATP人体中ATP的总量只有大约0.1摩尔。人体细胞每天的能量需要水解200-300摩尔的ATP,这意味着每个ATP分子每天要被重复利用2000-3000次。ATP不能被储存,因为ATP的合成后必须在短时间内被消耗.其它三磷酸苷活细胞中也有其他的高能三磷酸盐如三磷酸鸟苷。能量可以在这些三磷酸盐和ATP中由磷酸激酶催化反应之类的反应转移:当磷酸键被水解的时候能量就会被释放。这种能量可以被多种酶、肌动蛋白和运输蛋白用于细胞的活动。水解还会生成自由的磷酸盐和二磷酸腺苷。二磷酸腺苷又可以被进一步水解为另一个磷酸离子和一磷酸腺苷。ATP也可以被直接水解为一磷酸腺苷和焦磷酸盐,这个反应在水溶液中是高效的不可逆反应。ADP与GTP的反应ADP + GTP ATP + GDP二磷酸腺苷 + 三磷酸鸟苷 三磷酸腺苷 + 二磷酸鸟苷ATP可能会被作为纳米技术和灌溉的能源。人工心脏起搏器可能收益于这种技术而不再需要电池提供动力。АТФ-аденилпирофосфорная кислота

什么是参与能量和磷酸基团转移的重要物质?

三磷酸腺苷/ATP是参与能量和磷酸基团转移的重要物质。三磷酸尿苷/UTP参与单糖的转变和多糖的合成,三磷酸胞苷/CTP参与卵磷脂的合成,三磷酸鸟苷/GTP供给肽链合成时所需要的能量。

多糖与磷酸结合成啥

核苷三磷酸在代谢中起着重要的作用.三磷酸腺苷/ATP是能量和磷酸基团转移的重要物质,三磷酸尿苷/UTP参与单糖的转变和多糖的合成,三磷酸胞苷/CTP参与卵磷脂的合成,三磷酸鸟苷/GTP供给肽链合成时所需要的能量

gtp鸟苷三磷酸可以供能吗

可以。GTP三磷酸鸟苷可以直接供能,它是三羧酸循环中的琥珀酸辅酶A转变为琥珀酸过程中的能量载体,它可以和ATP相互的转换。

生物化学GDP有谁知道生物化学中GDP是什么?它含高能磷酸键吗

GTP是三磷酸鸟苷(GuanosineTriphosphate) 三磷酸鸟苷(GTP)即是鸟嘌呤-5"-三磷酸。在生物化学的全名为9-β-D-呋喃核糖鸟嘌呤-5"-三磷酸,或者是9-β-D-呋喃核糖-2-氨基-6-氧-嘌呤-5"-三磷酸。GTP是DNA复制时的引物(Primer,其实是RNA)和转录(即是mRNA的生物合成)时的鸟嘌呤核苷酸的提供者。它是三羧酸循环中琥珀酸辅酶A转变为琥珀酸过程中的能量载体,它可以和ATP相互转换。 GTP也是细胞信号传导的重要物质,在此过程中它会在GTPase作用下转化为GDP。

鸟苷三磷酸的合成路线有哪些?

基本信息:中文名称鸟苷三磷酸中文别名5"-鸟嘌呤核苷三磷酸二钠盐,GUANOSINE-5"-TRIPHOSPHATEDISODIUMSALT;鸟三磷;英文名称GTP英文别名Guanosinetriphosphate;guanosine5"-O-(triphosphate);[(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl(hydroxy-phosphonooxyphosphoryl)hydrogenphosphate;Guanosine5"-triphosphoricacid;pppG;D-Guanosine5"-triphosphate;guanosine5"-(tetrahydrogentriphosphate);guanosine5"-triphosphate;Guo-5"-P3;guanosinetriphosphate(-Na2);CAS号86-01-1合成路线:1.通过鸟苷酸合成鸟苷三磷酸,收率约34%;2.通过5"-鸟苷酸二钠合成鸟苷三磷酸,收率约88%;更多路线和参考文献可参考http://baike.molbase.cn/cidian/34408

生物化学GDP有谁知道生物化学中GDP是什么?它含高能磷酸键吗

GTP是三磷酸鸟苷(GuanosineTriphosphate) 三磷酸鸟苷(GTP)即是鸟嘌呤-5"-三磷酸。在生物化学的全名为9-β-D-呋喃核糖鸟嘌呤-5"-三磷酸,或者是9-β-D-呋喃核糖-2-氨基-6-氧-嘌呤-5"-三磷酸。GTP是DNA复制时的引物(Primer,其实是RNA)和转录(即是mRNA的生物合成)时的鸟嘌呤核苷酸的提供者。它是三羧酸循环中琥珀酸辅酶A转变为琥珀酸过程中的能量载体,它可以和ATP相互转换。 GTP也是细胞信号传导的重要物质,在此过程中它会在GTPase作用下转化为GDP。

mRNA的 帽子 7甲基三磷酸鸟苷 甲基怎么会在7位啊 那个戊糖一共就五个位啊?跪求解释

会不会把鸟嘌呤也算进去了啊。。我觉得应该是鸟嘌呤上的7号位。

鸟苷三磷酸水解成什么

鸟苷酸,磷酸,核糖或脱氧核糖话说,应该叫鸟苷三磷酸鸟苷吧

三磷酸鸟苷在酶作用下水解得到什么

二磷酸腺苷和磷酸。三磷酸鸟苷在酶作用下水解的化学方程式是ATP+H2O→ADP+Pi+能量,ADP和Pi指的是二磷酸腺苷和磷酸。

三磷酸鸟苷合成酶什么植物有

三磷酸鸟苷合成酶拟南芥、小麦、水稻、玉米、豆类这些植物有。三磷酸鸟苷合成酶是植物体内一种重要的酶,可以水解gtp或atp,为植物提供能量,在微管系统相关运动中提供所需的动力。例如,拟南芥、小麦、水稻、玉米、豆类等植物都含有三磷酸鸟苷合成酶。

鸟苷三磷酸的合成路线有哪些?

基本信息:中文名称鸟苷三磷酸中文别名5"-鸟嘌呤核苷三磷酸二钠盐,GUANOSINE-5"-TRIPHOSPHATEDISODIUMSALT;鸟三磷;英文名称GTP英文别名Guanosinetriphosphate;guanosine5"-O-(triphosphate);[(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl(hydroxy-phosphonooxyphosphoryl)hydrogenphosphate;Guanosine5"-triphosphoricacid;pppG;D-Guanosine5"-triphosphate;guanosine5"-(tetrahydrogentriphosphate);guanosine5"-triphosphate;Guo-5"-P3;guanosinetriphosphate(-Na2);CAS号86-01-1合成路线:1.通过鸟苷酸合成鸟苷三磷酸,收率约34%;2.通过5"-鸟苷酸二钠合成鸟苷三磷酸,收率约88%;更多路线和参考文献可参考http://baike.molbase.cn/cidian/34408

嘧啶合成所需的氨基甲酰磷酸的氨源来自

嘧啶合成所需的氨基甲酰磷酸的氨源来自谷氨酰胺。根据查询相关公开信息显示,嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。

磷酸铁锂电池组压差0.1V大吗?

这是正常的,相差不算大。2021年9月,我国动力电池产量共计23.2GWh,同比增长168.9%,环比增长18.9%。其中,磷酸铁锂电池产量13.5GWh,占总产量58.3%,同比增长252.0%,环比增长21.9%。1-9月,磷酸铁锂电池产量累计71.6Wh,占总产量53.2%,同比累计增长291.4%。不仅在产量上反超三元电池,而且占比呈现逐步扩大趋势。产量提升,销量数据也是一片红火。9月磷酸铁锂电池销售10.1GWh,同比增长194.2%,占总销量56.9%。1-9月,我国动力电池累计销量达106.8GWh,同比累计增长176.9%。其中,磷酸铁锂电池累计销售56.7GWh,同比累计增长225.0%,占比超过50%。9月,我国新能源汽车市场共计39家动力电池企业实现装车配套,较去年同期较少11家。排名前3家、前5家、前10家动力电池企业动力电池装车量分别为12.3GWh、13.4GWh和14.6GWh,占总装车量比分别为78.4%、85.3%和93.2%,产业集中度进一步提高。

HGPRT(次黄嘌呤-鸟嘌磷酸核糖转移酶)参与下列哪种反应()

【答案】:C嘌呤核苷酸的补救合成有两种方式,参与补救合成的酶包括腺嘌呤磷酸核糖转移酶(APRT)、次黄嘌呤一鸟嘌呤磷酸核糖转移酶(HGPRT)、腺苷激酶

次黄嘌呤一鸟嘌呤磷酸核糖转移酶(符号表示:HGPRT)参与下列哪种反应?(  )

【答案】:C嘌呤核苷酸的主要补救合成途径是嘌呤碱与5"-PRPP(5"-磷酸核糖焦磷酸)在磷酸核糖转移酶作用下形成嘌呤核苷酸。嘌呤核苷酸补救合成过程中需要次黄嘌呤一鸟嘌呤磷酸核糖转移酶参与。

次黄嘌呤-鸟嘌呤磷酸核糖转移酶缺乏导致的疾病是( )。

【答案】:C由于基因缺陷而导致次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)完全缺失的患儿,表现为莱施-奈恩综合征或称Lesch-Nyhan综合征,这是一种遗传代谢病。因此答案选C。

次黄嘌呤磷酸核酸核糖转化酶是

正确答案:C解析:1.次黄嘌呤磷酸核酸核糖转化酶是HGPRT。2.甲氨蝶呤是叶酸的拮抗药。

HGPRT(次黄嘌呤鸟嘌呤磷酸核糖转移酶)参与下列哪种反应()

HGPRT(次黄嘌呤鸟嘌呤磷酸核糖转移酶)参与下列哪种反应() A.嘌呤核苷酸从头合成 B.嘧啶核苷酸从头合成 C.嘌呤核苷酸补救合成 D.嘧啶核苷酸补救合成 E.嘌呤核苷酸分解代谢 正确答案:C

HGPRT(次黄嘌呤-鸟嘌磷酸核糖转移酶)参与下列哪种反应()

【答案】:C嘌呤核苷酸的补救合成有两种方式,参与补救合成的酶包括腺嘌呤磷酸核糖转移酶(APRT)、次黄嘌呤一鸟嘌呤磷酸核糖转移酶(HGPRT)、腺苷激酶

HGPRT(次黄嘌呤-鸟嘌呤磷酸核糖转移酶)参与的代谢途径是:

HGPRT(次黄嘌呤-鸟嘌呤磷酸核糖转移酶)参与的代谢途径是: A.嘌呤核苷酸从头合成B.嘌呤核苷酸补救合成C.嘌呤核苷酸分解代谢D.嘧啶核苷酸从头合成E.嘧啶核苷酸补救合成正确答案:B

参加核苷酸的合成代谢,5‘磷酸核糖必须先活化为?

参加核苷酸合成的5"磷酸核糖必须先活化为PRPP,即5-磷酸核酸-1-焦磷酸。嘌呤核苷酸的合成主要有两条合成途径:从头合成途径和补救合成途径,从头合成途径是以5"磷酸核糖为原料,在磷酸核糖焦磷酸合成酶作用下生成PRPP,之后经过多步反应生成次黄嘌呤核苷酸,次黄嘌呤核苷酸可进一步转化为腺苷酸和鸟苷酸。

次黄嘌呤一鸟嘌呤磷酸核糖转移酶(符号表示:HGPRT)参与下列哪种反应?(  )

【答案】:C嘌呤核苷酸的主要补救合成途径是嘌呤碱与5"-PRPP(5"-磷酸核糖焦磷酸)在磷酸核糖转移酶作用下形成嘌呤核苷酸。嘌呤核苷酸补救合成过程中需要次黄嘌呤一鸟嘌呤磷酸核糖转移酶参与。

组成DNA和RNAD的五碳糖,碱基,核苷酸和磷酸各共有几种?

碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分.DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的. 除主要碱基外,核酸中也有一些含量很少的稀有碱基.稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物.tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%.嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收. DNA是由四种碱基组成的螺旋结构 DNA(脱氧核糖核酸)的结构出奇的简单.DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样.整个分子环绕自身中轴形成一个双螺旋. 在形成稳定螺旋结构的碱基对中共有4种不同碱基.根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、G(GUANINE 鸟嘌呤)、C(CYTOSINE 胞嘧啶).每种碱基分别与另一种碱基的化学性质完全互补,这样A总与T配对,G总与C配对.这四种化学"字母"沿DNA骨架排列."字母"(碱基)的一种独特顺序就构成一个"词"(基因).每个基因有几百甚至几万个碱基对. 碱基对 形成DNA、RNA单体以及编码遗传信息的化学结构.组成碱基对的碱基包括A、G、T、C、U.严格地说,碱基对是一对相互匹配的碱基(即A:T,G:C,A:U相互作用)被氢键连接起来.然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链).它还与核苷酸互换使用,尽管后者是由一个五碳 糖、磷酸和一个碱基组成

游离的dntp以3-5磷酸二脂键相连是复制过程还是转录过程?为什么?谢谢!

这是生物长期进化的结果。所有已知的 DNA聚合酶只能使新合成的 DNA子链从 5′→3′方向延伸 ,这种方向性是其在生物进化中保留的、深刻的、选择与适应性特征 ,有着深刻的化学及生物学功能的根源。 首先 , DNA复制过程中 , DNA双链解螺旋后 ,每一条链上所暴露出来的碱基各自与一个游离于核中的三磷酸脱氧核糖核苷酸 ( dTTP、dGTP、 dATP、dGTP)按碱基配对原则配对。之所以参与反应的是三磷酸脱氧核苷酸 ( dNTP) ,是因为 DNA的聚合反应需要能量 ,在 DNA聚合酶的催化下 , dNTP分解 2个磷酸基团 ,放出能量用于核苷酸顺序连接而成为新链。 其次 , DNA聚合酶只能将游离的核苷酸加到新链的 3′端 (即 -OH)。 再次 ,我们可以利用反证法来说明 “为什么 DNA聚合酶的延伸方向都是 5′→3′,而不是 3′→5′”。假设链的延伸方向为 3′→5′,基于能量的需要 ,其多核苷酸链的 5′端必须带有三磷酸基团 (p~p~p) ,才能与游离的 dNTP起反应 ,而 dNTP也有 p~p~ p,由于磷酸基团之间强的电负性 ,使 dNTP难以聚合到 DNA的 5′端 ,这就需要切除 DNA5′端的 2个磷酸基因以消除这种影响。而这样又难于为进一步的聚合提供所需的能量 ,为使聚合反应得以继续 ,5′端必须重新活化 ,需要额外的能量供应以及别的酶参与反应 ,才能与下一个 dNTP的 3′-OH生成磷酸二酯键。这样既费时又耗能 ,从生物进化与适应角度来讲是不利的。 通过进化 , DNA复制总是在 5′→3′方向添加新核苷酸解决该问题。 DNA复制过程中 ,滞后链的半不连续复制过程虽然复杂 ,但它节省能量 ,且有利于错配核苷酸的校正。因此 , DNA复制方向只能是由 5′到 3′端的方向

DNA中每个脱氧核苷酸含有几个磷酸集团?

DNA中每个脱氧核苷酸在每条单链的大多数含有2个磷酸基团,但在3端位置最后一个脱氧核苷酸只含一个磷酸基团。

PCR使用三磷酸脱氧核苷做原料,为什么不用脱氧核苷酸啊

因为DNA复制的时候,是dNTP的高能磷酸键断裂,释放能量才能合成到DNA新链上去的,直接用脱氧核苷酸是合成不上去的。。。。。。

腺嘌呤 腺苷 腺苷酸 腺苷三磷酸 脱氧三磷酸腺苷 腺嘌呤脱氧核苷酸 核糖 脱氧核糖的区别?

核糖脱氧核糖都是五碳糖,两者差一个氧。腺嘌呤是碱基。腺苷是腺嘌呤和核糖组成的。腺苷三磷酸是腺苷和三个磷酸组成的。腺嘌呤脱氧核苷酸是由腺嘌呤和脱氧核糖还有磷酸组成的,三者都是一个。由名子类推就知道了。

生物:三磷酸脱氧核苷酸

若供能,为什么不可以是dTMP、dCMP、dGMP、dAMP再加上ATP啊?ATP三磷酸腺苷在生物体内普遍存在但含量不高ATP三磷酸腺苷结构式:A—P—P~P(A:腺苷T:三P:磷酸基)“~”表示高能磷酸键在提供能量的过程中实际上是ATP中的~(高能磷酸键)断裂释放能量的而在~断裂后ATP就变成了ADP(二磷酸腺苷A—P—P)当出现ATP缺少的时候就由ADP(A—P“—”P)断开引号里边的硫酸键来提供能量形成AMP(A—P)如果,在ADP提供能量的时候出现能量还是不够用的话它(AMP)再断裂生成能量 在以上化学键断裂的过程中只有~(高能磷酸键)释放的能量最多当出现AMP提供能量的情况时那这个生物就离死不远了。

脱氧核苷酸三磷酸是什么

脱氧核苷酸是组成DNA的材料.而三磷酸脱氧核苷酸则组成一种叫做引物的物质.引物作用于体外进行合成DNA的技术,叫做PCR技术扩增目的基因.DNA解链后引物与其结合然后再进行DNA合成.所以引物也有多种!

DNA合成仪合成DNA片段时的原料为什么是dNTP,而不是dNMP,合成的时候,那两个磷酸基团怎么去掉?

这个问题问得好有模板的DNA和镁离子存在时,在DNA聚合酶的催化下,由游离的3-OH对dNTP的α磷酸发动亲核攻击形成磷酸二酯键,生成DNA,同时释放焦磷酸PPi,焦磷酸水解放能,推动反应向右进行

单磷酸阿糖腺苷与阿糖腺苷一样吗

  单磷酸阿糖腺苷  本品为抗脱氧核糖核酸(DNA)病毒药,其药理作用是与病毒的脱氧核糖核酸聚合酶结合,使其活性降低而抑制DNA合成。单磷酸阿糖腺苷进入细胞后,经过磷酸化生成阿糖腺苷二磷酸(Ara-ADP)和阿糖腺苷三磷酸(Ara-ATP)。抗病毒活性主要由阿糖腺苷三磷酸(Ara-ATP)所引起,Ara-ATP与脱氧腺苷三磷酸(dATP)竞争地结合到病毒DNAP上,从而抑制了酶的活性及病毒DNA的合成,同时抑制病毒核苷酸还原酶的活性而抑制病毒DNA的合成,还能抑制病毒DNA末端脱氧核苷酰转移酶的活性,使Ara-A渗入到病毒的DNA中并连接在DNA链3′-OH位置的末端,抑制了病毒DNA的继续合成。  阿糖腺苷  阿糖腺苷具有广谱抗病毒活性。对疱疹病毒及带状疱疹病毒作用最强,对水痘带状疱疹病毒、牛痘病毒、乙肝病毒次之,对腺病毒、伪狂犬病毒和一些RNA肿瘤病毒有效。对大多数RNA病毒无效。经细胞酶磷酸化生成三磷酸阿糖腺苷,可与三磷酸脱氧腺苷竞争性抑制病毒的DNA多聚酶,并结合进病毒的DNA链,三磷酸阿糖腺苷也抑制核糖核苷酸还原酶,从而抑制病毒DNA的合成。

每个脱氧核糖都连接两个磷酸基团对的错的

一种存在于一切细胞内的戊糖衍生物,是分子中氢原子数与氧原子数不符合2:1的糖类。天然存在的是D-2-脱氧核糖,比D-核糖在2-位少一个氧原子。D-2-脱氧核糖在晶体中以五元环半缩醛存在,有α-型和β-型两种异构体。它是多核苷酸脱氧核糖核酸的一个组成成分。在DNA中,脱氧核糖磷酸分子由磷酸二酯键连接成链,构成多核苷酸纤维的骨架。脱氧核糖一般由脱氧核糖核酸制备。生物体从核糖核苷酸合成脱氧核苷酸的过程是被核糖核苷酸还原酶催化的。已发现有三种不同的核糖核苷酸还原酶,以真核生物中的非血红素铁(Ⅲ)酶为例,该反应机理为:首先,酶半胱氨酸残基的-S,夺取C3的氢,生成C3的自由基。接着C2的羟基被一对半胱氨酸残基之一的-SH质子化,碱夺取C2的羟基质子,电子转移形成C2的C=O双键,C3的水离去,C2的自由基转移到C3上,形成一个新的在C3的自由基。这时上面一对半胱氨酸残基的另一个-SH向C3的自由基转移一个氢原子,自身与另一个-S-形成二硫键,但其中一个硫原子仍为自由基负离子。然后该硫负离子对C2的酮基进行还原,生成的氧负被质子化,形成C2的自由基。该自由基再从第一步中生成的半胱氨酸残基-SH夺取一个氢原子,得到脱氧核苷酸的同时,使酶半胱氨酸的-S。得到再生,进行下一个循环。[2]生物体主要用脱氧核糖而非核糖的一个原因是,如果五元糖的2"-位有一个羟基(核糖),在碱的作用下,这个羟基生成的醇负离子很容易进攻与3"-碳相连的磷原子,使另一个糖的5"-氧负离去,从而破坏核酸的聚合结构。

组成DNA,RNA的五碳糖,碱基,核苷酸,磷酸种类分别是2,5,8,1,他们都是哪些

五碳糖:核糖,脱氧核糖碱基:包嘧啶,腺嘌呤,鸟嘌呤,胸腺嘧啶(DNA里才有),尿嘧啶(RNA里才有)核苷酸:(根据嘌呤或嘧啶还有五碳糖的不同)1.包嘧啶脱氧核糖核苷酸,2.腺嘌呤脱氧核糖核苷酸,3.鸟嘌呤脱氧核糖核苷酸,4.胸腺嘧啶脱氧核糖核苷酸,5包嘧啶核糖核苷酸,6腺嘌呤核糖核苷酸,7鸟嘌呤核糖核苷酸,8尿嘧啶核糖核苷酸.磷酸就是磷酸分子一种(核算根据五碳糖的不同分两种,DNA和RNA,单位都是核苷酸,核苷酸都是由五碳糖,碱基,磷酸组成的)还有什么不懂再问吧
 首页 上一页  7 8 9 10 11 12 13 14 15 16 17  下一页  尾页