双螺旋结构

DNA图谱 / 问答 / 标签

dna双螺旋结构模型有哪些基本特点,这些结构解释生命现象

dna双螺旋结构有哪些特点:  a.两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,螺旋表面有一条大沟和一条小沟。  b.磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按a-t配对,之间形成2个氢键,g-c配对,之间形成3个氢键(碱基配对原则,chargaff定律)。  c.螺旋直径2nm,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对重复一次,间隔为3.4nm。  该模型揭示了dna作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这是dna复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础。该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石。

dna分子双螺旋结构模型属于什么模型?

DNA分子双螺旋结构模型属于物理模型。在生物学中,物理模型就是以实物或图画形式直观地表达认识对象的特征。在教材中出现的也有很多,比如细胞的亚显微结构模型,DNA的双螺旋结构模型等。生物学中的物理模型构建的一般步骤:(1)了解构建模型的基本构造;(2)制作模型构建的基本原件(单位);(3)了解各基本原件之间的关系;(4)按照相互关系连接各基本原件;(5)检验与修补。生物学中物理模型的实例:生物体结构的模式标本,模拟模型如细胞结构模型、各种组织器官的立体结构模型、DNA分子双螺旋结构模型、生物膜镶嵌模型、减数分裂中染色体变化模型、血糖调节模型等。

什么是DNA分子双螺旋结构模型?

DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。 本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件,不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。 一套DNA分子双螺旋结构积塑模型,其特征是: a.这套DNA分子双螺旋积塑模型由红、黄、兰绿四种优质塑料色球(分别代表A、T、G、C四种核苷)和一种优质棕色塑料色棒(代表磷酸P)共五种另件所组成。 b.红球和黄球直径φ18,各带有一个直径φ10的白色圆柱形突出物,在红球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部前后各突起一个直径φ3的半圆形凸起物,在黄球的白色圆柱上伸出一直径φ6的圆棒,圆棒前后各开有一个直径φ3的半圆形凹槽,红球和黄球的结合,即A与T的结合,可通过φ6圆棒插入φ6圆孔来实现。 c.蓝球和绿球直径也是φ18,也各带有一个直径φ10的白色圆柱形突出物,在兰球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部沿圆周对称地突起三个直径φ3的半圆形凸起物,在绿球的白色圆柱上伸出一φ6圆棒,在圆棒周围对称地开有三个直径φ3的半圆形凹槽,兰球和绿球的结合,即G和C的结合,可通过φ6圆棒插入φ6圆孔来实现。 d.每个色球除带有一个白色圆柱形突出物外,还各开有二个直径φ6的圆孔,它们的位置一上一下、一左一右,分别对称地绕水平和垂直轴线旋转36角。利用直径φ6的棕棒插入二个色球相对着的二个φ6圆孔,可将任意二个色球连接起来,从而可组成DNA单股螺旋链,所开φ6圆孔的角度,可保证每一螺旋上有10个色球, e.每一对配对色球上的一个φ3半圆形凸起物和一个φ3半圆形凹槽代表一个氢(H)键,由于A、T和G、C色球上φ3半圆形凸起物和半圆形凹槽数目不同(一为2,一为3),角度不同,因此A球只能与T球结合,G球只能与C球结合,A与C、G与T球之间不能结合(不能插入),从而可实现A-T、G-C之间的严格配对关系,利用这种配对关系,可组成互补配对的DNA双螺旋链,并导致DNA分子具有自我复制的功能。(其中A、T、C、G 均为碱基;A:腺嘌呤;T:胸腺嘧啶;C:胞嘧啶;G:鸟嘌呤。当T转录时,变为U:尿嘧啶)。

dna双螺旋结构模型的要点

由两条碱基互补的、反向平行排列的脱氧多核苷酸单链组成,碱基互补的方式是A与T,C与G对应;两条互补链围绕一“主轴”向右盘旋形成双螺旋结构。DNA分子结构由4种碱基(A、T、G、C)的排列顺序决定储存遗传信息。(1)两条多核苷酸链以相反的平行缠结,依赖成对的碱基上的氢键结合形成双螺旋状,亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合,一条链的走向是5"到3",另一条链的走向是3"到5"; (2)碱基平面向内延伸,与双螺旋链成垂直状; (3)向右旋,顺长轴方向每隔0.34nm有一个核苷酸,每隔3.4nm重复出现同一结构; (4)A与T配对,其间距离1.11nm;G与C配对,其间距离为1.08nm,两者距离几乎相等,以便保持链间距离相等; (5)在结构上有深沟和浅沟; (6)DNA双螺旋结构稳定的维系 横向稳定靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性递积力维持。

dna双螺旋结构模型怎么做

DNA双螺旋结构模型通常是通过搭建分子模型来完成的。以下是一些基本步骤:材料:- 4种颜色的塑料珠(代表4种不同的碱基)- 扁平的手掌大小底座(用作支架)- 钢丝或木棒(用于连接珠子)步骤:1. 将不同颜色的塑料珠分别组合成配对的碱基,即腺嘌呤 (A) 和胸腺嘧啶(T),以及鸟嘌呤(C) 和鸟嘧啶(G)。2. 将钢丝或木棒插入底座中心,作为支架。3. 按照规则将珠子串在钢丝上,每个碱基由两个珠子表示,一个代表碱基的氮碱基,另一个代表糖分子和磷酸基团。4. 使用适当的间距,将珠子与钢丝相连,以形成DNA双螺旋的“阶梯状”结构。5. 通过不断加入珠子,直到完成整个DNA双螺旋结构。需要注意的是,在制作DNA双螺旋结构模型时,请保持每个碱基之间的距离和比例一致,并保证模型稳定性,避免出现塑料珠掉落或模型塌陷等情况。此外,在制作过程中,也可以参考相关教材或在线资源,以获得更加详细的说明和指导。

如何制作dna双螺旋结构模型

制作DNA双螺旋结构模型可以通过以下步骤完成:步骤一:收集材料制作DNA双螺旋结构模型需要的材料有:双股DNA模型彩色糖果或球形磁珠直径约为1cm的木棒或竹签剪刀和胶水步骤二:制作DNA模型的主干首先,我们需要制作DNA模型的主干。将木棒或竹签分成两个长度相等的部分,然后用彩色糖果或球形磁珠把它们连接起来。在连接点处使用胶水固定,以确保主干的稳定性。步骤三:制作DNA模型的核苷酸接下来,制作核苷酸。核苷酸是DNA的构成单位,由磷酸、脱氧核糖和一种碱基组成。我们可以用糖果或球形磁珠代表脱氧核糖和碱基,用小木棒或竹签代表磷酸。将三个组成部分连接在一起,制成核苷酸模型。步骤四:将核苷酸连接成DNA双链将核苷酸按照DNA双链的规律连接起来。DNA双链由两个互补的链组成,每个链都由一系列核苷酸组成。具体来说,腺嘌呤(A)只能与胸腺嘧啶(T)配对,胞嘧啶(C)只能与鸟嘌呤(G)配对。因此,我们可以将A和T、C和G的核苷酸按照互补规律连接起来,形成DNA双链。步骤五:制作DNA双链的螺旋结构将两个DNA双链缠绕在一起,形成DNA双螺旋结构。将两个DNA双链分别绕在两根细木棒上,然后将它们靠近,使它们缠绕在一起。注意,DNA双链是以右手螺旋的形式缠绕在一起的,因此在缠绕时应保持正确的方向。步骤六:调整DNA模型最后,调整DNA模型。将DNA双螺旋模型放在一个水平的表面上,确保它的稳定性。如果需要,可以对DNA双链进行微调,以使其更符合真实的DNA结构。总结:制作DNA双螺旋结构模型需要准备一些材料,包括双股DNA模型、彩色糖果或球形磁珠、直径约为1cm的木棒或竹签、剪刀和胶水等。制作DNA模型的主干、核苷酸和DNA双链,然后将两个DNA双链缠绕在一起,形成DNA双螺旋结构。最后,调整DNA模型,使其更符合真实的DNA结构。制作DNA双螺旋结构模型需要一定的耐心和技巧,但是这个过程也可以帮助我们更好地理解DNA的结构和功能。

DNA双螺旋结构模型的要点有哪些?

【答案】:1953年Watson和Crick提出了DNA双螺旋结构模型,该模型的要点是:(1)DNA分子是由两条反向的平行多核苷酸链构成的,一条链的5"-末端与另一条链的3"-末端相对。两条链的糖-磷酸主链都是右手螺旋,有一共同的螺旋轴,螺旋表面有大沟和小沟。(2)两条链上的碱基均在主链内侧,一条链上的A一定与另一条链上的T配对,G一定与C配对。(3)成对碱基大致处于同一平面,该平面与螺旋轴基本垂直。相邻碱基对平面间的距离为0.34nm,双螺旋每旋转一周有10对碱基,螺旋直径为2nm。大多数天然DNA属双链结构,某些病毒如Фx174和M13的DNA是单链DNA分子。

Wastson和crick提出DNA双螺旋结构模型的背景和依据

这个链接对您的问题有较为详细的阐述:http://baike.baidu.com/view/25292.htm20世纪40年代末和50年代初,在DNA被确认为遗传物质之后,生物学家们不得不面临着一个难题:DNA应该有什么样的结构,才能担当遗传的重任?它必须能够携带遗传信息,能够自我 DNA双螺旋结构特点图复制传递遗传信息,能够让遗传信息得到表达以控制细胞活动,并且能够突变并保留突变。这4点,缺一不可,如何建构一个DNA分子模型解释这一切?   当时主要有三个实验室几乎同时在研究DNA分子模型。第一个实验室是伦敦国王学院的威尔金斯、弗兰克林实验室,他们用X射线衍射法研究DNA的晶体结构。当X射线照射到生物大分子的晶体时,晶格中的原子或分子会使射线发生偏转,根据得到的衍射图像,可以推测分子大致的结构和形状。第二个实验室是加州理工学院的大化学家莱纳斯·鲍林(Linus Pauling)实验室。在此之前,鲍林已发现了蛋白质的a螺旋结构。第三个则是个非正式的研究小组,事实上他们可说是不务正业。23岁的年轻的遗传学家沃森于1951年从美国到剑桥大学做博士后时,虽然其真实意图是要研究DNA分子结构,挂着的课题项目却是研究烟草花叶病毒。比他年长12岁的克里克当时正在做博士论文,论文题目是“多肽和蛋白质:X射线研究”。沃森说服与他分享同一个办公室的克里克一起研究DNA分子模型,他需要克里克在X射线晶体衍射学方面的知识。他们从1951年10月开始拼凑模型,几经尝试,终于在1953年3月获得了正确的模型。关于这三个实验室如何明争暗斗,互相竞争,由于沃森一本风靡全球的自传《双螺旋》而广为人知。值得探讨的一个问题是:为什么沃森和克里克既不像威尔金斯和弗兰克林那样拥有第一手的实验资料,又不像鲍林那样有建构分子模型的丰富经验(他们两个人都是第一次建构分子模型),却能在这场竞赛中获胜?   这些人中,除了沃森,都不是遗传学家,而是物理学家或化学家。威尔金斯虽然在1950年最早研究DNA的晶体结构,当时却对DNA究竟在细胞中干什么一无所知,在1951年才觉得DNA可能参与了核蛋白所控制的遗传。弗兰克林也不了解DNA在生物细胞中的重要性。鲍林研究DNA分子,则纯属偶然。他在1951年11月的《美国化学学会杂志》上看到一篇核酸结构的论文,觉得荒唐可笑,为了反驳这篇论文,才着手建立DNA分子模型。他是把DNA分子当作化合物,而不是遗传物质来研究的。这两个研究小组完全根据晶体衍射图建构模型,鲍林甚至根据的是30年代拍摄的模糊不清的衍射照片。不理解DNA的生物学功能,单纯根据晶体衍射图,有太多的可能性供选择,是很难得出正确的模型的。   沃森在1951年到剑桥之前,曾经做过用同位素标记追踪噬菌体DNA的实验,坚信DNA就是遗传物质。据他的回忆,他到剑桥后发现克里克也是“知道DNA比蛋白质更为重要的人”。但是按克里克本人的说法,他当时对DNA所知不多,并未觉得它在遗传上比蛋白质更重要,只是认为DNA作为与核蛋白结合的物质,值得研究。对一名研究生来说,确定一种未知分子的结构,就是一个值得一试的课题。在确信了DNA是遗传物质之后,还必须理解遗传物质需要什么样的性质才能发挥基因的功能。像克里克和威尔金斯,沃森后来也强调薛定谔的《生命是什么?》一书对他的重要影响,他甚至说他在芝加哥大学时读了这本书之后,就立志要破解基因的奥秘。如果这是真的,我们就很难明白,为什么沃森向印第安那大学申请研究生时,申请的是鸟类学。由于印第安那大学动物系没有鸟类学专业,在系主任的建议下,沃森才转而从事遗传学研究。当时大遗传学家赫尔曼·缪勒(Hermann Muller)恰好正在印第安那大学任教授,沃森不仅上过缪勒关于“突变和基因”的课(分数得A),而且考虑过要当他的研究生。但觉得缪勒研究的果蝇在遗传学上已过了辉煌时期,才改拜研究噬菌体遗传的萨尔瓦多·卢里亚(Salvador Luria)为师。但是,缪勒关于遗传物质必须具有自催化、异催化和突变三重性的观念,想必对沃森有深刻的影响。正是因为沃森和克里克坚信DNA是遗传物质,并且理解遗传物质应该有什么样的特性,才能根据如此少的数据,做出如此重大的发现。   他们根据的数据仅有三条:第一条是当时已广为人知的,即DNA由6种小分子组成:脱氧核糖,磷酸和4种碱基(A、G、T、C),由这些小分子组成了4种核苷酸,这4种核苷酸组成了DNA。第二条证据是最新的,弗兰克林得到的衍射照片表明,DNA是由两条长链组成的双螺旋,宽度为20埃。第三条证据是最为关键的。美国生物化学家埃尔文·查戈夫(Erwin Chargaff)测定DNA的分子组成,发现DNA中的4种碱基的含量并不是传统认为的等量的,虽然在不同物种中4种碱基的含量不同,但是A和T的含量总是相等,G和C的含量也相等。   查加夫早在1950年就已发布了这个重要结果,但奇怪的是,研究DNA分子结构的这三个实验室都将它忽略了。甚至在查加夫1951年春天亲访剑桥,与沃森和克里克见面后,沃森和克里克对他的结果也不加重视。在沃森和克里克终于意识到查加夫比值的重要性,并请剑桥的青年数学家约翰·格里菲斯(John Griffith)计算出A吸引T,G吸引C,A+T的宽度与G+C的宽度相等之后,很快就拼凑出了DNA分子的正确模型。

DNA为什么是双螺旋结构,对于存在于线粒体和叶绿体中的DNA是如何转录和翻译的。

奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948- 1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A 与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。  1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。

双螺旋结构发现者的资料/简介(共五位)

楼主说的是下面这段资料中这个弗兰克林吧 她是维尔金斯的助手,因过早去世而与诺贝尔奖失之交臂。沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进人芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。 克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?--活细胞的物理面貌卜书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。 1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。 有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的"B型"DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的"A型"简单得多,只要稍稍看一下"B型"的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。 克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念。 他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。 有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌岭一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。 经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。 下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。

求沃森和克里克(双螺旋结构发现者)的资料

  沃森  Watson, James Dewey  美国生物学家  克里克  Crick, Francis Harry Compton  英国生物物理学家  20世纪50年代初,英国科学家威尔金斯等用X射线衍射技术对DNA结构潜心研究了3年,意识到DNA是一种螺旋结构。女物理学家富兰克林在1951年底拍到了一张十分清晰的DNA的X射线衍射照片。  1952年,美国化学家鲍林发表了关于DNA三链模型的研究报告,这种模型被称为α螺旋。沃森与威尔金斯、富兰克林等讨论了鲍林的模型。威尔金斯出示了富兰克林在一年前拍下的DNAX射线衍射照片,沃森看出了DNA的内部是一种螺旋形的结构,他立即产生了一种新概念:DNA不是三链结构而应该是双链结构。他们继续循着这个思路深入探讨,极力将有关这方面的研究成果集中起来。根据各方面对DNA研究的信息和自己的研究和分析,沃森和克里克得出一个共识:DNA是一种双链螺旋结构。这真是一个激动人心的发现!沃森和克里克立即行动,马上在实验室中联手开始搭建DNA双螺旋模型。从1953年2月22日起开始奋战,他们夜以继日,废寝忘食,终于在3月7日,将他们想像中的美丽无比的DNA模型搭建成功了。  沃森、克里克的这个模型正确地反映出DNA的分子结构。此后,遗传学的历史和生物学的历史都从细胞阶段进入了分子阶段。  由于沃森、克里克和威尔金斯在DNA分子研究方面的卓越贡献,他们分享1962年的诺贝尔生理医学奖。  詹姆斯·沃森  沃森(出生于1928年)美国生物学家.  20世纪40年代末和50年代初,在DNA被确认为遗传物质之后,生物学家们不得不面临着一个难题:DNA应该有什么样的结构,才能担当遗传的重任?它必须能够携带遗传信息,能够自我复制传递遗传信息,能够让遗传信息得到表达以控制细胞活动,并且能够突变并保留突变。这4点,缺一不可,如何建构一个DNA分子模型解释这一切?  当时主要有三个实验室几乎同时在研究DNA分子模型。第一个实验室是伦敦国王学院的威尔金斯、弗兰克林实验室,他们用X射线衍射法研究DNA的晶体结构。当X射线照射到生物大分子的晶体时,晶格中的原子或分子会使射线发生偏转,根据得到的衍射图像,可以推测分子大致的结构和形状。第二个实验室是加州理工学院的大化学家莱纳斯·鲍林(Linus Pauling)实验室。在此之前,鲍林已发现了蛋白质的a螺旋结构。第三个则是个非正式的研究小组,事实上他们可说是不务正业。23岁的年轻的遗传学家沃森于1951年从美国到剑桥大学做博士后时,虽然其真实意图是要研究DNA分子结构,挂着的课题项目却是研究烟草花叶病毒。比他年长12岁的克里克当时正在做博士论文,论文题目是“多肽和蛋白质:X射线研究”。沃森说服与他分享同一个办公室的克里克一起研究DNA分子模型,他需要克里克在X射线晶体衍射学方面的知识。他们从1951年10月开始拼凑模型,几经尝试,终于在1953年3月获得了正确的模型。关于这三个实验室如何明争暗斗,互相竞争,由于沃森一本风靡全球的自传《双螺旋》而广为人知。值得探讨的一个问题是:为什么沃森和克里克既不像威尔金斯和弗兰克林那样拥有第一手的实验资料,又不像鲍林那样有建构分子模型的丰富经验(他们两个人都是第一次建构分子模型),却能在这场竞赛中获胜?  这些人中,除了沃森,都不是遗传学家,而是物理学家或化学家。威尔金斯虽然在1950年最早研究DNA的晶体结构,当时却对DNA究竟在细胞中干什么一无所知,在1951年才觉得DNA可能参与了核蛋白所控制的遗传。弗兰克林也不了解DNA在生物细胞中的重要性。鲍林研究DNA分子,则纯属偶然。他在1951年11月的《美国化学学会杂志》上看到一篇核酸结构的论文,觉得荒唐可笑,为了反驳这篇论文,才着手建立DNA分子模型。他是把DNA分子当作化合物,而不是遗传物质来研究的。这两个研究小组完全根据晶体衍射图建构模型,鲍林甚至根据的是30年代拍摄的模糊不清的衍射照片。不理解DNA的生物学功能,单纯根据晶体衍射图,有太多的可能性供选择,是很难得出正确的模型的。  沃森在1951年到剑桥之前,曾经做过用同位素标记追踪噬菌体DNA的实验,坚信DNA就是遗传物质。据他的回忆,他到剑桥后发现克里克也是“知道DNA比蛋白质更为重要的人”。但是按克里克本人的说法,他当时对DNA所知不多,并未觉得它在遗传上比蛋白质更重要,只是认为DNA作为与核蛋白结合的物质,值得研究。对一名研究生来说,确定一种未知分子的结构,就是一个值得一试的课题。在确信了DNA是遗传物质之后,还必须理解遗传物质需要什么样的性质才能发挥基因的功能。像克里克和威尔金斯,沃森后来也强调薛定谔的《生命是什么?》一书对他的重要影响,他甚至说他在芝加哥大学时读了这本书之后,就立志要破解基因的奥秘。如果这是真的,我们就很难明白,为什么沃森向印第安那大学申请研究生时,申请的是鸟类学。由于印第安那大学动物系没有鸟类学专业,在系主任的建议下,沃森才转而从事遗传学研究。当时大遗传学家赫尔曼·缪勒(Hermann Muller)恰好正在印第安那大学任教授,沃森不仅上过缪勒关于“突变和基因”的课(分数得A),而且考虑过要当他的研究生。但觉得缪勒研究的果蝇在遗传学上已过了辉煌时期,才改拜研究噬菌体遗传的萨尔瓦多·卢里亚(Salvador Luria)为师。但是,缪勒关于遗传物质必须具有自催化、异催化和突变三重性的观念,想必对沃森有深刻的影响。正是因为沃森和克里克坚信DNA是遗传物质,并且理解遗传物质应该有什么样的特性,才能根据如此少的数据,做出如此重大的发现。  他们根据的数据仅有三条:第一条是当时已广为人知的,即DNA由6种小分子组成:脱氧核糖,磷酸和4种碱基(A、G、T、C),由这些小分子组成了4种核苷酸,这4种核苷酸组成了DNA.第二条证据是最新的,弗兰克林得到的衍射照片表明,DNA是由两条长链组成的双螺旋,宽度为20埃。第三条证据是最为关键的。美国生物化学家埃尔文·查戈夫(Erwin Chargaff)测定DNA的分子组成,发现DNA中的4种碱基的含量并不是传统认为的等量的,虽然在不同物种中4种碱基的含量不同,但是A和T的含量总是相等,G和C的含量也相等。  查加夫早在1950年就已发布了这个重要结果,但奇怪的是,研究DNA分子结构的这三个实验室都将它忽略了。甚至在查加夫1951年春天亲访剑桥,与沃森和克里克见面后,沃森和克里克对他的结果也不加重视。在沃森和克里克终于意识到查加夫比值的重要性,并请剑桥的青年数学家约翰·格里菲斯(John Griffith)计算出A吸引T,G吸引C,A+T的宽度与G+C的宽度相等之后,很快就拼凑出了DNA分子的正确模型。  沃森和克里克在1953年4月25日的《自然》杂志上以1000多字和一幅插图的短文公布了他们的发现。在论文中,沃森和克里克以谦逊的笔调,暗示了这个结构模型在遗传上的重要性:“我们并非没有注意到,我们所推测的特殊配对立即暗示了遗传物质的复制机理。”在随后发表的论文中,沃森和克里克详细地说明了DNA双螺旋模型对遗传学研究的重大意义:一、它能够说明遗传物质的自我复制。这个“半保留复制”的设想后来被马修·麦赛尔逊(Matthew Meselson)和富兰克林·斯塔勒(Franklin W.Stahl)用同位素追踪实验证实。二、它能够说明遗传物质是如何携带遗传信息的。三、它能够说明基因是如何突变的。基因突变是由于碱基序列发生了变化,这样的变化可以通过复制而得到保留。  但是遗传物质的第四个特征,即遗传信息怎样得到表达以控制细胞活动呢?这个模型无法解释,沃森和克里克当时也公开承认他们不知道DNA如何能“对细胞有高度特殊的作用”。不过,这时,基因的主要功能是控制蛋白质的合成,这种观点已成为一个共识。那么基因又是如何控制蛋白质的合成呢?有没有可能以DNA为模板,直接在DNA上面将氨基酸连接成蛋白质?在沃森和克里克提出DNA双螺旋模型后的一段时间内,即有人如此假设,认为DNA结构中,在不同的碱基对之间形成形状不同的“窟窿”,不同的氨基酸插在这些窟窿中,就能连成特定序列的蛋白质。但是这个假说,面临着一大难题:染色体DNA存在于细胞核中,而绝大多数蛋白质都在细胞质中,细胞核和细胞质由大分子无法通过的核膜隔离开,如果由DNA直接合成蛋白质,蛋白质无法跑到细胞质。另一类核酸RNA倒是主要存在于细胞质中。RNA和DNA的成分很相似,只有两点不同,它有核糖而没有脱氧核糖,有尿嘧啶(U)而没有胸腺嘧啶(T)。早在1952年,在提出DNA双螺旋模型之前,沃森就已设想遗传信息的传递途径是由DNA传到RNA,再由RNA传到蛋白质。在1953~1954年间,沃森进一步思考了这个问题。他认为在基因表达时,DNA从细胞核转移到了细胞质,其脱氧核糖转变成核糖,变成了双链RNA,然后再以碱基对之间的窟窿为模板合成蛋白质。这个过于离奇的设想在提交发表之前被克里克否决了。克里克指出,DNA和RNA本身都不可能直接充当连接氨基酸的模板。遗传信息仅仅体现在DNA的碱基序列上,还需要一种连接物将碱基序列和氨基酸连接起来。这个“连接物假说”,很快就被实验证实了。  1958年,克里克提出了两个学说,奠定了分子遗传学的理论基础。第一个学说是“序列假说”,它认为一段核酸的特殊性完全由它的碱基序列所决定,碱基序列编码一个特定蛋白质的氨基酸序列,蛋白质的氨基酸序列决定了蛋白质的三维结构。第二个学说是“中心法则”,遗传信息只能从核酸传递给核酸,或核酸传递给蛋白质,而不能从蛋白质传递给蛋白质,或从蛋白质传回核酸。沃森后来把中心法则更明确地表示为遗传信息只能从DNA传到RNA,再由RNA传到蛋白质,以致在1970年发现了病毒中存在由RNA合成DNA的反转录现象后,人们都说中心法则需要修正,要加一条遗传信息也能从RNA传到DNA.事实上,根据克里克原来的说法,中心法则并无修正的必要。  碱基序列是如何编码氨基酸的呢?克里克在这个破译这个遗传密码的问题上也做出了重大的贡献。组成蛋白质的氨基酸有20种,而碱基只有4种,显然,不可能由1个碱基编码1个氨基酸。如果由2个碱基编码1个氨基酸,只有16种(4的2次方)组合,也还不够。因此,至少由3个碱基编码1个氨基酸,共有64种组合,才能满足需要。1961年,克里克等人在噬菌体T4中用遗传学方法证明了蛋白质中1个氨基酸的顺序是由3个碱基编码的(称为1个密码子)。同一年,两位美国分子遗传学家马歇尔·尼伦伯格(Marshall Nirenberg)和约翰·马特哈伊(John Matthaei)破解了第一个密码子。到1966年,全部64个密码子(包括3个合成终止信号)被鉴定出来。作为所有生物来自同一个祖先的证据之一,密码子在所有生物中都是基本相同的。人类从此有了一张破解遗传奥秘的密码表。  DNA双螺旋模型(包括中心法则)的发现,是20世纪最为重大的科学发现之一,也是生物学历史上惟一可与达尔文进化论相比的最重大的发现,它与自然选择一起,统一了生物学的大概念,标志着分子遗传学的诞生。这门综合了遗传学、生物化学、生物物理和信息学,主宰了生物学所有学科研究的新生学科的诞生,是许多人共同奋斗的结果,而克里克、威尔金斯、弗兰克林和沃森,特别是克里克,就是其中最为杰出的英雄。  克里克  弗朗西斯·哈里·康普顿·克里克(Francis Harry Compton Crick 1916.6.8——2004.7.28)  生于英格兰中南部一个郡的首府北安普敦。小时酷爱物理学。1934年中学毕业后,他考入伦敦大学物理系,3年后大学毕业,随即攻读博士学位。然而,1939年爆发的第二次世界大战中断了他的学业,他进入海军部门研究鱼雷,也没有什么成就。待战争结束,步入"而立之年"的克里克在事业上仍一事无成。1950年,也就是他34岁时考入剑桥大学物理系攻读研究生学位,想在著名的卡文迪什实验室研究基本粒子。  这时,克里克读到著名物理学家薛定谔的一本书《生命是什么》,书中预言一个生物学研究的新纪元即将开始,并指出生物问题最终要靠物理学和化学去说明,而且很可能从生物学研究中发现新的物理学定律。克里克深信自己的物理学知识有助于生物学的研究,但化学知识缺乏,于是开始发愤攻读有机化学、X射线衍射理论和技术,准备探索蛋白质结构问题。  1951年,美国一位23岁的生物学博士沃森来到卡文迪什实验室,他也受到薛定谔《生命是什么》的影响。克里克同他一见如故,开始了对遗传物质脱氧核糖核酸DNA分子结构的合作研究。他们虽然性格相左,但在事业上志同道合。沃森生物学基础扎实,训练有素;克里克则凭借物理学优势,又不受传统生物学观念束缚,常以一种全新的视角思考问题。他们二人优势互补,取长补短,并善予吸收和借鉴当时也在研究DNA分子结构的鲍林、威尔金斯和弗兰克林等人的成果,结果经不足两年时间的努力便完成了DNA分子的双螺旋结构模型。而且,克里克以其深邃的科学洞察力,不顾沃森的犹豫态度,坚持在他们合作的第一篇论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话,使他们不仅发现了DNA的分子结构,而且丛结构与功能的角度作出了解释。  1962年,46岁的克里克同沃森、威尔金斯一道荣获诺贝尔生物学或医学奖。  后来,克里克又单独首次提出蛋白质合成的中心法则,即遗传密码的走向是:DNA→RNA→蛋白质。他在遗传密码的比例和翻译机制的研究方面也做出了贡献。1977年,克里克离开了剑桥,前往加州圣地亚哥的索尔克研究院担任教授。  2004年7月28日深夜,弗朗西斯·克里克在与结肠癌进行了长时间的搏斗之后,在加州圣地亚哥的桑顿医院里逝世,享年88岁。

什么时间是谁发现了遗传物质DNA的双螺旋结构

1953年4月25日,克里克和沃森在英国杂志《自然》上公开了他们的DNA模型.经过在剑桥大学的深入学习后,两人将DNA的结构描述为双螺旋,在双螺旋的两部分之间,由四种化学物质 DNA双螺旋组成的碱基对扁平环连结着.他们谦逊地暗示说,遗传物质可能就是通过它来复制的.这一设想的意味是令人震惊的:DNA恰恰就是传承生命的遗传模板.  1953年沃森和克里克提出著名的DNA双螺旋结构模型,他们构造出一个右手性的双螺旋结构.当碱基排列呈现这种结构时分子能量处于最低状态.沃森后来撰写的《双螺旋:发现DNA结构的故事》(科学出版社1984年出版过中译本)中,有多张DNA结构图,全部是右手性的.这种双螺旋展示的是DNA分子的二级结构.

DNA分子双螺旋结构,其意义使生物学研究进入到什么阶段?

山西临汾的施良飞越看自己的女儿越不像自己,也不像自己的妻子。2001年7月9日,他携妻带女一同到北京做DNA亲子关系鉴定。结果令他和妻子大吃一惊……   一只羊或牛不再像以前那样只是为人类提供肉类和皮革,通过克隆技术、转基因技术,这只羊或牛就会变成一个制药厂,生产着基因技术所需要的各种各样的药物……未来一个人的医院病历很简单,就是一张CD盘,其中含有病人的全部遗传信息……   小酒馆里宣称发现生命的秘密   1953年,年仅25岁的詹姆斯·沃森和37岁的弗朗西斯·克里克共同完成了一项伟业:他们从DNA(脱氧核糖核酸)的X光衍射图上解读了它的双螺旋结构。当时大多数人对于这一发现并没有予以关注,就连当时的媒体,也只有一家小报(现早已停刊)稍作报道。然而随着时光流转,DNA双螺旋结构的发现对人类社会产生的影响与日俱增,克隆技术、基因工程、生物芯片技术等都与之不可分割。   中国科学院遗传与发育生物学研究所研究员莫鑫泉说,DNA双螺旋结构的发现开启了分子生物学时代。它使生物大分子的研究进入一个崭新的阶段,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。50年来,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。   有趣的是,在发现DNA双螺旋结构时,沃森是一个刚刚迈出校门不久的大学生,而克里克则是一个不懂遗传学的、一个不得志的物理学家。然而就是这两个人,改写了生物学的历史。他们的研究成果被誉为可与达尔文的进化论、孟德尔的遗传定律相媲美的重要科学发现。   关于DNA双螺旋结构的发现日期还有一段小“故事”。1953年2月28日,37岁的克里克走进英格兰剑桥大学的雄鹰酒馆,在那里他向一群困惑的听众宣布,他和一位朋友发现了“生命的秘密”。然而包括沃森在内的许多科学家却都认为,只有当沃森和克里克于1953年4月25日在《自然》杂志上首次发表关于DNA双螺旋结构的论文时,生命的秘密才算得上是真正展现在人类面前。正因此,中国遗传学会将在这一论文发表50周年之际,于4月20-24日在南京举行隆重的学术纪念研讨会,国家有关部门也将在4月24日举行相关纪念活动。   “发现DNA双螺旋结构的意义对生物学来说怎么估量都不为过。”莫鑫泉先生对记者说:“用双螺旋结构解释遗传是如何进行的,这是人类对自己、对生物学认识的巨大飞跃。发现双螺旋之前,科学家对生命现象进行了长期的思考与研究:是什么因素使人类能够一代一代地将遗传特性保持下去?”的确,就是一个桌子还有腐朽变坏的时候,为什么人类就能代代延续?什么决定了人生人,老鼠生老鼠?   在20世纪初,没有人能够想到DNA就是遗传物质。当时科学家们猜测,生命的遗传物质应该是蛋白质,因为20种氨基酸多种不同的组合,可以形成许多不同的蛋白质,蛋白质作为酶催化生物代谢反应,由此控制多种遗传性状的表达。然而在沃森和克里克发现DNA双螺旋结构后,科学家们终于明白了,DNA的4种核苷酸分子不同的组合或序列构成了成千上万种基因,这些“化学语言”编码着不同的遗传信息,指导和控制着生物体的生化、形态、生理和行为等多种性状的表达和变化。DNA是自然界惟一能够自我复制的分子,正是这种精细准确的复制,为生物将其特性传递给下一代提供了最基本的分子基础。   DNA双螺旋结构的发现及由此产生的生物技术革命正以前所未有的深度和广度影响着人类的生活,影响着自然科学,包括社会科学的发展。    “为什么我的女儿不像我”   山西临汾的施良飞越看自己的女儿越不像自己,也不像自己的妻子。2001年7月9日,他携妻带女一同到北京做DNA亲子关系鉴定。结果令他和妻子大吃一惊:他们二人不是女儿的生物学父母。为此他们将妻子生产时的医院临汾铁路分局中心医院告上了法庭,要求返还亲生女儿并赔偿经济损失及精神损害。2001年8月,法院不公开开庭审理了此案。施良飞得到了一份医院提供的与其妻子同时住院者的名单,于是他便开始一家一户地悄悄寻找。   一天,施良飞按照名单找到了一家小卖部,一眼就看到了女主人段香翠居然和自己的“女儿”长得一模一样,并且段香翠的“女儿”长得又很像自己的妻子。2001年11月19日,施良飞夫妇及“女儿”、段香翠夫妇及“女儿”共6人在法院的监督下在临汾市医院抽取血样各1份并当场贴了封条。次日,两个家庭的血样送到公安部物证鉴定中心做DNA亲缘关系鉴定。22日,检验出来了:施良飞的女儿是段香翠夫妇之生女的相对机会为99.9999%;段香翠的女儿是施良飞夫妇之生女的相对机会为99.9999%,至此,案件的基本事实终于大白于天下。   撇开案件错综复杂的关系及结果不说,公安部物证鉴定中心为此案所作检验时利用了DNA的检测技术。其原理是,人身上的每个细胞有总数约为30亿个碱基对的DNA,每个人的DNA都不完全相同,人与人之间不同的碱基对数目达百万之多,因此通过分子生物学方法所显示出来的人的DNA模样就会因人而异,人们就可以像指纹那样分辨人与人的不同了;同时DNA还具有遗传性,是负责遗传特性的基本物质,人们可以利用这一特点来鉴别两个人之间的亲缘关系。施良飞虽认为段翠香的女儿长得很像自己的妻子,这并不能说明二人之间就有血缘关系。只有利用了DNA的检测技术才能确认这一关系。   这件事反映了DNA对我们现代生活的影响,然而鉴定血缘关系或者是警方利用DNA技术破案都仅仅是这种影响中的极小部分。中国科学院基因组信息学中心研究员、国家863科技攻关计划人类基因组单体型图构建项目课题组长曾长青博士对记者说,DNA双螺旋的发现对人类的影响实际上很难一样一样地数出来,就像电的发明对今天人类社会的影响一样。它本身属于一项非常基础性的科学发现。了解了DNA、RNA(核糖核酸)和蛋白质的结构与功能,就如同解读了从遗传信息到生命活动的三部曲,就可以使人类从分子水平上解释生命,认识生命,直到改造生命。发现了双螺旋,可以说带来了人类知识的大爆炸。

在dna双螺旋结构中碱基互补配对原则是

A、DNA分子中,G与C配对,A错误; BC、DNA分子中,A与T配对,B错误,C正确; D、DNA分子中不存在碱基U,D错误. 故选:C.

简述DNA双螺旋结构模型特点及碱基互补原则。

我来说说吧,不知阁下是高中生还是大学生,如果是高中生的话,看生物必修2就解决了,课本上说的很清楚,如果是大学生的话,就可以进一步了解:1.DNA双螺旋结构特征(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。2.碱基互补配对原则theprincipleofcomplementarybasepairing:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C

简述DNA双螺旋结构模型特点及碱基互补原则。

我来说说吧,不知阁下是高中生还是大学生,如果是高中生的话,看生物必修2就解决了,课本上说的很清楚,如果是大学生的话,就可以进一步了解:1.DNA双螺旋结构特征(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。2.碱基互补配对原则theprincipleofcomplementarybasepairing:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C

在dna双螺旋结构中互补碱基的配对规律是

碱基互补配对是指核酸分子中各核苷酸残基的碱基按A与T、A与U和G与C的对应关系互相以氢键相连的现象。它是沃森和克里克首先在DNA双螺旋结构模型中提出来的,后来发现,不仅在DNA复制中有这种规律,在转录过程DNA和RNA关系中也有类似的规律。甚至单链RNA中凡在空间靠近、可以氢键互相结合的碱基,也能这样配对。所以,这个原则具有极其重要的生物学意义。复制、转录、逆转录和转译等遗传信息传递的基本生物过程都遵循这个原则。甚至单链RNA中凡在空间靠近、可以氢键互相结合的碱基,也能这样配对。所以,这个原则具有极其重要的生物学意义。复制、转录、逆转录和转译等遗传信息传递的基本生物过程都遵循这个原则。

生物DNA双螺旋结构和DNA复制的问题!答的好有加分!

你说的第一个问题和双螺旋结构没什么关系,是DNA的一级结构。核酸是由很多单核苷酸聚合形成的多聚核苷酸(polynucleotide),DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成不分支的线性大分子,其中磷酸基和戊糖基构成DNA链的骨架,可变部分是碱基排列顺序。核酸是有方向性的分子,即核苷酸的戊糖基的5′位不再与其它核苷酸相连的5′末端,以及核苷酸的戊糖基3′位不再连有其它核苷酸的3′末端,两个末端并不相同,生物学特性也有差异。DNA的复制过程(一)DNA的半保留复制Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,他们推测,DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。(二)DNA复制的起始,方向和速度 DNA在复制时,双链DNA解旋成两股分别进行。其复制过程的复制起点呈现叉子的形式,故称复制叉。以复制叉向前移动的方向为标准,一条模板链为3"—〉 5"走向,在其上DNA能以5"—〉3"方向连续合成,称为前导链(leading strand);另一条模板链为5"—〉3"走向,在其上DNA也是5"—〉3"方向合成,但与复制叉移动的方向正好相反,故随着复制叉的移动形成许多不连续的冈崎片段,最后在连成一条完整的DNA链,该链称为后随链(lagging strand)。实验证明DNA的复制是由一个固定的起始点开始的。一般把生物体的单个复制单位称为复制子。一个复制子只含一个复制起点。一般说,细菌,病毒即线粒体DNA分子均作为单个复制子完成其复制,真核生物基因组可以同时在多个复制起点上进行双向复制,即它们的基因组包括多个复制子。多方面的实验结果表明,大多数生物内DNA的复制都是从固定的起始点以双向等速方式进行的。复制叉以DNA分子上某一特定顺序为起始点,向两个方向等速生长前进。(三)DNA复制过程 以原核生物DNA复制过程予以简要说明1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程(1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。(四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。

DNA的双螺旋结构模型,用自己的话解释怎么说?

你说的第一个问题和双螺旋结构没什么关系,是DNA的一级结构。核酸是由很多单核苷酸聚合形成的多聚核苷酸(polynucleotide),DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成不分支的线性大分子,其中磷酸基和戊糖基构成DNA链的骨架,可变部分是碱基排列顺序。核酸是有方向性的分子,即核苷酸的戊糖基的5′位不再与其它核苷酸相连的5′末端,以及核苷酸的戊糖基3′位不再连有其它核苷酸的3′末端,两个末端并不相同,生物学特性也有差异。DNA的复制过程(一)DNA的半保留复制Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,他们推测,DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。(二)DNA复制的起始,方向和速度 DNA在复制时,双链DNA解旋成两股分别进行。其复制过程的复制起点呈现叉子的形式,故称复制叉。以复制叉向前移动的方向为标准,一条模板链为3"—〉 5"走向,在其上DNA能以5"—〉3"方向连续合成,称为前导链(leading strand);另一条模板链为5"—〉3"走向,在其上DNA也是5"—〉3"方向合成,但与复制叉移动的方向正好相反,故随着复制叉的移动形成许多不连续的冈崎片段,最后在连成一条完整的DNA链,该链称为后随链(lagging strand)。实验证明DNA的复制是由一个固定的起始点开始的。一般把生物体的单个复制单位称为复制子。一个复制子只含一个复制起点。一般说,细菌,病毒即线粒体DNA分子均作为单个复制子完成其复制,真核生物基因组可以同时在多个复制起点上进行双向复制,即它们的基因组包括多个复制子。多方面的实验结果表明,大多数生物内DNA的复制都是从固定的起始点以双向等速方式进行的。复制叉以DNA分子上某一特定顺序为起始点,向两个方向等速生长前进。(三)DNA复制过程 以原核生物DNA复制过程予以简要说明1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程(1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。(四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。

为什么组蛋白能与DNA双螺旋结构紧密结合?

好问题。组蛋白带有很多的Lys和Arg,这两种氨基酸有碱性侧链,他们带的正电可以有效与DNA的负电中和,因此组蛋白可以和DNA双螺旋紧密结合。其他的原因包括DNA和组蛋白之间的氢键、疏水作用等。更详细的内容可以看第六版《Molecular Biology of the Cell》的190页前后,图文并茂并且内容比这里更详尽。

DNA双螺旋结构是通过什么连在一起的?

两条链是通过碱基间的氢键连接在一起的嘌呤和嘧啶之间可以形成氢键,而碱基对的碱基堆积力有利于维持DNA空间结构的稳定。在链的内部,核糖核苷酸间以3-5磷酸二酯键连接

DNA三级结构的主要形式是( ) A.双螺旋结构 B.α-螺旋 C.超螺旋 D.无规则卷曲 E.开环型结构

【答案】:CDNA三级结构的主要形式是超螺旋,DNA二级结构的主要形式是双螺旋。超螺旋是在双螺旋基础上的进一步螺旋化。

DNA双螺旋结构的生物学功能

DNA双螺旋(DNA double helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。  大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。  DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。

DNA双螺旋结构的特点?为什么负超螺旋有利于双螺旋解旋?

反向双螺旋结构,2条肽连之间由4种碱基通过互补配对原则相结合,即A与T、G与C配对,再由氢键连接到一起,就构成了DAN的特殊结构。几乎所有天然状态的双链DNA均以负超螺旋的方式存在,特别是进行半保留复制的DNA均以[种种拓扑异构体]的形式存在。负超螺旋是DNA复制的必需条件,负超螺旋可使DNA双链碱基对打开所需要的能量降低4.1KJ/mol,因而,有利于DNA的双链分开。

DNA双螺旋结构的特点?为什么负超螺旋有利于双螺旋解旋?

反向双螺旋结构,2条肽连之间由4种碱基通过互补配对原则相结合,即A与T、G与C配对,再由氢键连接到一起,就构成了DAN的特殊结构。几乎所有天然状态的双链DNA均以负超螺旋的方式存在,特别是进行半保留复制的DNA均以[种种拓扑异构体]的形式存在。负超螺旋是DNA复制的必需条件,负超螺旋可使DNA双链碱基对打开所需要的能量降低4.1KJ/mol,因而,有利于DNA的双链分开。

B型DNA双螺旋结构要点?简答题

B型DNA双螺旋结构要点是主链有二条。DNA双螺旋结构主链由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。扩展资料:1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。

b型dna双螺旋结构的特点

1、两条DNA互补链反向平行。2、DNA双螺旋的稳定性靠氢键和碱基的堆集力维持。3、DNA双螺旋表面有一个大沟和一个小沟,蛋白质分子通过大沟、小沟和碱基相识别。4、两条DNA链靠形成的氢键结合在一起。5、脱氧核酸和磷酸间隔相连的清水骨架在螺旋分子外侧。 DNA的作用: 经过对DNA的本质进行学习和了解我们知道了DNA能够经过精准的复制把遗传信息传递给下一代DNA还能够在复制过程中进行有概率的突变这样可以为生物进化提供分子基础DNA可以转录成为RNA并且翻译成为蛋白质经过蛋白质来实现生命结构与功能。 正是因为DNA所具备的这些功能使其能够对人类的生活起到很大的作用就当前的情况来看主要是在亲子鉴定以及转基因技术中发挥重大作用。

简述B型DNA双螺旋结构模

1953年Watson和Crick在nature上发表了DNA双螺旋模型首次简要阐明了复杂DNA分子的二级结构,明确提出特异碱基配对可能是遗传物质的复制机制。要点如下: 1.两条反向平行的互补双螺旋链,一条方向为5‘→3",另一条方向为3‘→5",围绕同一中心纵轴,从右向上盘旋。 2.双螺旋磷酸-脱氧核糖主链在外,位于内的碱基平面与中心轴垂直。 3.每个碱基相聚0.34nm,同条链相邻碱基夹角36度,每10个碱基形成螺旋1周,螺距3.4nm。 4.露于螺旋外的磷原子离中心轴1.0nm,易与阳离子接近。 5.两条链相互碱基互补配对,即AT/GC,分别以2个和3个氢键相连。 6.两条单链之间由小沟,两个双链之间有大沟,他们在DNA双螺旋外交替出现。

b型dna双螺旋结构特点正确的是a两条dna链反向平行 两条链围绕着同一个中心形

ABD 解析 : 双链多数为右手螺旋,也有其他形式,如左手双螺旋等。

B-dna双螺旋结构模型是什么

这是指B型DNA,也就是我们通常说的DNA沃森和克里克在研究DNA的时候所用的资料来自在相对湿度为百分之九十二是所得到的DNA,这种DNA称为B型DNA.还有A型和Z型,这是DNA的三种构型。一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。

DNA的双螺旋结构具有多样性吗

有。DNA双螺旋其实有 A、B、Z三种构型:B型DNA(右手双螺旋DNA);活性最高的DNA构象; 平时学习的就是这种构型A型DNA,B型DNA的重要变构形式,仍有活性;Z型DNA,Z型DNA是左手螺旋,B型DNA的另一种变构形式,活性明显降低

B型DNA双螺旋结构要点?

右手螺旋,反向平行;螺旋直径2nm;脱氧核糖和磷酸基主链位于螺旋外部,碱基位于螺旋内部;双螺旋的螺距为3.4nm,其中包含10个核苷酸对

DNA的双螺旋结构具有多样性吗

有,DNA的双螺旋结构具有多样性。DNA双螺旋其实有 A、B、Z三种构型B型DNA(右手双螺旋DNA);活性最高的DNA构象; 平时学习的就是这种构型A型DNA,B型DNA的重要变构形式,仍有活性;Z型DNA,Z型DNA是左手螺旋,B型DNA的另一种变构形式,活性明显降低

简述DNA双螺旋结构模型要点

DNA双螺旋结构模型的要点:1、由两条碱基互补的、反向平行排列的脱氧多核苷酸单链组成,碱基互补的方式是A与T,C与G对应;2、两条互补链围绕一“主轴”向右盘旋形成双螺旋结构;DNA分子结构3、DNA分子结构由4种碱基(A、T、G、C)的排列顺序决定储存遗传信息;4、DNA分子结构双螺旋的表面形成两条凹槽,一面宽而深,称之深沟;另一面狭而浅,称之浅沟。与特定功能的蛋白质(酶)识别和调控相关。DNA链5、DNA链碱基排列顺序的组合方式无限,形成多种不同的DNA分子。扩展资料:DNA双螺旋结构的发现者富兰克林(Rosalind Elsie Franklin)于1952年5月获得一张非常清晰的B型DNA衍射照片(照片51号)。1953年1月,沃森访问国王学院时看到了这张照片,立刻领悟了双螺旋模型的关键。他在回忆录《双螺旋》中写道:“在看到图片的瞬间,我目瞪口呆、心跳加速,图片上占主要位置的黑色十字映像只能从螺旋结构中产生”。参考资料来源:百度百科-DNA双螺旋结构

B型DNA双螺旋结构要点?简答题

B型DNA双螺旋结构要点是主链有二条。DNA双螺旋结构主链由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。扩展资料:1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。

简述B型DNA双螺旋结构模

1953年Watson和Crick在nature上发表了DNA双螺旋模型首次简要阐明了复杂DNA分子的二级结构,明确提出特异碱基配对可能是遗传物质的复制机制。要点如下: 1.两条反向平行的互补双螺旋链,一条方向为5‘→3",另一条方向为3‘→5",围绕同一中心纵轴,从右向上盘旋。 2.双螺旋磷酸-脱氧核糖主链在外,位于内的碱基平面与中心轴垂直。 3.每个碱基相聚0.34nm,同条链相邻碱基夹角36度,每10个碱基形成螺旋1周,螺距3.4nm。 4.露于螺旋外的磷原子离中心轴1.0nm,易与阳离子接近。 5.两条链相互碱基互补配对,即AT/GC,分别以2个和3个氢键相连。 6.两条单链之间由小沟,两个双链之间有大沟,他们在DNA双螺旋外交替出现。

B型DNA双螺旋结构要点?简答题

1953年Watson和Crick在nature上发表了DNA双螺旋模型首次简要阐明了复杂DNA分子的二级结构,明确提出特异碱基配对可能是遗传物质的复制机制。要点如下: 1.两条反向平行的互补双螺旋链,一条方向为5‘→3",另一条方向为3‘→5",围绕同一中心纵轴,从右向上盘旋。 2.双螺旋磷酸-脱氧核糖主链在外,位于内的碱基平面与中心轴垂直。 3.每个碱基相聚0.34nm,同条链相邻碱基夹角36度,每10个碱基形成螺旋1周,螺距3.4nm。 4.露于螺旋外的磷原子离中心轴1.0nm,易与阳离子接近。 5.两条链相互碱基互补配对,即AT/GC,分别以2个和3个氢键相连。 6.两条单链之间由小沟,两个双链之间有大沟,他们在DNA双螺旋外交替出现。

简述B-型DNA分子双螺旋结构的要点

右手螺旋,反向平行;螺旋直径2nm;脱氧核糖和磷酸基主链位于螺旋外部,碱基位于螺旋内部;双螺旋的螺距为3.4nm,其中包含10个核苷酸对

为什么中关村广场是 DNA双螺旋结构模型

这是指b型dna,也就是我们通常说的dna沃森和克里克在研究dna的时候所用的资料来自在相对湿度为百分之九十二是所得到的dna,这种dna称为b型dna.还有a型和z型,这是dna的三种构型。一般认为,b构型最接近细胞中的dna构象,它与双螺旋模型非常相似。a-dna与rna分子中的双螺旋区以及转录时形成的dna-rna杂交分子构象接近。z-dna以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(z)形,故名。

若一核酸样品在某温度范围内,对260nm的光吸收增加30%左右,则这个核酸是双螺旋结构。请问这个命题

这个命题是错误的。核酸在260nm光线下有特征性光吸收。当双螺旋结构时对260nm光线吸收减弱40%。这是减色效应。但是如果dna变性后改变这一特性。使其对260nm光吸收增强。称为增色效应。DNA的变性就是二级结构的破坏,就是双螺旋结构破坏。所以命题错误。回答完毕!

DNA为什么是双螺旋结构?有什么意义?

DNA是高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度,可被甲基绿染成绿色。DNA对紫外线(260nm)有吸收作用,利用这一特性,可以对DNA进行含量测定。当核酸变性时,吸光度升高,称为增色效应;当变性核酸重新复性时,吸光度又会恢复到原来的水平。较高温度、有机溶剂、酸碱试剂、尿素、酰胺等都可以引起DNA分子变性,即DNA双链碱基间的氢键断裂,双螺旋结构解开—也称为DNA的解螺旋。  DNA双螺旋结构的提出开始便开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。意义:  双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。

如何制作DNA分子的双螺旋结构模型

根据DNA分子双螺旋结构的特点进行制作。具体流程如下:1、主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。2、碱基对:碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。3、大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。4、结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。扩展资料:DNA分子双螺旋结构的相关说明:1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905-2002)测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。磷酸根在螺旋的外侧构成两条多核苷酸链的骨架,方向相反;碱基在螺旋内侧,两两对应。一连几天,沃森、克里克在他们的办公室里兴高采烈地用铁皮和铁丝搭建着模型。1953年2月28日,第一个DNA双螺旋结构的分子模型终于诞生了。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。参考资料来源:百度百科-DNA双螺旋结构参考资料来源:百度百科-DNA分子参考资料来源:百度百科-DNA结构

简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,_位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则。DNA双螺旋结构:1952年,奥地利裔美国生物化学家查伽夫测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。扩展资料:DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件。不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。参考资料来源:百度百科——DNA双螺旋结构

为什么DNA是双螺旋结构?

DNA也叫脱氧核糖核酸,它的基本组成单位是脱氧核糖核苷酸。脱氧核糖核苷酸由脱氧核糖、磷酸基团和含氮碱基组成。在连接时,上一个核苷酸的磷酸基团和下一个核苷酸的羟基形成磷酸二酯键。在核苷酸链的两端,会分别多出一个磷酸基团或者羟基。磷酸端是 5‘ 端,羟基端是 3" 端。扩展资料DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查伽夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。原核细胞的遗传物质是一个长DNA分子,但是原核细胞没有真正的细胞核。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。在DNA中,脱氧核糖磷酸分子由磷酸二酯键连接成链,构成多核苷酸纤维的骨架。脱氧核糖是由已掺入核苷酸内的核糖形成的参考资料百度百科-脱氧核糖

关于DNA双螺旋结构模型的叙述正确的是

1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905— )测定了DNA中4种碱基的含量发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等.这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念.

关于DNA双螺旋结构模型的叙述正确的是

DNA分子是由两条反向平行的多核苷酸链构成,并围绕同一中心轴缠绕形成一个右手的双螺旋。脱氧核糖和带负电荷的磷酸基团骨架位于双螺旋的外侧,两条链上的碱基堆积在双螺旋的内部, G与C配对,A与T配对。 G和C之间可以形成三个氢键,A和T之间形成二个氢键。

DNA双螺旋结构意义是什么?

1953年,沃森和克里克共同提出了DNA 分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段。DNA双螺旋结构的提出开始,便开启了分子生物学时代.分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,"生命之谜"被打开,人们清楚地了解遗传信息的构成和传递的途径.在以后的近50年里,分子遗传学,分子免疫学,细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景.在人类最终全面揭开生命奥秘的进程中,化学已经并将更进一步地为之提供理论指导和技术支持.

一 名词解释 糖蛋白 蛋白质的二级结构 同工酶 DNA双螺旋结构 抗生素 P/O比

糖蛋白:糖类分子与蛋白质分子共价结合形式形成的蛋白质。糖基化修饰使蛋白质分子的性质和功能更为丰富和多样。分泌蛋白质和质膜外表面的蛋白质大都为糖蛋白。蛋白质二级结构:指蛋白质多肽链本身的折叠和盘绕的方式。二级结构主要有α-螺旋、β-折叠、β-转角。常见的二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的,氢键是稳定二级结构的主要作用力。 同工酶:具有相同底物,但电泳迁移率不同的酶。可来源于多个基因座或等位基因的表达,也可能是基因翻译后形成的。DNA双螺旋结构:1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905— )测定了DNA中4种碱基的含量, DNA双螺旋结构发现其中腺膘呤与胸腺嘧啶的数量相等,鸟膘呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺膘呤与胸腺嘧啶配对、鸟膘呤与胞嘧啶配对的概念。抗生素:抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质。现临床常用的抗生素有微生物培养液液中提取物以及用化学方法合成或半合成的化合物。目前已知天然抗生素不下万种。P/O比 指一对电子通过呼吸链传递到氧所产生的ATP分子数。NADH的P/O比为3,ATP是在3个不连续的部位生成的:第一个部位是在NADH和辅酶Q之间(NADH脱氢酶);第二个在辅酶Q和细胞色素C之间(细胞色素C还原酶);第三个在细胞色素a和氧之间(细胞色素c氧化酶)。 呼吸过程中,消耗的O2和产生的ATP分子数之比。一般为3,即2e-通过呼吸链传至O2所产生的ATP的分子数。 NADH途径产生ATP为2.5,FADH2产生ATP为1.5

为什么说DNA分子双螺旋结构模型的诞生是生命科学划时代的事件?

1953年4月25日,詹姆斯·沃森和弗朗西斯·克里克在英国《自然》杂志上发表了描述DNA双螺旋结构的论文,这短短两页论文所披露的研究成果已成为20世纪人类科学史上最重要的里程碑事件。50年来,这一科学事件已经以各种方式影响了我们的生活,并将长久地影响着人类的科技和文明进程。为了纪念这一划时代的科学发现,探讨生命科学在新世纪的发展趋势,本刊日前特邀部分知名学者座谈,畅谈这一重大发现的意义及深刻的启示。DNA双螺旋发现的科学意义为什么说DNA双螺旋发现的意义重大?沃森和克里克所选的DNA双螺旋这一点,正好抓住了生命科学物质基础里最关键的分子,才产生这么大的意义。由此看来,怎么才能够抓住那些最重要的问题,是在科学上有所创新的关键。李载平:为什么说DNA双螺旋发现的意义重大?科学上的许多工作虽然都是做在某一点上,但这个点选得准不准意义是不一样的。沃森和克里克所选的DNA双螺旋这一点,正好抓住了生命科学物质基础里最关键的分子,才产生这么大的意义。50年以来的发展也越来越清楚地证明,要研究生命科学就要知道生命世界和非生命的物质世界有什么不同,这个不同主要在于生命系统有两个特点,一是遗传,另一个是发育。无论植物或动物,都能从种子或胚胎这些很简单的系统发育成非常复杂的成体。DNA分子正好“肩负重任”,把遗传和发育两方面的工作都负担起来了。根据沃森写的那本《双螺旋》看,他就是想抓住基因是怎样荷载信息的。我觉得他正是抓住了生命科学研究领域里最重要的分子的结构,所以一旦这个突破了,意义就大了。然后由它衍生出来的一些陆陆续续的科研成果,像中心法则、mRNA、遗传密码等一大堆成果,都取得了诺贝尔奖,(在这个领域的研究先后产生了几十位诺贝尔奖获得者)。为什么呢?就是因为他们抓住了最关键的东西。有一篇访谈里写得很有意思,与其说沃森和克里克让DNA有名了,不如说是DNA让他俩出名了。所以,怎么才能够抓住那些最重要的问题,是在科学上有所创新的关键。赵寿元:我同意李载平先生对沃森和克里克发现双螺旋工作的评价。从遗传学角度来讲,实际上遗传学到目前为止解决了三个问题:首先要解决的是为什么会遗传,上代和下代为什么相像?这是孟德尔和摩尔根解决的,由当时被孟德尔称为“遗传因子”、1908年被定为“基因”的物质来传递。基因排列在染色体上,一分为二可以传给下一代。由于有基因把遗传信息传递下来,所以才会有种瓜得瓜、种豆得豆。这是孟德尔和摩尔根的主要贡献,也就是阐明了传递遗传信息要通过基因。探讨基因是什么引出了第二个问题。摩尔根预言,基因是一种化学实体,一种有机分子,但那时他还不知道就是DNA。明确遗传物质是DNA,这第二个问题就解决了。而沃森和克里克正是解决了DNA是怎么把遗传信息传递下去的问题。基因之所以能传递遗传信息,是因为它是一个双链,这个双链上的四个碱基是互补的,这样一个母链就能被分为两个子链,每条子链带的信息跟母链相同。从遗传学的角度讲,过去是从杂交来看,如果性状改变了就说明基因发生了改变,这是从外面看到里面;知道了DNA是遗传物质以后,就可以把DNA分离出来、把基因克隆出来,在体外把基因改变以后(通过表达)看看它的功能有什么改变(从里面看到外面),这样就可以直接研究基因的功能,这就开辟了一条新路,不但提升了对生命现象的认识,而且可以由实验操作来验证,这是非常了不起的事情。吴家睿:我先来谈一下从历史学的角度来看DNA双螺旋发现的意义。我比较同意刚才赵先生、李先生说的,DNA双螺旋的发现实际上是一个对统一性、简单性的追求,这里暗含了一个还原论的思想,就是说,所有体系哪怕是像生命这么复杂的系统,都可以用最简单的物理学定律来解释,或者倒过来说,再复杂的系统也要服从最简单的规律。正因为有了这种还原论的思想,才有了随之而来的生物学的发展,因为它基本是一种实验室的操作,把复杂的现象变成一个简单的现象来加以解释。但还原论在今天也遇到了一些新的挑战,尽管我们可以将(复杂的生命现象)还原到一个简单的DNA分子,但是,理解了DNA双螺旋分子是不是就等于揭示了生命现象了呢?举个最简单的例子,癌症直到现在都无法被攻克,这说明什么,说明复杂的生命现象还不能简单地用还原论来加以解释。基因组的功能实际上就不是一个单独的基因的行为,而是成千上万个基因作用的结果。在人的基因组里,只有2%到2.5%是基因编码序列,80%是别的非编码序列,那么这些序列跟基因有什么关系呢?光DNA双螺旋结构是不能解释的。进一步讲,这2%中也有成千上万种基因,这些基因之间的关系又是什么?这些以现有的生命科学知识很难给出一个完整的解释。生物学、物理学交融互补的成果未来分子生物学要再创辉煌,真正解开生命起源之谜,不仅要依靠生物学本身的新转变,而且还需要生物学借以为基础的数学、物理学、化学等学科愈益深入的新进展,如此才能促成新世纪生物学的伟大革命。沈:我是学物理,又是教物理的,不免时时由衷地赞叹并颂扬:美哉,物理!其实,最美的或许是生命科学,因为它揭示了生命的本质、生命的意义。就如DNA双螺旋结构,具有明显的对称性,也相当简洁明了,并通过碱基的互补配对而变得十分规则。难怪沃森等人当这模型一建成,便意识到“如此雅致美观的结构非存在不可”。从审美观点而论,各学科本亦相通;可谓美的东西往往不至于失真。20世纪四、五十年代,有不少人在探索DNA的结构,为什么沃森和克里克会捷足先登?这两人可算得绝妙的互补型搭配:沃森是热衷于利用物理方法研究生命物质之分子结构的生物学家,克里克是醉心于探讨生命物质遗传学机制的物理学家。幸运的是,已有许多科学家做了大量有效的前期工作,而他俩能博采众长、充分利用已有的成果。他俩的长处,或许是对X射线技术及其探测结果非常重视,特别是克里克,对这门技术相当娴熟;从对X衍射图的正确分析出发,而能灵活、果断地设定DNA的空间结构。洞察探测结果,又加上丰富的想象力,自然就比别人走前了一步。而最重要的,我以为大概是“时势造英雄”吧。当时,生物学从实验到学科本身的发展,已到了试图从分子水平揭示生命本质的阶段,物理学和化学的进步,从概念、原理到方法和实验手段,已为生命物质的深层次研究准备了足够的条件。生物学与物理学、化学的结合势在必行,分子生物学正待破土而出,克里克和沃森这两位作为应运而生的弄潮儿就登上了历史舞台。最近几天重读了薛定谔的名著《生命是什么》,觉得薛定谔的一些观点含义颇深。不说具体的观点,只说一个总体论断。他说:“我们必须去发现在生命物质中占支配地位的新物理学定律”,这新原理不是别的,“只不过是量子论原理的再次重复”。分子生物学50年的发展历史正好证明了生命物质运动变化并不违背物理学的一些基本定律,而且在描述生命物质的分子之间、分子内粒子之间的相互作用时,需要借助于量子力学原理及其非线性的拓展形式。从长远看,生命科学的深层次研究必然会导致物理学产生新的突破。未来分子生物学要再创辉煌,真正解开生命起源之谜,不仅要依靠生物学本身的新转变,而且还需要生物学借以为基础的数学、物理学、化学等学科愈益深入的新进展,以及借以为研究工具的高新技术如计算技术、信息技术等等“更上一层楼”,如此才能促成新世纪生物学的伟大革命。由此宏伟目标来看,某些高校重视生物学系科的建设,又加强对非生物学专业学生的生命科学基础知识的教学,应当说是极其必要的。赵寿元:我认为,做到学科间的交叉这一点非常重要。双螺旋的发现就是很典型的生命科学和物理学的结合。1931年,量子学鼻祖尼尔斯·玻尔写过一篇文章《光与生命》,他提出,根据牛顿物理学的概念,世界上凡是在相同条件下,不论任何物质都服从同样的规律,因此,生命科学也可以用物理学的观点进行研究,而一旦用物理学方法研究,生命科学一定会上升到更高的阶段。他的学生德尔布吕克开始对噬菌体进行研究,他确定噬菌体是最简单的生命物质,它没有像其他生命体那样具有那么复杂的遗传系统,但它也能进行复制,但在噬菌体复制规律的研究中能否发现以前没有发现的物理学规律,所以他才着眼于噬菌体的研究。德尔布吕克后来在哈佛大学开了一个有关噬菌体的讲习班,沃森正是那个讲习班的成员,大学时他原本最喜欢的是鸟类学,后来听了德尔布吕克的讲习班后才转入生物化学领域的研究。此时在英国剑桥大学卡文迪许实验室里就是用X光衍射来研究蛋白质、噬菌体。所以当时沃森到了剑桥后,就着手与克里克合作,用X光衍射来研究核酸。这两个人的合作可以看作是生物学家和X光晶体学家走到了一起,当时他俩都受到了薛定谔1943年发表的演讲《生命是什么?》(后于1944年出版)的影响,在这之中,薛定谔对生命科学中很多基本的现象用物理学的概念进行解释,比如遗传密码的概念,染色体的非周期性结构等等。可以说,双螺旋结构的发现是物理学家长期介入,并真正参与和生物学家共同研究的结果。现在在斯坦福大学实行的Bio-X实际上就是这种好风气的延续。我看到一个报道说,斯坦福大学Bio-X的工作已经重点转向本科生与研究生的课程,除了已经在生物学界很有建树的科学家相互讨论研究外,更重要的是让Bio-X的思想真正渗入到学生的课程中去,只有把生物跟其他学科的基础打扎实,才可能在今后有所建树、有所发展。吴家睿:其实现在又到了新一轮的需要多学科交叉的时代。自从DNA双螺旋开辟了这么一个分子生物学实验科学的时代后,到现在我们发现,现有的工具不够了,于是就考虑能否从数学或物理学领域的新方法中找到需要的东西,把它们与生命科学再一次紧密结合起来。像复旦的Bio-X沙龙、交大的Bio-X中心等就是这种思想的体现。赵寿元:物理学的介入对生命科学很重要。当时的物理学家之所以要进入生命科学领域研究生物学,他们是基于两个目的:一个是想看看在生命活动过程当中,现有的物理学规律能否解释生命的现象,另一个是想知道在生命科学中能否发现一些新的、迄今还不知道的新的物理学规律。因此他们把生物作为研究对象回归到物理学的本身。但目前为止,我的看法是并没有找到新的物理学规律,生命现象基本上还是一个生命物质的运动,而生命物质的基本构成与物理无机物是相同的,所以,基本的规律是遵从现有的物理化学规律。李载平:但另一方面,物理学家那种思维方式和追求在生物学上还是取得了很大的成功。为什么呢?因为物理学家试图追求最基本、最简单的(对象),那么在生物学界存在这种最基本最简单的(对象)吗?过去,生物学家的研究是专门找不同的东西,发现一个细菌首先看它和其他细菌有什么差别,生物学家用这种方法考虑问题的太多,换个角度去追求相同点的却比较少,而追求“简单”与“同一”恰好是物理学家擅长的思维方法,所以我觉得,物理学家在这方面的介入很成功。如果是从前,谁能想象到世界上那么多复杂的生物,他们的遗传物质都是DNA,比如人和噬菌体的遗传密码几乎是一样的。当年达尔文提出进化论的时候,有人问他为什么树和人也有亲缘关系,达尔文答不出,但现在从遗传角度来看,树的遗传密码和人的也一样,所以把人的基因放到植物里去也能表达,同样把人的胰岛素放到细菌里也能表达出胰岛素来,这就是说生物界有着通用的遗传密码。这么个简单的规律把整个生物界变成一个“大一统”,所以这种追求简单的思维方式我觉得还是取得了很大的成功。DNA双螺旋带来的启示沃森和克里克确实很聪明,但他们的成功更重要的在于一种原创性的思维,这个非常重要。这种原创性的思维,恰恰是我们在教育中要注意培养的。从遗传学的角度来说,双螺旋模型解决了遗传信息是怎么传递的这一问题,它的意义已远远走出了基因的范畴,在整个生命科学里都举足轻重。陈蓉霞:沃森和克里克得奖以后确实有不少非议,比如,查伽夫讲过他们的工作是取巧的,不过是运气很好罢了。应该说,查伽夫的碱基配对理论对双螺旋工作是非常有启发的,可以想象,查伽夫为此不知在实验室中度过了多少日日夜夜,但从沃森有关发现双螺旋一书中的描写来看,他似乎没有花多少时间在科研上,难怪后来会有不少人对他们提出一些看法。对此我觉得,一方面沃森和克里克确实很聪明,但可能更重要的是,他们成功在于一种原创性的思维,这个非常重要,并不是说研究一个复杂课题,你就必须天天在实验室里才能做出来。这种原创性的思维,恰恰是我们在教育中要注意培养的。我记得看双螺旋那本书时有一个情节给我的印象特别深:有一次,查伽夫问克里克,他研究的碱基的分子式是怎样的,克里克总是说他写不出来,后来查伽夫就很轻蔑地说,你竟然连这个东西都写不出来,还想研究双螺旋,克里克不服气,辩解道这种分子式只要回去查书,每一本教科书上都能查得到,没有必要把它背出来。看到这里我非常感慨,在我们的教育中就是让学生们背的东西太多了。赵寿元:值得指出的是,这些重大的发现在发现的当时并没有像现在一样能那么看清楚它的重大意义,就拿沃森和克里克的工作来说,他们的文章仅仅只有两页,登在《Nature》上面,很短很小的文章,当时也没有特别引起学术界的轰动,为什么呢?我举个例子:双螺旋模型是1953年提出,得诺贝尔奖是1962年,1953年到1962年间每年都是有生理学奖的,而他们是隔了9年之后才得了诺贝尔奖。当年得化学奖的是搞血红蛋白和肌红蛋白的肯德鲁和佩鲁茨。他们的文章是1960年发表的,1962年就得了诺贝尔奖,为什么呢,是因为当时对蛋白质作用的认识比较传统,一开始的时候很多人都认为基因是蛋白质,包括摩尔根,后来才证明是DNA。像这样有重大意义的科学发现或伟大成果,在当时的学术界都没有引起像现在这么多的重视和轰动;这件事给我们的一个启示是,我们对于一个基础研究的学术成果的评价恐怕主要要留给时间做评价,让历史做评价,而不是靠当时的炒作,有不少所谓的重大成果当时很轰动,但隔了一、两年以后它就烟消云散了。所以我的意见是,从遗传学的角度来说,双螺旋模型解决了遗传信息是怎么传递的这一问题。而现在来看,它的意义已远远走出了基因的范畴,在整个生命科学里都举足轻重。结合沃森和克里克发现双螺旋结构这一事件并联系我们国家的情况,我觉得至少有两点应加以注意:第一,重大基础理论研究的成果有待于历史、时间来做结论和评价,这是最客观、最公正的,只要是真正有价值的工作,哪怕它被埋没的时间很长,它的光芒最终还是会显露出来,不会被永远埋没的,像孟德尔学说被埋没了35年,最后不是照样显露出它的光芒了吗?沃森和克里克的成果也是一样;第二,对基础研究方向的重大决策,切忌掺入非学术的眼光,要真正地广泛听取科学家的意见来作出正确的决策。关注基因伦理问题“人类”跟“人”是有差别的,人是有尊严的,在社会中生存的人有人格、有隐私权,但作为“人类”来讲,并不涉及所谓的“尊严”问题。经典的进化论已经说明人是由低等动物进化而来的,人和老鼠、猴子的DNA相似这一事实有什么可耻的吗?在讨论伦理学时,就要注意一些问题。陈蓉霞:对于发现双螺旋结构的意义,我就不再赘述它带来的种种正面影响了,只是我看到最近有个现象,很多科普读物中都非常强调我们所有的行为,包括情感都是由基因所决定的。我们向来都很崇拜科学,觉得科学家讲的东西都有道理,这样会不会走向“基因决定论”而产生一些负面影响呢?从西方的观点来看,他们始终有两种张力,一种强调任何事情都必须寻求一个最终的原因(源头),扩展到生物学范畴的代表思想就是认为我们所有的一切都是由基因决定的,不少生物学家是这一思想的拥护者,包括社会生物学的开创者威尔逊,他们持有的观点是,“这是一个由基因决定一切的时代”,基因是不是能够决定一切,这个问题已经跨越了生物学的界限,应该有更多的学科来积极参与。吴家睿:生命是独特的,有着它独特的价值,如果用物理学或化学来解释的话就不贴切了,所以在伦理学争论的背后,也隐藏着这个概念,不是能不能解释,而是我们愿不愿意用它来解释,西方普遍存在的一种观点是把人看作一台机器,而这样的话,人不就被贬值了吗?所以,当用DNA双螺旋来解释的时候,我们不得不考虑这个问题,当遗传信息被揭示了以后,是不是人的价值就没有了?换个角度,从商业上来看,遗传信息被揭示了以后,需要保密吗?打个比方,我们都知道,基因是决定遗传疾病的,如果一个人有遗传病,而他的基因没有保密,那么保险公司就会搜集这些信息,只找那些没病或只得小疾病的人加入保险,那么一定只赚不赔。所以国外对保险公司是否有权利搜集遗传信息展开过专门的讨论。当然还可以从伦理的角度来看,就像刚才赵老师所说的人和人类的区别,人类的基因组和老鼠的基因组一样是不是就对人是一种打击呢?这些问题都会变成一种伦理学上的问题。赵寿元:对于基因决定论,我是同意基因是中心这一观点的,这没错。为什么呢?人和猴子的基因组的差别很小,但由人的基因发育出来就是人,猴子的基因组发育出来就是猴子而不会变人,人和小鼠的也一样。我跟学生上课时,第一堂课就是讲“基因型+环境=表型”,这是遗传学最基本的规律,基因型只有跟环境相互作用后才决定产生怎样的表型。举个最基本的例子,农民种苹果在没熟的红苹果上贴个“喜”字,成熟后撕下来,照着阳光的一面是红的,不照阳光的地方就是青颜色的。青色部分与红色部分的基因型当然是一样的,但环境不一样。所以可见,虽然基因是起决定作用的,但基因要通过和环境相互作用以后才能够决定最终的表型,出现特定的性状。关于伦理的问题,有人说基因组的研究影响到了人类的尊严。这里需要指出的是,人类跟人是有差别的,人是有尊严的,在社会中生存的人有人格、有隐私权,但作为“人类”来讲,有何“尊严”可言?经典的进化论已经说明人是由低等动物进化而来的,人和老鼠、猴子的DNA相似这一事实有什么可耻的吗?在讨论伦理学问题的时候就要注意一些问题,比如人是从什么时候开始定义为“人”的,现在有三种说法,一种认为受精卵形成的一刹那就是人生命的开始,但体细胞可以克隆,可以不经过精卵结合、不经过受精过程,所以这种说法就有欠缺了;第二种说法认为,婴儿自母体出生以后才能算是人,那么胎儿在母亲肚子里时就不算是人,有人驳斥道,这样的话,做流产术不就等于杀人了么;第三种说法就是现在普遍由英国议会通过的怀孕14天后的胚胎算人,但严格地说是胚胎着床后发育成三层的胚层,已经具有发育成特定物种个体的“生物学独立性”了,它不可能再发育成别的个体,所以在拿怀孕14天以前的胚胎做实验是不犯法的,以后做就犯法了。但对于我们国家的伦理学,应该采取什么标准是一件相当棘手的问题,如果采取第一或第三种说法的话,就与计划生育相违背了,如果采取第二种说法,那么就应该取消对胚胎进行实验的所有的限制(因为那时候还不是人、不违法),但我们这里的伦理学家没有明确的立场,所以没有说服力。未来生命科学的突破口在完成了人类基因组测序后,还有更重大的发现、更大的挑战在等待着生命科学家。在DNA双螺旋发现50周年、人类基因组破译完毕的今天,我们也可以这样思考,就是这一切并不代表着一门科学的终结,反过来说,我们现在又面临着一个新的转折期。吴家睿:关于未来生命科学的发展,实际上在今天来说,DNA双螺旋引来的是现在的人类基因组计划以及所谓的后基因组时代,后基因组时代涉及到一个很大的问题,正如刚才李先生所说的,我们能否在测完序列后做到所谓的“破译生命遗传信息”,这实际上是一个很大的挑战,并不是说在完成了人类基因组测序后就只剩一些修修补补的工作,我认为应该是有更重大的发现在等着我们。事实上,就我们对基因组现有的理解来看,已经有很多现象是现有的知识很难解释的了,比如人和小鼠的基因组差异只有1%,这么微小的差别为什么会表现出如此巨大的物种间的差异?我曾经提出一个观点,产生这种情况不是因为它们在基因组上的差异,而是在由基因表达蛋白质的过程中,不同的蛋白质之间相互作用的差异,可能简单的生物蛋白质之间的相互作用简单,复杂的生物就相对复杂,比如同样10种蛋白质,在简单的生物中可能只有5种相互作用,到了高等生物中就可能产生20种相互作用。所以对我们来说,这些就完全是新的挑战了。未来生命科学发展的路上肯定还有着许多根本性的重大东西等待着我们去寻找,就像20世纪初的物理学那样。本世纪初的物理学原本被认为只剩下一些修修补补的东西,但忽然一下子一个巨大的变化就诞生了量子物理学、相对论,使人们对整个物理学、整个世界的看法完全改变,今天的生命科学也许也面临着这么一个关口,从双螺旋引出的结果可能跳跃到另一个我们现在无法想象的一个全新的境界里。在DNA双螺旋发现50周年、人类基因组破译完毕的今天,我们也可以这样思考,就是这一切并不代表着一门科学的终结,反过来说,我们现在似乎又找到一个平台期,如果说DNA双螺旋的发现提供给我们宽广的领域和一个有利的工具的话,那么我们现在已经基本把这个工具用得差不多了,这个领域也开拓得差不多了,我们必须跳到一个新的领域去,我觉得这是我们现在纪念DNA双螺旋发现50周年之际应该去思考的。

DNA双螺旋结构的简介

DNA双螺旋结构1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905-2002)测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。

简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则。DNA双螺旋结构:1952年,奥地利裔美国生物化学家查伽夫测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。扩展资料:DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件。不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。参考资料来源:百度百科——DNA双螺旋结构

什么是DNA分子双螺旋结构模型?

DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。 本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件,不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。 一套DNA分子双螺旋结构积塑模型,其特征是: a.这套DNA分子双螺旋积塑模型由红、黄、兰绿四种优质塑料色球(分别代表A、T、G、C四种核苷)和一种优质棕色塑料色棒(代表磷酸P)共五种另件所组成。 b.红球和黄球直径φ18,各带有一个直径φ10的白色圆柱形突出物,在红球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部前后各突起一个直径φ3的半圆形凸起物,在黄球的白色圆柱上伸出一直径φ6的圆棒,圆棒前后各开有一个直径φ3的半圆形凹槽,红球和黄球的结合,即A与T的结合,可通过φ6圆棒插入φ6圆孔来实现。 c.蓝球和绿球直径也是φ18,也各带有一个直径φ10的白色圆柱形突出物,在兰球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部沿圆周对称地突起三个直径φ3的半圆形凸起物,在绿球的白色圆柱上伸出一φ6圆棒,在圆棒周围对称地开有三个直径φ3的半圆形凹槽,兰球和绿球的结合,即G和C的结合,可通过φ6圆棒插入φ6圆孔来实现。 d.每个色球除带有一个白色圆柱形突出物外,还各开有二个直径φ6的圆孔,它们的位置一上一下、一左一右,分别对称地绕水平和垂直轴线旋转36角。利用直径φ6的棕棒插入二个色球相对着的二个φ6圆孔,可将任意二个色球连接起来,从而可组成DNA单股螺旋链,所开φ6圆孔的角度,可保证每一螺旋上有10个色球, e.每一对配对色球上的一个φ3半圆形凸起物和一个φ3半圆形凹槽代表一个氢(H)键,由于A、T和G、C色球上φ3半圆形凸起物和半圆形凹槽数目不同(一为2,一为3),角度不同,因此A球只能与T球结合,G球只能与C球结合,A与C、G与T球之间不能结合(不能插入),从而可实现A-T、G-C之间的严格配对关系,利用这种配对关系,可组成互补配对的DNA双螺旋链,并导致DNA分子具有自我复制的功能。(其中A、T、C、G 均为碱基;A:腺嘌呤;T:胸腺嘧啶;C:胞嘧啶;G:鸟嘌呤。当T转录时,变为U:尿嘧啶)。

DNA双螺旋结构特点,根据其结构特点说明其生理功能

因为排列顺序多种多样,能储存大量遗传信息,体现在物种差异因为碱基互补配对原则,能精确复制,并传给子代可基因突变,适应自然选择

DNA双螺旋结构计算过程?

DNA双螺旋结构的提出开始便开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905-2002)测定了DNA中4种碱基的含量,DNA双螺旋结构DNA双螺旋结构发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。克里克从一开始就坚持要求在发表的论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话。他认为,如果没有这句话,将意味着他与沃森“缺乏洞察力,以致不能看出这一点来”。在发表DNA双螺旋结构论文后不久,《自然》杂志随后不久又发表了克里克的另一篇论文,阐明了DNA的半保留复制机制。事实上DNA的螺旋结构是可以直接看出来的,由巴比涅原理可将螺旋结构的衍射图样看做重叠光栅的衍射图样:即使没有晶体解析的经验,只需要衍射的知识,通过简单的估算我们也可以得到一些关键的信息。比如在上文中提到的教学实验:用弹簧代替DNA双螺旋作为模型,已知射线波长,从衍射图样:1, 计算螺旋的夹角2, 计算螺旋的直径

1955年双螺旋结构模型提出的基础

DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和。一般用几个层次描绘DNA的结构。 一级结构 DNA的一级结构即是其碱基序列。基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中。1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖。自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立。如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等。现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来。 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程。经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类。 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似。A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近。Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名。这种构型适合多核苷酸链的嘌呤嘧啶交替区。1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA 双螺旋DNA∶1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905— )测定了DNA中4种碱基的含量,发现其中腺膘呤与胸腺嘧啶的数量相等,鸟膘呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺膘呤与胸腺嘧啶配对、鸟膘呤与胞嘧啶配对的概念。 1953年2月,沃森、克里克通过维尔金斯看到了富兰克林在1951年11月拍摄的一张十分漂亮的DNA晶体X射线衍射照片,这一下激发了他们的灵感。他们不仅确认了DNA一定是螺旋结构,而且分析得出了螺旋参数。他们采用了富兰克琳和威尔金斯的判断,并加以补充:磷酸根在螺旋的外侧构成两条多核苷酸链的骨架,方向相反;碱基在螺旋内侧,两两对应。 一连几天,沃森、克里克在他们的办公室里兴高采烈地用铁皮和铁丝搭建着模型。1953年2月28日,第一个DNA双螺旋结构的分子模型终于诞生了。 双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤总是与胸腺嘧啶配对、鸟膘呤总是与胞嘧啶配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。 克里克从一开始就坚持要求在4月25日发表的论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话。他认为,如果没有这句话,将意味着他与沃森“缺乏洞察力,以致不能看出这一点来”。 在发表DNA双螺旋结构论文后不久,《自然》杂志随后不久又发表了克里克的另一篇论文,阐明了DNA的半保留复制机制。

为什么说DNA分子双螺旋结构模型的诞生是生命科学划时代的事件

1953年4月25日,詹姆斯·沃森和弗朗西斯·克里克在英国《自然》杂志上发表了描述DNA双螺旋结构的论文,这短短两页论文所披露的研究成果已成为20世纪人类科学史上最重要的里程碑事件。50年来,这一科学事件已经以各种方式影响了我们的生活,并将长久地影响着人类的科技和文明进程。为了纪念这一划时代的科学发现,探讨生命科学在新世纪的发展趋势,本刊日前特邀部分知名学者座谈,畅谈这一重大发现的意义及深刻的启示。DNA双螺旋发现的科学意义为什么说DNA双螺旋发现的意义重大?沃森和克里克所选的DNA双螺旋这一点,正好抓住了生命科学物质基础里最关键的分子,才产生这么大的意义。由此看来,怎么才能够抓住那些最重要的问题,是在科学上有所创新的关键。李载平:为什么说DNA双螺旋发现的意义重大?科学上的许多工作虽然都是做在某一点上,但这个点选得准不准意义是不一样的。沃森和克里克所选的DNA双螺旋这一点,正好抓住了生命科学物质基础里最关键的分子,才产生这么大的意义。50年以来的发展也越来越清楚地证明,要研究生命科学就要知道生命世界和非生命的物质世界有什么不同,这个不同主要在于生命系统有两个特点,一是遗传,另一个是发育。无论植物或动物,都能从种子或胚胎这些很简单的系统发育成非常复杂的成体。DNA分子正好“肩负重任”,把遗传和发育两方面的工作都负担起来了。根据沃森写的那本《双螺旋》看,他就是想抓住基因是怎样荷载信息的。我觉得他正是抓住了生命科学研究领域里最重要的分子的结构,所以一旦这个突破了,意义就大了。然后由它衍生出来的一些陆陆续续的科研成果,像中心法则、mRNA、遗传密码等一大堆成果,都取得了诺贝尔奖,(在这个领域的研究先后产生了几十位诺贝尔奖获得者)。为什么呢?就是因为他们抓住了最关键的东西。有一篇访谈里写得很有意思,与其说沃森和克里克让DNA有名了,不如说是DNA让他俩出名了。所以,怎么才能够抓住那些最重要的问题,是在科学上有所创新的关键。赵寿元:我同意李载平先生对沃森和克里克发现双螺旋工作的评价。从遗传学角度来讲,实际上遗传学到目前为止解决了三个问题:首先要解决的是为什么会遗传,上代和下代为什么相像?这是孟德尔和摩尔根解决的,由当时被孟德尔称为“遗传因子”、1908年被定为“基因”的物质来传递。基因排列在染色体上,一分为二可以传给下一代。由于有基因把遗传信息传递下来,所以才会有种瓜得瓜、种豆得豆。这是孟德尔和摩尔根的主要贡献,也就是阐明了传递遗传信息要通过基因。探讨基因是什么引出了第二个问题。摩尔根预言,基因是一种化学实体,一种有机分子,但那时他还不知道就是DNA。明确遗传物质是DNA,这第二个问题就解决了。而沃森和克里克正是解决了DNA是怎么把遗传信息传递下去的问题。基因之所以能传递遗传信息,是因为它是一个双链,这个双链上的四个碱基是互补的,这样一个母链就能被分为两个子链,每条子链带的信息跟母链相同。从遗传学的角度讲,过去是从杂交来看,如果性状改变了就说明基因发生了改变,这是从外面看到里面;知道了DNA是遗传物质以后,就可以把DNA分离出来、把基因克隆出来,在体外把基因改变以后(通过表达)看看它的功能有什么改变(从里面看到外面),这样就可以直接研究基因的功能,这就开辟了一条新路,不但提升了对生命现象的认识,而且可以由实验操作来验证,这是非常了不起的事情。吴家睿:我先来谈一下从历史学的角度来看DNA双螺旋发现的意义。我比较同意刚才赵先生、李先生说的,DNA双螺旋的发现实际上是一个对统一性、简单性的追求,这里暗含了一个还原论的思想,就是说,所有体系哪怕是像生命这么复杂的系统,都可以用最简单的物理学定律来解释,或者倒过来说,再复杂的系统也要服从最简单的规律。正因为有了这种还原论的思想,才有了随之而来的生物学的发展,因为它基本是一种实验室的操作,把复杂的现象变成一个简单的现象来加以解释。但还原论在今天也遇到了一些新的挑战,尽管我们可以将(复杂的生命现象)还原到一个简单的DNA分子,但是,理解了DNA双螺旋分子是不是就等于揭示了生命现象了呢?举个最简单的例子,癌症直到现在都无法被攻克,这说明什么,说明复杂的生命现象还不能简单地用还原论来加以解释。基因组的功能实际上就不是一个单独的基因的行为,而是成千上万个基因作用的结果。在人的基因组里,只有2%到2.5%是基因编码序列,80%是别的非编码序列,那么这些序列跟基因有什么关系呢?光DNA双螺旋结构是不能解释的。进一步讲,这2%中也有成千上万种基因,这些基因之间的关系又是什么?这些以现有的生命科学知识很难给出一个完整的解释。生物学、物理学交融互补的成果未来分子生物学要再创辉煌,真正解开生命起源之谜,不仅要依靠生物学本身的新转变,而且还需要生物学借以为基础的数学、物理学、化学等学科愈益深入的新进展,如此才能促成新世纪生物学的伟大革命。沈:我是学物理,又是教物理的,不免时时由衷地赞叹并颂扬:美哉,物理!其实,最美的或许是生命科学,因为它揭示了生命的本质、生命的意义。就如DNA双螺旋结构,具有明显的对称性,也相当简洁明了,并通过碱基的互补配对而变得十分规则。难怪沃森等人当这模型一建成,便意识到“如此雅致美观的结构非存在不可”。从审美观点而论,各学科本亦相通;可谓美的东西往往不至于失真。20世纪四、五十年代,有不少人在探索DNA的结构,为什么沃森和克里克会捷足先登?这两人可算得绝妙的互补型搭配:沃森是热衷于利用物理方法研究生命物质之分子结构的生物学家,克里克是醉心于探讨生命物质遗传学机制的物理学家。幸运的是,已有许多科学家做了大量有效的前期工作,而他俩能博采众长、充分利用已有的成果。他俩的长处,或许是对X射线技术及其探测结果非常重视,特别是克里克,对这门技术相当娴熟;从对X衍射图的正确分析出发,而能灵活、果断地设定DNA的空间结构。洞察探测结果,又加上丰富的想象力,自然就比别人走前了一步。而最重要的,我以为大概是“时势造英雄”吧。当时,生物学从实验到学科本身的发展,已到了试图从分子水平揭示生命本质的阶段,物理学和化学的进步,从概念、原理到方法和实验手段,已为生命物质的深层次研究准备了足够的条件。生物学与物理学、化学的结合势在必行,分子生物学正待破土而出,克里克和沃森这两位作为应运而生的弄潮儿就登上了历史舞台。最近几天重读了薛定谔的名著《生命是什么》,觉得薛定谔的一些观点含义颇深。不说具体的观点,只说一个总体论断。他说:“我们必须去发现在生命物质中占支配地位的新物理学定律”,这新原理不是别的,“只不过是量子论原理的再次重复”。分子生物学50年的发展历史正好证明了生命物质运动变化并不违背物理学的一些基本定律,而且在描述生命物质的分子之间、分子内粒子之间的相互作用时,需要借助于量子力学原理及其非线性的拓展形式。从长远看,生命科学的深层次研究必然会导致物理学产生新的突破。未来分子生物学要再创辉煌,真正解开生命起源之谜,不仅要依靠生物学本身的新转变,而且还需要生物学借以为基础的数学、物理学、化学等学科愈益深入的新进展,以及借以为研究工具的高新技术如计算技术、信息技术等等“更上一层楼”,如此才能促成新世纪生物学的伟大革命。由此宏伟目标来看,某些高校重视生物学系科的建设,又加强对非生物学专业学生的生命科学基础知识的教学,应当说是极其必要的。赵寿元:我认为,做到学科间的交叉这一点非常重要。双螺旋的发现就是很典型的生命科学和物理学的结合。1931年,量子学鼻祖尼尔斯·玻尔写过一篇文章《光与生命》,他提出,根据牛顿物理学的概念,世界上凡是在相同条件下,不论任何物质都服从同样的规律,因此,生命科学也可以用物理学的观点进行研究,而一旦用物理学方法研究,生命科学一定会上升到更高的阶段。他的学生德尔布吕克开始对噬菌体进行研究,他确定噬菌体是最简单的生命物质,它没有像其他生命体那样具有那么复杂的遗传系统,但它也能进行复制,但在噬菌体复制规律的研究中能否发现以前没有发现的物理学规律,所以他才着眼于噬菌体的研究。德尔布吕克后来在哈佛大学开了一个有关噬菌体的讲习班,沃森正是那个讲习班的成员,大学时他原本最喜欢的是鸟类学,后来听了德尔布吕克的讲习班后才转入生物化学领域的研究。此时在英国剑桥大学卡文迪许实验室里就是用X光衍射来研究蛋白质、噬菌体。所以当时沃森到了剑桥后,就着手与克里克合作,用X光衍射来研究核酸。这两个人的合作可以看作是生物学家和X光晶体学家走到了一起,当时他俩都受到了薛定谔1943年发表的演讲《生命是什么?》(后于1944年出版)的影响,在这之中,薛定谔对生命科学中很多基本的现象用物理学的概念进行解释,比如遗传密码的概念,染色体的非周期性结构等等。可以说,双螺旋结构的发现是物理学家长期介入,并真正参与和生物学家共同研究的结果。现在在斯坦福大学实行的Bio-X实际上就是这种好风气的延续。我看到一个报道说,斯坦福大学Bio-X的工作已经重点转向本科生与研究生的课程,除了已经在生物学界很有建树的科学家相互讨论研究外,更重要的是让Bio-X的思想真正渗入到学生的课程中去,只有把生物跟其他学科的基础打扎实,才可能在今后有所建树、有所发展。吴家睿:其实现在又到了新一轮的需要多学科交叉的时代。自从DNA双螺旋开辟了这么一个分子生物学实验科学的时代后,到现在我们发现,现有的工具不够了,于是就考虑能否从数学或物理学领域的新方法中找到需要的东西,把它们与生命科学再一次紧密结合起来。像复旦的Bio-X沙龙、交大的Bio-X中心等就是这种思想的体现。赵寿元:物理学的介入对生命科学很重要。当时的物理学家之所以要进入生命科学领域研究生物学,他们是基于两个目的:一个是想看看在生命活动过程当中,现有的物理学规律能否解释生命的现象,另一个是想知道在生命科学中能否发现一些新的、迄今还不知道的新的物理学规律。因此他们把生物作为研究对象回归到物理学的本身。但目前为止,我的看法是并没有找到新的物理学规律,生命现象基本上还是一个生命物质的运动,而生命物质的基本构成与物理无机物是相同的,所以,基本的规律是遵从现有的物理化学规律。李载平:但另一方面,物理学家那种思维方式和追求在生物学上还是取得了很大的成功。为什么呢?因为物理学家试图追求最基本、最简单的(对象),那么在生物学界存在这种最基本最简单的(对象)吗?过去,生物学家的研究是专门找不同的东西,发现一个细菌首先看它和其他细菌有什么差别,生物学家用这种方法考虑问题的太多,换个角度去追求相同点的却比较少,而追求“简单”与“同一”恰好是物理学家擅长的思维方法,所以我觉得,物理学家在这方面的介入很成功。如果是从前,谁能想象到世界上那么多复杂的生物,他们的遗传物质都是DNA,比如人和噬菌体的遗传密码几乎是一样的。当年达尔文提出进化论的时候,有人问他为什么树和人也有亲缘关系,达尔文答不出,但现在从遗传角度来看,树的遗传密码和人的也一样,所以把人的基因放到植物里去也能表达,同样把人的胰岛素放到细菌里也能表达出胰岛素来,这就是说生物界有着通用的遗传密码。这么个简单的规律把整个生物界变成一个“大一统”,所以这种追求简单的思维方式我觉得还是取得了很大的成功。DNA双螺旋带来的启示沃森和克里克确实很聪明,但他们的成功更重要的在于一种原创性的思维,这个非常重要。这种原创性的思维,恰恰是我们在教育中要注意培养的。从遗传学的角度来说,双螺旋模型解决了遗传信息是怎么传递的这一问题,它的意义已远远走出了基因的范畴,在整个生命科学里都举足轻重。陈蓉霞:沃森和克里克得奖以后确实有不少非议,比如,查伽夫讲过他们的工作是取巧的,不过是运气很好罢了。应该说,查伽夫的碱基配对理论对双螺旋工作是非常有启发的,可以想象,查伽夫为此不知在实验室中度过了多少日日夜夜,但从沃森有关发现双螺旋一书中的描写来看,他似乎没有花多少时间在科研上,难怪后来会有不少人对他们提出一些看法。对此我觉得,一方面沃森和克里克确实很聪明,但可能更重要的是,他们成功在于一种原创性的思维,这个非常重要,并不是说研究一个复杂课题,你就必须天天在实验室里才能做出来。这种原创性的思维,恰恰是我们在教育中要注意培养的。我记得看双螺旋那本书时有一个情节给我的印象特别深:有一次,查伽夫问克里克,他研究的碱基的分子式是怎样的,克里克总是说他写不出来,后来查伽夫就很轻蔑地说,你竟然连这个东西都写不出来,还想研究双螺旋,克里克不服气,辩解道这种分子式只要回去查书,每一本教科书上都能查得到,没有必要把它背出来。看到这里我非常感慨,在我们的教育中就是让学生们背的东西太多了。赵寿元:值得指出的是,这些重大的发现在发现的当时并没有像现在一样能那么看清楚它的重大意义,就拿沃森和克里克的工作来说,他们的文章仅仅只有两页,登在《Nature》上面,很短很小的文章,当时也没有特别引起学术界的轰动,为什么呢?我举个例子:双螺旋模型是1953年提出,得诺贝尔奖是1962年,1953年到1962年间每年都是有生理学奖的,而他们是隔了9年之后才得了诺贝尔奖。当年得化学奖的是搞血红蛋白和肌红蛋白的肯德鲁和佩鲁茨。他们的文章是1960年发表的,1962年就得了诺贝尔奖,为什么呢,是因为当时对蛋白质作用的认识比较传统,一开始的时候很多人都认为基因是蛋白质,包括摩尔根,后来才证明是DNA。像这样有重大意义的科学发现或伟大成果,在当时的学术界都没有引起像现在这么多的重视和轰动;这件事给我们的一个启示是,我们对于一个基础研究的学术成果的评价恐怕主要要留给时间做评价,让历史做评价,而不是靠当时的炒作,有不少所谓的重大成果当时很轰动,但隔了一、两年以后它就烟消云散了。所以我的意见是,从遗传学的角度来说,双螺旋模型解决了遗传信息是怎么传递的这一问题。而现在来看,它的意义已远远走出了基因的范畴,在整个生命科学里都举足轻重。结合沃森和克里克发现双螺旋结构这一事件并联系我们国家的情况,我觉得至少有两点应加以注意:第一,重大基础理论研究的成果有待于历史、时间来做结论和评价,这是最客观、最公正的,只要是真正有价值的工作,哪怕它被埋没的时间很长,它的光芒最终还是会显露出来,不会被永远埋没的,像孟德尔学说被埋没了35年,最后不是照样显露出它的光芒了吗?沃森和克里克的成果也是一样;第二,对基础研究方向的重大决策,切忌掺入非学术的眼光,要真正地广泛听取科学家的意见来作出正确的决策。关注基因伦理问题“人类”跟“人”是有差别的,人是有尊严的,在社会中生存的人有人格、有隐私权,但作为“人类”来讲,并不涉及所谓的“尊严”问题。经典的进化论已经说明人是由低等动物进化而来的,人和老鼠、猴子的DNA相似这一事实有什么可耻的吗?在讨论伦理学时,就要注意一些问题。陈蓉霞:对于发现双螺旋结构的意义,我就不再赘述它带来的种种正面影响了,只是我看到最近有个现象,很多科普读物中都非常强调我们所有的行为,包括情感都是由基因所决定的。我们向来都很崇拜科学,觉得科学家讲的东西都有道理,这样会不会走向“基因决定论”而产生一些负面影响呢?从西方的观点来看,他们始终有两种张力,一种强调任何事情都必须寻求一个最终的原因(源头),扩展到生物学范畴的代表思想就是认为我们所有的一切都是由基因决定的,不少生物学家是这一思想的拥护者,包括社会生物学的开创者威尔逊,他们持有的观点是,“这是一个由基因决定一切的时代”,基因是不是能够决定一切,这个问题已经跨越了生物学的界限,应该有更多的学科来积极参与。吴家睿:生命是独特的,有着它独特的价值,如果用物理学或化学来解释的话就不贴切了,所以在伦理学争论的背后,也隐藏着这个概念,不是能不能解释,而是我们愿不愿意用它来解释,西方普遍存在的一种观点是把人看作一台机器,而这样的话,人不就被贬值了吗?所以,当用DNA双螺旋来解释的时候,我们不得不考虑这个问题,当遗传信息被揭示了以后,是不是人的价值就没有了?换个角度,从商业上来看,遗传信息被揭示了以后,需要保密吗?打个比方,我们都知道,基因是决定遗传疾病的,如果一个人有遗传病,而他的基因没有保密,那么保险公司就会搜集这些信息,只找那些没病或只得小疾病的人加入保险,那么一定只赚不赔。所以国外对保险公司是否有权利搜集遗传信息展开过专门的讨论。当然还可以从伦理的角度来看,就像刚才赵老师所说的人和人类的区别,人类的基因组和老鼠的基因组一样是不是就对人是一种打击呢?这些问题都会变成一种伦理学上的问题。赵寿元:对于基因决定论,我是同意基因是中心这一观点的,这没错。为什么呢?人和猴子的基因组的差别很小,但由人的基因发育出来就是人,猴子的基因组发育出来就是猴子而不会变人,人和小鼠的也一样。我跟学生上课时,第一堂课就是讲“基因型+环境=表型”,这是遗传学最基本的规律,基因型只有跟环境相互作用后才决定产生怎样的表型。举个最基本的例子,农民种苹果在没熟的红苹果上贴个“喜”字,成熟后撕下来,照着阳光的一面是红的,不照阳光的地方就是青颜色的。青色部分与红色部分的基因型当然是一样的,但环境不一样。所以可见,虽然基因是起决定作用的,但基因要通过和环境相互作用以后才能够决定最终的表型,出现特定的性状。关于伦理的问题,有人说基因组的研究影响到了人类的尊严。这里需要指出的是,人类跟人是有差别的,人是有尊严的,在社会中生存的人有人格、有隐私权,但作为“人类”来讲,有何“尊严”可言?经典的进化论已经说明人是由低等动物进化而来的,人和老鼠、猴子的DNA相似这一事实有什么可耻的吗?在讨论伦理学问题的时候就要注意一些问题,比如人是从什么时候开始定义为“人”的,现在有三种说法,一种认为受精卵形成的一刹那就是人生命的开始,但体细胞可以克隆,可以不经过精卵结合、不经过受精过程,所以这种说法就有欠缺了;第二种说法认为,婴儿自母体出生以后才能算是人,那么胎儿在母亲肚子里时就不算是人,有人驳斥道,这样的话,做流产术不就等于杀人了么;第三种说法就是现在普遍由英国议会通过的怀孕14天后的胚胎算人,但严格地说是胚胎着床后发育成三层的胚层,已经具有发育成特定物种个体的“生物学独立性”了,它不可能再发育成别的个体,所以在拿怀孕14天以前的胚胎做实验是不犯法的,以后做就犯法了。但对于我们国家的伦理学,应该采取什么标准是一件相当棘手的问题,如果采取第一或第三种说法的话,就与计划生育相违背了,如果采取第二种说法,那么就应该取消对胚胎进行实验的所有的限制(因为那时候还不是人、不违法),但我们这里的伦理学家没有明确的立场,所以没有说服力。未来生命科学的突破口在完成了人类基因组测序后,还有更重大的发现、更大的挑战在等待着生命科学家。在DNA双螺旋发现50周年、人类基因组破译完毕的今天,我们也可以这样思考,就是这一切并不代表着一门科学的终结,反过来说,我们现在又面临着一个新的转折期。吴家睿:关于未来生命科学的发展,实际上在今天来说,DNA双螺旋引来的是现在的人类基因组计划以及所谓的后基因组时代,后基因组时代涉及到一个很大的问题,正如刚才李先生所说的,我们能否在测完序列后做到所谓的“破译生命遗传信息”,这实际上是一个很大的挑战,并不是说在完成了人类基因组测序后就只剩一些修修补补的工作,我认为应该是有更重大的发现在等着我们。事实上,就我们对基因组现有的理解来看,已经有很多现象是现有的知识很难解释的了,比如人和小鼠的基因组差异只有1%,这么微小的差别为什么会表现出如此巨大的物种间的差异?我曾经提出一个观点,产生这种情况不是因为它们在基因组上的差异,而是在由基因表达蛋白质的过程中,不同的蛋白质之间相互作用的差异,可能简单的生物蛋白质之间的相互作用简单,复杂的生物就相对复杂,比如同样10种蛋白质,在简单的生物中可能只有5种相互作用,到了高等生物中就可能产生20种相互作用。所以对我们来说,这些就完全是新的挑战了。未来生命科学发展的路上肯定还有着许多根本性的重大东西等待着我们去寻找,就像20世纪初的物理学那样。本世纪初的物理学原本被认为只剩下一些修修补补的东西,但忽然一下子一个巨大的变化就诞生了量子物理学、相对论,使人们对整个物理学、整个世界的看法完全改变,今天的生命科学也许也面临着这么一个关口,从双螺旋引出的结果可能跳跃到另一个我们现在无法想象的一个全新的境界里。在DNA双螺旋发现50周年、人类基因组破译完毕的今天,我们也可以这样思考,就是这一切并不代表着一门科学的终结,反过来说,我们现在似乎又找到一个平台期,如果说DNA双螺旋的发现提供给我们宽广的领域和一个有利的工具的话,那么我们现在已经基本把这个工具用得差不多了,这个领域也开拓得差不多了,我们必须跳到一个新的领域去,我觉得这是我们现在纪念DNA双螺旋发现50周年之际应该去思考的。

DNA双螺旋结构的具有哪些生物学功能?为什么?

双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤总是与胸腺嘧啶配对、鸟膘呤总是与胞嘧啶配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。 它的成功测定,开创了现代生物学的新时代.具体的资料请到:http://baike.baidu.com/view/217753.htm

DNA双螺旋结构中大沟小沟的作用是什么呢?

‍‍意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。克里克从一开始就坚持要求在发表的论文中加上"DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制"这句话。他认为,如果没有这句话,将意味着他与沃森"缺乏洞察力,以致不能看出这一点来"。在发表DNA双螺旋结构论文后不久,《自然》杂志随后不久又发表了克里克的另一篇论文,阐明了DNA的半保留复制机制。‍‍

如何制作DNA分子的双螺旋结构模型

根据DNA分子双螺旋结构的特点进行制作。具体流程如下:1、主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。2、碱基对:碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。3、大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。4、结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。扩展资料:DNA分子双螺旋结构的相关说明:1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905-2002)测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。磷酸根在螺旋的外侧构成两条多核苷酸链的骨架,方向相反;碱基在螺旋内侧,两两对应。一连几天,沃森、克里克在他们的办公室里兴高采烈地用铁皮和铁丝搭建着模型。1953年2月28日,第一个DNA双螺旋结构的分子模型终于诞生了。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。参考资料来源:百度百科-DNA双螺旋结构参考资料来源:百度百科-DNA分子参考资料来源:百度百科-DNA结构

DNA双螺旋结构的基本内容

DNA双螺旋结构的特点是主链由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似麻花状盘旋,相互平行而走向相反形成双螺旋构型。1952年,奥地利裔美国生物化学家查伽夫测定了DNA中4种碱基的含量,DNA双螺旋结构发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。

基因双螺旋结构是谁提出的?

沃森、克里克

DNA分子双螺旋结构的提出是在哪些前人的基础上提出的?

发现DNA分子双螺旋结构的是美国的沃森和英国的克里克。在1940年代末,人们已经知道,DNA是一种细长的高分子化合物,由一系列脱氧核苷酸链构成,脱氧核苷酸又是由脱氧核糖、磷酸和含氮碱基组成,碱基有4种,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。在1951年,很多科学家对DNA的结构研究展开了一场竞赛。当时有两个著名的DNA分子研究小组,一个是以著名的物理学家威尔金斯和化学家富兰克林为首的英国皇家学院研究小组,他们主要用X射线衍射来研究DNA结构。一个是以著名化学家鲍林为首的美国加州理工大学研究小组,他们主要用模型建构法研究DNA结构,并且已经用该方法发现蛋白质a螺旋。1951年2月,威尔金斯将富兰克林拍的一张非常精美的DNA的X光衍射照片在意大利举行的生物大分子结构会议上展示,一直对DNA有浓厚兴趣的沃森看到这张图时,断定DNA的结构是一个螺旋体。他打定主意要制作一个DNA模型。他把这种想法告诉了他的合作者克里克,得到了克里克的认可。沃森和克里克构建DNA分子结构模型的工作始于1951年秋。他们用模型构建法,仿照著名化学家鲍林构建蛋白质α螺旋模型的方法,根据结晶学的数据,用纸和铁丝搭配脱氧核苷酸。他们构建了一个又一个模型,都被否定了。但沃森坚持认为,DNA分子可能是一种双链结构。之后他们分别完成了以脱氧核糖和磷酸交替排列为基本骨架,碱基排在外面的双螺旋结构,和以脱氧核糖和磷酸交替排列为基本骨架,碱基排在内部,且同型碱基配对的双螺旋结构。1952年,生物化学家查伽夫报道了他对不同生物DNA进行分析的结果。查伽夫的结果表明,虽然在不同生物的DNA之间,4种脱氧核苷酸的数量和相对比例很不相同,但无论哪种物质的DNA中,都有A=T和G=C,这被称为DNA化学组成的“查伽夫法则”。之后,克里克的朋友,理论化学家格里菲斯通过计算表明,DNA的4种脱氧核苷酸中,A必须与T成键,G必须与C成键。这与查伽夫法则完成一致。随后,鲍林以前的同事多诺告诉沃森,A-T和G-C配对是靠氢键维系的。以上这些工作,就成了沃森和克里克DNA分子模型中A—T配对、G=C配对结构的基础。完整的DNA分子结构模型完成于1953年3月7日。根据这个模型,DNA分子是一个双螺旋结构,每一个螺旋单位包含10对碱基,长度为34埃(1埃=10-10米)。螺旋直径为20埃。4月15日,沃森和克里克关于该模型的第一篇论文《核酸的分子结构——脱氧核糖核酸的结构模型》在《自然》(Nature)杂志上发表。1962年,沃森、克里克和威尔金斯分享了诺贝尔医学和生理学奖,以表彰他们对DNA结构研究的杰出贡献。沃森和克里克

DNA双螺旋结构的建立有哪些科学家的功劳?

美国生物学家沃森 英国物理学家克里克为主富兰克林提供DNA分子衍射图谱奥地利生物化学家提供A=T C=G就是碱基互补配对原则

为什么DNA能形成双螺旋结构而RNA不能?

因为在RNA的2号碳位多了一个氧原子,如果形成双螺旋的话两条碳链的2号碳位突出来的氧原子会在双螺旋内部互相挤压导致双螺旋不稳定,形成解链。而DNA2号碳位脱氧(所以DNA叫脱氧核糖核苷酸),形成双螺旋的时候不存在空间结构的不稳定。任何生物的本能都是让本物种能够生存繁衍下去,从分子遗传学的角度讲就是让遗传物质能够稳定遗传至下一代,遗传物质的传递无非就是碱基序列的传递,碱基位置位于1号碳位上,这样形成双链时碱基就可以被包裹在双链内部,这样可以起到保护遗传物质稳定性的作用。而如上所述,RNA的双链结构不稳定,所以DNA绝大多数高等生物的遗产物质。但并不是说所有生物的遗传物质都是DNA,毕竟DNA要转录、翻译才能够表达,这其中涉及的过程和机制比较复杂,不是任何生物都用的起的,而RNA的表达则要简单一些,所以尽管RNA对遗传物质的保护不足,还是有生物把它作为遗传物质。有研究认为在生命发展初期,RNA表达的简单高效性是维持生命存在的保障,只是随着生命的发展,遗传物质也得到了进化,形成了DNA,也就是说RNA才是DNA的祖宗。

DNA除了双螺旋结构,还有其它结构形式吗?

有,DNA还有三链体(三螺旋)结构和超螺旋结构. 三链体(三螺旋)结构:DNA的一种特殊的结构,是由第三条核苷酸链通过胡斯坦碱基配对,与双螺旋DNA中的一条链以特殊的氢键相连形成的一种三股螺旋DNA结构.三股链均为同型聚嘌呤或聚嘧啶;第三个碱基以A或T与A≒T碱基对中的A配对;G或C与G≒C碱基对中的G配对,C必须质子化(C+),以提供与G的N7结合的氢键供体,并且它与G 配对只形成两个氢键. 超螺旋:DNA分子可以在双螺旋的基础上,进一步绕同一中心轴扭转,造成额外的螺旋;环状分子的额外螺旋可以形成超螺旋.超螺旋可以是右手螺旋(正超螺旋),也可以是左手螺旋(负超螺旋)

DNA双螺旋结构有什么基本特点呢?

1、由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。2、碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。3、大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。4、结构参数,螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。扩展资料:脱氧核糖核酸链在双螺旋基础上如绳索般扭转的现象与过程称为DNA超螺旋。当脱氧核糖核酸处于“松弛”状态时,双螺旋的两股通常会延着中轴,以每10.4个碱基对旋转一圈的方式扭转。但如果脱氧核糖核酸受到扭转,其两股的缠绕方式将变得更紧或更松。当脱氧核糖核酸扭转方向与双股螺旋的旋转方向相同时,称为正超螺旋,此时碱基将更加紧密地结合。反之若扭转方向与双股螺旋相反,则称为负超螺旋,碱基之间的结合度会降低。自然界中大多数的脱氧核糖核酸,会因为拓扑异构酶的作用,而形成轻微的负超螺旋状态。拓扑异构酶同时也在转录作用或DNA复制过程中,负责纾解脱氧核糖核酸链所受的扭转压力。参考资料:百度百科 DNA双螺旋结构

沃森和克里克提出DNA分子的双螺旋结构模型后还有什么成就

中心法则 1957年,克里克提出,在DNA与蛋白质之间,RNA 可能是中间体。1958年,他又提出,在作为模板的RNA 同把氨基酸携带到蛋白质肽链的合成之间可能存在着一个中间受体。根据这些推论,他发表了《论蛋白质的合成》一文,提出了著名的连接物假说,讨论了核酸中碱基顺序同蛋白质中氨基酸顺序之间的线性对应关系,并详细地阐述了中心法则〔1〕。克里克所设想的受体很快被证明为tRNA。 1961年,雅可布(F.Jacob)和莫诺(J.Monod)证明在DNA同蛋白质之间的中间体是mRNA。随着遗传密码的破译,到60年代基本上揭示了蛋白质的合成过程。这样,就得到了中心法则的最初的基本形式。 克里克在提出中心法则时,根据当时有限的资料,把中心法则的公式表述为“DNA→RNA→蛋白质”,并且认为中心法则的一个基本特征是遗传信息流是从核酸到蛋白质的单向信息传递,而且这种单向信息流是永远不可逆的。然而,通过1960到1970这10年的研究,坦明(H. Temin)和巴梯摩尔(D.Baltimore)等发现并证实了反转录酶的存在,使反转录现象得到了公认。这样,中心法则就得到了修正。 反转录酶的发现,曾使科学界震动不小。但克里克马上解释说,他并没有说过信息不能从核酸转移到核酸上,反转录同中心法则没有矛盾,只不过是把信息从一种形式的核酸转移到另一种形式的核酸上而已,而在这两种形式的核酸中,碱基配对的基本过程是一致的。然而,以后的发现愈来愈表明信息转移方式可能有其多样性,以致连克里克本人后来也承认,他最初表达遗传信息传递观念时,误解了“法则(Dogma )”一词,如果现在重新表达这一概念,应称之为“中心假说( Central Hypothesis)”,以清楚表明这一概念并非是确定不变的事实, 而只是一种暂时的假设。 科学的发展常常是出人意料的,中心法则更是如此。有人在离体实验中观察到,与核糖体相互作用的某些抗生素如链霉素和新霉素,能打乱核糖体对信使的选择,而接受单链DNA分子代替mRNA 。 然后由单链DNA指导,把它的核苷酸顺序译成多肽的氨基酸顺序。此外,还有人发现,细胞核里的DNA还可以直接转移到细胞质的核糖体上, 不需要通过RNA即可控制蛋白质的合成。这样,中心法则就得到新的修正。麻烦采纳,谢谢!

DNA双螺旋结构的特点及其生物学功能是什么?

以下是我自己根据我们书上所写的归纳的,希望对你有帮助:DNA双螺旋结构有如下几个特点:1、DNA是反向平行的互补双链结构,它的两条多聚核苷酸链在空间排布呈反向平行,碱基位于内侧,亲水的脱氧核糖基和磷酸基位于外侧,碱基间以A-T和G-C的方式互补配对;2、DNA双链是右手螺旋结构,DNA的两条多核苷酸链反向平行围绕同一中心轴互相缠绕,呈右手螺旋;3疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持。DNA的生物学功能:DNA是遗传物质,是遗传信息的载体。证据如下:1、DNA分布在染色体内,是染色体的主要成分,而染色体是直接与遗传有关的。2、体细胞DNA含量为生殖细胞DNA含量的两倍,且含量十分稳定。3、DNA在代谢上较稳定不受营养条件、年龄等因素的影响。4、作用于DNA的理化因素可引起遗传特性的改变,这一点已经由Avery在1953年用肺炎双球菌转化实验证明。

为什么DNA分子呈现双螺旋结构?麻烦讲详细点。

这个解释起来其实要数学和物理很好 不知道你要详细到什么地步的 所以……(以下内容摘自网络)PS.如果满意请采纳~谢谢~~ :)DNA为什么是双螺旋结构(撰文:夏烆光)内容提要:本文从力学的角度出发阐明:蛋白质分子为什么是螺旋式的结构?DNA为什么是双螺旋结构?核苷酸分子为什么只能有四种类型?以及它们的自我复制功能为什么是唯一的?反过来,从蛋白质分子和DNA分子的螺旋状结构中证明,微观粒子存在着螺旋式前进的运动规律。进而,证明广义时空相对论所给出的理论结果本身的正确性。一 引 言 1909年,丹麦植物学家约翰逊用“基因”一词取代了孟德尔的“遗传因子”。从此,基因便被看作是生物性状的决定者,或者说,被看成是生物遗传变异结构和功能的基本单位。1926年,美国遗传学家摩尔根发表了著名的《基因论》。他和其他学者用大量的实验证明,基因是组成“染色体”的“遗传单位”。基因在染色体上占有一定的位置和空间,并呈现为直线排列。这样一来,就使孟德尔关于“遗传因子”的假说,体现到具体的遗传物质——基因这一概念上。这个结论,为后来进一步研究基因的结构和功能奠定了最初的理论基础。尽管情况如此,但当时的人们并不知道“基因”究竟是一种什么样的物质。直到上个世纪40年代,当生物科学工作者弄清楚了“核酸”,特别是脱氧核糖核酸(简称DNA),乃是一切生物传宗接代的遗传物质时,“基因”这一概念才有了确切的生物学内涵。其间,1951年科学家们在实验室里获得了DNA的结晶体;1952年又获得了DNA的X射线衍射图谱。在此基础上,于1953年,年仅25岁的美国科学家詹姆斯?沃森与37岁的英国科学家西斯?克里克共同阐明了这个划时代的学术成果,——他们从DNA(脱氧核糖核酸)的X射线衍射图上解读了它的“双螺旋结构”。DNA双螺旋结构的发现,开创了分子生物学的新时代,它使生物大分子的研究跨入了一个崭新的研究阶段,并使遗传学的研究深入到了分子层次,从而迈出了解开“生命之谜”的重要一步。 应该承认,当时的两项科学成就对DNA“双螺旋结构”的发现起到了至关重要的作用。一是,美国加州大学森格尔教授发现了蛋白质分子的螺旋状结构;二是,X射线衍射技术在生物大分子结构研究中得到了实际的应用,从而有了观测分子内部结构的实验手段。正是在这样的科学背景和研究条件下,才促使沃森来到英国剑桥大学与克里克合作,致力于研究DNA的结构模式。他们通过对大量X射线衍射实验结果的分析与研究,提出了DNA的双螺旋结构模型。这项研究成果发表在1953年4月25日英国的《发现》杂志上。在随后的日子里,科学家们便围绕着DNA的结构和作用,陆续地展开了进一步的研究工作,取得了一系列的重大进展,并于1961年终于成功地破译了“遗传密码”,以雄辩的实验依据证实了DNA双螺旋结构这个结论的正确性。沃林、克里克、威尔金斯等三人,因此而共同分享了1962年诺贝尔医学生理学奖。(参见[1])二 核苷酸只有四种结构模型 基因(DNA)是自然界唯一能够自我复制的生物分子。正是由于DNA的这种精细准确的自我复制功能,为生物体将其祖先的生物特性传递给下一代提供了保证。现代生物学研究已经清楚地证明,NDA是由大量“核苷酸分子”组成的生物“大分子”。核苷酸分子有四种类型,它们按着不同的顺序排列,构成了含有各种遗传信息的生物基因(DNA)。基因是包含着特定遗传信息的脱氧核糖核酸片段。 实验证明,“大肠杆菌”是一个品系繁多的大家族,其中有成千上万种不同的类型。生物学的研究发现,一些品系的大肠杆菌,本身缺少指导合成某些特殊营养物质的基因,因此,它们必须从培养基中直接摄取营养物质才能生活,——这样的大肠杆菌,被生物学称之作“营养缺陷型”。例如,大肠杆菌K不能合成苏氨酸(T)和亮氨酸(L);而它的另一个品系则不具备合成生物素(B)和甲硫氨(M)的能力。实验表明,如果把这两种大肠杆菌中的任何一种单独放在缺少T、L、B、M的培养基上都不能生长。但是,当我们把这两种品系的大肠杆菌混合在一起,然后放到缺少TLBM这四种物质的培养基上,却奇迹般地长出了新菌落。这是为什么呢?简单地说:就是因为在大肠杆菌K的DNA中,缺少T、L两种基因,而只含有B和M两种另外的基因;同样,在另一个品系大肠杆菌的DNA中,虽然不具备B和M基因,但却含有前者所缺少的T、L两种基因。把这两种营养缺陷型的大肠杆菌放在一起,就等于把四种基因放在一起来进行培养。这样一来,前一品系细胞中的DNA,就有可能通过细胞膜进入后一品系的细胞中,使两种类型的DNA之间进行基因重组,从而形成含有T、L、B、M四种基因的新型大肠杆菌。 我们说,生物学的这一重大发现,仅仅证明DNA本身具有双螺旋结构,但是,这里并没有指出,形成这种双螺旋结构的物理原因是什么。作为深入的学术研究,完全有必要弄清以下问题:1、蛋白质分子为什么是螺旋状的结构?2、DNA分子为什么是双螺旋式的结构?3、核苷酸分子为什么只有四种类型?4、由核苷酸分子所构成的DNA分子,能够唯一自我复制生物分子的原因是什么?而本文将从力学的角度上,探索并尝试地回答这些新问题。三 蛋白质分子为什么是螺旋结构 这里,我们先来回答:蛋白质分子为什么是螺旋状的结构?为了回答这个问题,必须先来简单地介绍一下微观粒子的运动特征。根据《广义时空相对论》的理论结果知道,微观粒子的运动规律是:在不停“自旋”的同时,又绕着某个轴线、以一定的旋转频率和旋转半径不停地“公转”。加上粒子本身的直线运动,就自然地构成了一种螺旋式的前进运动。这里虽不是在讨论理论物理问题,但为使大家对这个结论确信无疑,还是需要简单地介绍一点广义时空相对论的相关理论。 诚如所知,在广义时空相对论中(参见[2],§21),我曾经指出:若曲线M(t)是给定参数t的方程,利用基本矢量τ,μ来表达二阶导数d2M/dt2,并注意到,如果参数t代表着时间,则二阶导数d2M/dt2就是M点运动的“相对加速度”。把等式 dM/dt =τds/dt (1)对参数t微分,就得出: d2M/dt2 =τd2s/dt2+(dτ/dt)·(ds/dt) (2)按照复合函数的微分法则,则有: dτ/dt =(dτ/ds)·(ds/dt)再将 dτ/ds = kμ (3)代入等式(2)中,便可以得出: d2M/dt2 =τd2s/dt2+μk(ds/dt)*2 (4)由此可见,相对加速度d2M/dt2可分成两项:一个是切向加速度矢量;另一个是法向加速度矢量。 下面,我们用运动时钟的读数t*来替换方程(4)。为此,需要把曲线的特别参数s写成如下的函数关系:s = s(t*)。这里,我们约定:一阶导数s"(t*)是站在动点M上的观测者,用运动时钟所得出地关于动点M的绝对速度。这个绝对速度可以是常数,——对应着没有外力作用的保守体系;也可以是时间坐标t*的函数,——对应着外力作用引起的绝对速度的变化。同时,我们还要约定:运动是匀加速的。由此而来,把上式对运动系的时间坐标t* 微分两次,便可以得出: ds = s"(t*)dt* (5)以及, d2s =[s"(t*)dt*]"dt*=s""(t*)dt*2 (6)令绝对速度υ= s"(t*)以及绝对加速度 η= s""(t*)于是,便可以得出: ds =υdt*;以及,d2s =ηdt*2 (7)由于这里是“纯量”之间的微分运算,所以不必考虑绝对速度和绝对加速度的方向。再者,由于这里只限于讨论“绝对加速度”为常数时的情况,因此,我们将(5)和(7)式同时代入(4)式,便可以得出: d2M/dt2 =(ηdt*2/dt2)τ+ k(υdt*/dt)2μ (8) 不难看出,上式等号右边的第一项代表了动点M的切向加速度,而第二项代表了它的法向加速度。等式左边的二阶导数d2M/dt2则是静止观测者、用静止的钟、所得出的动点M在曲线M(t)上运动的“相对加速度”。显然,这个“相对加速度”乃是“切向加速度”与“法向加速度”的矢量合成结果。 下面,我们来研究在均匀引力场中,物质的运动方程。为了简便起见,这里选择微观粒子沿着X轴方向的运动为运动的正方向。这里区分为两种运动状况来加以考虑。第一,粒子在自由空间中的曲线运动 按照广义时空相对论的观点:在相互作用传播速度有限性的前提下,运动系上的钟、与静止系上的钟,不可能绝对地同步地记录到一个运动事件的两种不同的时间坐标t*和t。因此,如果利用不同的参变数t和t* 来表示(4)式的话,则相应的数学形式也就有所不同。根据本文讨论的需要,我们直接按照广义时空相对论的理论结果,写出运动时钟的纯量读数t* 和静止时钟的纯量读数t之间的关系: dt* =ξdt,或 dt*/dt =ξ (9)其中, ξ= c/(c2 +υ2)1/2 (10) 对于自由空间中的匀速运动,(8)式中的η= 0,并且υ是常数,由此而来,(8)式右端的第一项等于0. 以及ξ是常数。于是,把(9)式代入(8)式便可以得出: d2M/dt2 = k[υ2c2/(c2 +υ2)]μ (11)再把关系式 V = υc/(c2 +υ2)1/2 (12)代入上式,则有: d2M/dt2 = kV2μ (13)我们用曲率半径ρ= 1/k代入上式,则有: d2M/dt2 = (V2/ρ)μ (14)这就是“匀速圆周运动”的基本公式。这一结果表明:在一个与外界没有任何联系的封闭的自由空间内,物体的绝对线速度υ和相对加速度都是常数,且其方向指向圆心。它的运动轨迹则是一个封闭的圆周。当体系本身具有恒定的初速度υ0时,它的运动轨迹就是一条等螺距的螺旋线。第二,粒子在均匀引力场(η= Const.)中的运动按照(9)式,则有: dt*2/dt2 =ξ2 = c2/(c2 +υ2) (15)在η等于常数的情况下,将(15)式代入(8)式,并引入相对加速度符号a(t) = d2M/dt2,得出: a(t)=τηc2/(c2+υ2)+μkc2υ2/(c2+υ2) (16)然后,再引入符号V2/ρ=ω公2ρ,以及ω自2 r =(ηV2/υ2), 其中,ω公为粒子的公转频率,ω自为粒子绕着质心“自旋”的角频率,r代表微观粒子本身的半径,则上式就可以改写成: a(t)=(ω自2 r)τ+ (ω公2ρ)μ (17)这就是在均匀外力作用下(η≠0),微观粒粒子的运动方程。不难理解,如果没有这种均匀外力的作用,微观粒子就不会具有自旋分量,即上式中的第一项。 在上式中,如果把第一项代表切线方向的相对加速度,第二项代表了主法线方向的相对加速度。而切线τ方向的相对加速度代表着微观粒子的“自旋”,而主法线μ方向的相对加速度代表着微观粒子的“公转”。这两种加速度的合成结果,导致微观粒子在前进运动的同时,伴随着自旋以及绕着前进方向为轴线的公转。其轨迹是一条螺旋线。不言而喻,所有化学元素的分子,例如氮(N)、氢(H)、碳(C)的分子等都是微观粒子,因此,它们一定会呈现螺旋式的运动状态。在这种运动状态的影响下,由碳水化合物所构成的蛋白质分子必然会出现螺旋状的结构。四 核苷酸的类型与双螺旋结构的原因 根据微分几何的理论结果,我们知道d2M/dt2 =τd2s/dt2 +μk(ds/dt)2 (18)以及d2M/ds2 = kμ (19) 现在,我们把上式的二阶导数d2M/ds2再对具有“内蕴意义”的参数“s”微分,就得出了它的三阶微分关系式。不过,这里并不是直接把二阶导数d2M/ds2 = kμ对特别参数“s”进行微分,而是把这个式子右端的矢量μ和曲率k的乘积进行微分。由于从这里出发会使问题大为简化,所以,我们的讨论将从对矢量μ的微分开始,然后所得出的不变式来表示三阶导数d3M/ds3、以及d3M/dt3。不过,这里不准备进行具体的分析与讨论,而是直接地引用微分几何的理论结果(参见[3],第69—72页),写出三阶微分邻域的不变式如下: dτ/ds = kμ;dμ/ds = - kτ+ζβ;dβ/ds = -ζμ (20) 其中,β是副法线方向上的单位矢量。它的方向垂直于由τ和μ相交后所构成的平面。上式中各公式的符号是选择了“右旋坐标系”时的情况。倘若是改为“左旋坐标系”,对于曲线M(t)的定向运动来说,在切矢量τ改变方向时,在切线单位矢量τ与主法线单位矢量μ确定的旋转方向下,公式(20)所确定的副法线单位矢量β将改变自己的正方向。所以,由方程(20)所确定的不变式“ζβ”也随之改变符号,即:由(+ζβ)变成了(-ζβ);为了保持曲线M(t)的不变式ζ的符号,必须在公式(20)中改变矢量“β”的符号。这样一来,在左旋的坐标系中,相伴三面形单位矢量导数的“基本关系式”可以写成下列的形式: dτ/ds = kμ;dμ/ds = - kτ-ζβ;dβ/ds = -ζμ (21)其中,“ζ”是曲线的“挠率”,而r = 1/ζ是曲线的“挠率半径”。其中,符号“ζβ”的“正”与“负”,代表着参数相同的两个粒子之间的“自旋方向”刚好相反。 下面,我们取dβ/ds = 0,——它代表着微观粒子的自旋轴的方向始终平行于粒子的前进方向,且β的数值不跟随着粒子的运动路程而变换。结果,上式就可以化成: dτ/ds = kμ;dμ/ds = - kτ-ζβ (22) 上式表明,刚体的任何运动都可以分为两个部分:一是远离坐标原点的平行移动;二是绕固定轴的转动。换言之,在每一个给定的瞬间,物体的运动都是由两个基本的运动所组成:第一,平移——此时物体在每一给定的时间内,它的各个部分都具有相同的运动速度。第二,转动——此时物体上的某一条直线固定不动,而物体的其它部分则绕着这个固定的直线旋转。而这种旋转可以分成两个部分,一个是绕着固定旋转轴的“公转”,另一个是绕着粒子质心的“自旋”。正如(17)式所示,第一项代表着粒子围绕着质心的“自旋”;而第二项代表着围绕前进方向的“公转”。 不难理解,在上述约定的前提条件下,当粒子在前进(dτ/ds>0)、或后退(dτ/ds<0)的过程中,相伴三面形T(M,τ,μ,β)的顶点M都同时包含着“平移”和“转动”两个方面。这里所包含的平移和转动,总共可以分成四种情况,分别由下列四个关系式来单独地确定:dτ/ds = kμ;dμ/ds = - kτ+ζβ; ………… ①dτ/ds = kμ;dμ/ds = - kτ-ζβ; ………… ② (23)dτ/ds = - kμ;dμ/ds = kτ-ζβ; ………… ③dτ/ds = - kμ;dμ/ds = kτ+ζβ; ………… ④ 在上述四个关系式中,曲线上的每个动点M联系着一个相伴三面形T(M,τ,μ,β),它是由曲线上对应点发出的“切矢量”、“主法线矢量”、“副法线矢量”所构成的“直角三面形”。这些关系式不仅给出了平移的“正方向”与它的“反方向”,而且给出了每种情况下的转动。单纯地就转动而言,这些公式一方面给出了“左旋公转”与“右旋公转”的情况;另一方面给出了顶点M围绕着自己的质心“左旋自旋”与“右旋自旋”的情况。当相伴三面形的顶点M移动时,动点M所描绘的运动轨迹就肯定是一条螺旋状的曲线。值得指出的是,在粒子构成的“自旋”中,η≠0是至关重要的。正是基于自旋的存在,所以才能出现以上四种独立的运动类型。这里,如果我们把η≠0看成是地球引力场的作用,那么,上式所代表的自旋一定与引力场的性质有关。 普遍的规律,对于两个基本相同的粒子来说,只有它们的自旋相反时,才能发生“耦合作用”而成对地出现。并且,只有自旋相反的粒子之间实现了耦合,其状态才是最稳定的状态。基于这一考虑,我们大胆地推测:核苷酸分子总是成对地耦合在一起。假如情况真地象我们推测的那样,再考虑到每个核苷酸分子的运动轨迹都是螺旋式的结构形状,那么,由这些成对存在着的核苷酸分子所构成的DNA分子,就必然具有双螺旋式的结构特征。另外,由于粒子的自旋运动来自于所在星球的引力特征,所以,地球上生物的DNA分子,在一定程度上受到了地球引力的影响。 为了形象的理解上述观点,我们不妨反过来思考,即从DNA分子的双螺旋结构中,反过来考虑微观粒子螺旋式的运动状态。广义时空相对论业已证明,只有这种螺旋式的运动状态,才能体现出微观粒子“波动性”与“粒子性”的对立统一。——即微观粒子的“波粒二象性”。如果不是这种运动状态,将难以解释微观粒子的“波粒二象性”。实际上,这种理解方法在物理学中被经常地运用。例如,在中学物理中,人们就是利用“铁粉”在磁场中的分布状况,来证实“磁力线”的存在。正如所知,磁力线本身是看不见的,所以人们只好通过铁粉在磁场中的分布状态,来间接地证明磁力线本身的分布状况。有了铁粉的分布状况,就间接证明了磁力线的形状。 再者,由于只有那些自旋相反的核苷酸分子才能够相互耦合而成对地出现,并且这些自旋相反的核苷酸分子的耦合结果只能具有以下四种可能,因此说,所有核苷酸分子只有T、L、B、M四种类型。为了明确,我们把(23)式中的四个式子间的可能耦合列成下表。耦合条件 公转方向相同 公转方向相反 自旋方向必须相反 ①—②,③—④ ①—③,②—④ 上表列出了核苷酸分子各种可能的耦合关系。从上表所列出的耦合关系可以看出,核苷酸分子的耦合情况只能是表中所列出的“四种组合”,即:①—②,③—④,①—③,②—④。在给定的、均匀的引力场中,这四种结构特征应该是唯一的。所以,地球上生物体的DNA分子只能有四种类型,并且这四种类型DNA分子的自我复制功能也是唯一的。进一步地考虑,生物体的遗传特征,在一定的程度上取决于所在星球上的引力特征。改变引力场,有可能改变DNA分子的形状。五 结 论 总之,通过上述讨论,回答了四个问题:一是蛋白质分子螺旋结构特征的力学原因。二是,核苷酸分子成对出现的力学原因;三是,由于核苷酸分子的成对出现,所以DNA分子必定是双螺旋结构;四是,由于同种核苷酸分子的耦合只能有四种情况,所以导致了DNA分子只能有四种类型,以及它们唯一的自我复制功能。再者,通过蛋白质分子的螺旋结构和DNA的双螺旋结构特征,反过来证明了微观粒子的运动形态的螺旋式特征。而且,只有这种螺旋式的运动特征,才能真正体现出微观粒子的波动性与粒子性的统一,进而证明广义时空相对论的正确性。参考文献:[1]《DNA双螺旋结构发现的前前后后》 作者:徐九武,科报网,《生命科学的里程碑》。[2]《广义时空相对论》夏烆光著,人民交通出版社,北京,2003年1月 第一版。[3]《微分几何教程》[苏] С.П.芬尼可夫 著,施祥林、徐家福 译,高等教育出版社,1954 年 7月第一版。

dna双螺旋结构有何重要生物学意义

DNA双螺旋结构的生物学意义:DNA双螺旋结构的发现,开启了分子生物学时代,使遗传的研究深入到分子层次,为生物工程的研究和应用开辟了广阔的前景。DNA双螺旋结构的特点:双螺旋结构是两条反向平行的脱氧多核苷酸链围绕同一中心轴盘曲形成的以右手螺旋为主的结构;磷酸与脱氧核糖交替形成链的骨架位于螺旋的外侧,碱基位于螺旋的内部,碱基平面与中心轴垂直。扩展资料DNA双螺旋结构的发现史:20世纪,英国女性X射线晶体学家富兰克林分辨出了DNA的两种构型,并成功地拍摄了它的X射线衍射照片。沃森和克里克未经富兰克林的许可使用了她的照片,还在《自然》杂志上发表一篇证实DNA双螺旋结构的文章。1953年,詹姆斯·杜威·沃森和弗朗西斯·克里克利用了未经富兰克林的授权,通过使用她的X射线晶体结构数据,4月25日在英国《自然》杂志发表了题为“核酸的分子结构-脱氧核糖核酸的一个结构模型”,成功在人类探索生科本质的征途上迈出了巨大的一步。参考资料来源:百度百科-DNA双螺旋结构

什么是DNA双螺旋结构?

【答案】:DNA的双螺旋结构模型是Watson和Crick于1953年提出的。该模型的建立对促进分子生物学及分子遗传学的发展具有划时代意义。对DNA本身的复制机制、对遗传信息的存储方式和遗传信息的表达、对生物遗传稳定性和变异性等规律的阐明起了非常重要的作用。其主要内容如下:(1)两条反向平行的多核苷酸链围绕同一中心轴相互缠绕;两条链都为右手螺旋。(2)脱氧核糖和磷酸交替连接,排列在双螺旋外侧,彼此通过3",5"-磷酸二酯键连接,构成DNA分子的基本骨架;碱基排列在双螺旋的内侧,碱基平面与纵轴垂直。(3)双螺旋的平均直径为2.0nm,相邻碱基平面之间垂直距离为0.34nm,每10个碱基对旋转一圈,碱基对之间的螺距为3.4nm。(4)在双螺旋的表面分别形成大沟和小沟。(5)两条链借助碱基之间的氢键和碱基堆积力牢固结合,维持DNA结构的稳定性。[考点]DNA的双螺旋结构。

简述DNA的双螺旋结构。

dna双螺旋结构的要点(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成.主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型.主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性.所谓双螺旋就是针对二条主链的形状而言的.(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连.同一平面的碱基在二条主链间形成碱基对.配对碱基总是a与t和g与c.碱基对以氢键维系,a与t间形成两个氢键.dna结构中的碱基对与chatgaff的发现正好相符.从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件.每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同.碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性.也就是说双螺旋结构在满足二条链碱基互补的前提下,dna的一级结构产并不受限制.这一特征能很好的阐明dna作为遗传信息载体在生物界的普遍意义.(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽.小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间.这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟.在大沟和小沟内的碱基对中的n和o原子朝向分子表面.(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm.dna双螺旋结构生物学意义1953年,沃森和克里克共同提出了dna分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.1953年,沃森和克里克共同提出了dna分子的双螺旋结构,标志着生物科学的发展进入了分子生物学阶段.dna双螺旋结构的提出开始,便开启了分子生物学时代.分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,"生命之谜"被打开,人们清楚地了解遗传信息的构成和传递的途径.在以后的近50年里,分子遗传学,分子免疫学,细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,dna重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景.在人类最终全面揭开生命奥秘的进程中,化学已经并将更进一步地为之提供理论指导和技术支持.

dna双螺旋结构的特点

两条DNA互补链反向平行;由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直。 DNA双螺旋结构的基本特点 1.由两条反向平行的脱氧核苷酸长链构成双螺旋结构。 2.磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧。 3.两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)。 由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。

简述DNA的双螺旋结构。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则维持DNA双螺旋结构稳定性的因素主要是上下层碱基对之间堆砌力和链间互补碱基之间的氢键。在双螺旋结构中碱基堆砌构成疏水性核心,而亲水性带负电荷的糖-磷酸基团处于外部,使双螺旋更加稳固;而氢键不仅是一种稳定双螺旋的力量,同时也为选择正确碱基配对提供了分辨能力希望能解决您的问题。

简述DNA的双螺旋结构。

DNA双螺旋的碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成DNA双螺旋核酸的骨架。碱基平面与假想的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补A〢T,G〣C,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的

为什么DNA分子呈现双螺旋结构

DNA分子呈现双螺旋结构的原因是双螺旋结构是进化的结果。双螺旋相比单链更稳定,可以保证遗传的稳定。DNA是脱氧核糖核酸,又称去氧核糖核苷酸,是染色体主要组成成分,同时也是主要遗传物质。DNA分子的双螺旋结构是相对稳定的。这是因为在DNA分子双螺旋结构的内侧,通过氢键形成的碱基对,使两条脱氧核苷酸长链稳固地并联起来。另外,碱基对之间纵向的相互作用力也进一步加固了DNA分子的稳定性。各个碱基对之间的这种纵向的相互作用力叫做碱基堆集力,它是芳香族碱基π电子间的相互作用引起的。现在普遍认为碱基堆集力是稳定DNA结构的最重要的因素。再有,双螺旋外侧负电荷的磷酸基团同带正电荷的阳离子之间形成的离子键,可以减少双链间的静电斥力,因而对DNA双螺旋结构也有一定的稳定作用。

是什么力维持了DNA的双螺旋结构?

dna双螺旋结构一般情况下比较稳定,维持其稳定的作用力主要有:①两条多核苷酸链间的互补碱基对之间的氢键作用.②螺旋中碱基对疏水的芳香环堆积所产生的疏水作用力和③上下相邻的芳香环的电子的相互作用即碱基堆积力.这是一种最主要的作用力.④磷酸基团的氧原子带负电荷,与细胞中的碱性组蛋白,亚精胺以及mg2+等阳离子化合物结合所形成的离子键,从而抵消负电荷之间的排斥作用.

阿尔法螺旋和DNA双螺旋结构的特点和区别

首先,你要知道α螺旋指的是蛋白质的空间结构,而DNA双螺旋是DNA分子的空间结构,是不同的两种生物大分子的空间结构 其次,蛋白质的二级结构中的α螺旋是一条钛链形成的空间结构,每个螺旋周期包含3.6个氨基酸残基,残基侧链伸向外侧,同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键.这种氢键大致与螺旋轴平行.而DNA双螺旋是两条DNA单链反向平行成螺旋状,每圈10个碱基;既然是两条链扭成的双螺旋,就存在这大沟小沟. 再次,蛋白质的α螺旋是形成蛋白质空间结构中的一个阶段,现有多肽链(一级结构)形成二级结构,α螺旋是二级结构中的一种类型,再由二级结构形成三级结构,或者有的蛋白质能形成四级结构才算是蛋白质的空间结构;DNA双螺旋就是它的空间结构了,只是双螺旋又分成不同的类型,如A B Z等等

dna分子的结构是(DNA双螺旋结构基本特点)

dna分子的结构是DNA分子属于双螺旋结构,由两条平行的链组成,两条链互相绕成螺旋状。每条链都由称为脱氧核糖的糖分子与磷酸在交替连接而成。DNA分子的结构DNA分子两条单链以双螺旋结构结成。单链是指由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。作用是:原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。DNA分子双螺旋结构的主要特点DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A一定与T配对;G一定与C配对。碱基之间的这种一一对应的关系,叫做碱基互补配对原则。。DNA双螺旋结构基本特点dna规则双螺旋结构的主要特点如下:dna分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。dna分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧。dna分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。DNA的构型DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段.DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸,通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序.每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖+一分子磷酸根.核酸的含氮碱基又可分为四类:腺嘌呤,胸腺嘧啶,胞嘧啶和鸟嘌呤.DNA的四种含氮碱基组成具有物种特异性.即四种含氮盐基的比例在同物种不同个体间是一致的,但在不同物种间则有差异.DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中A=T,C=G查哥夫法则.DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构.DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA.詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见.也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状.碱基对之间的距离是0.34nm,10个碱基对转一周,故旋转一周是3.4nm,这是β-DNA的结构,在生物体内自然生成的DNA几乎都是以β-DNA结构存在.DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构.如H-DNA或R-环等三级结构.DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间结构,也称为超螺旋结构.DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变.超螺旋式克服张力而形成的.当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态.如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态.但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋.核酸以反式作用存在这可看作是核酸的四级水平的结构.DNA的拓扑结构也是DNA存在的一种形式.DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构.超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变.DNA的高级结构是原核生物的DNA高级结构为超螺旋结构。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。自然界中主要是负超螺旋。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。扩展资料:在双螺旋结构中,每旋转一圈含有10个碱基对处于能量最低的状态,少于10个就会形成右手超螺旋,反之为左手超螺旋。前者称为负超螺旋,后者称为正超螺旋。这是一种三级构造。原核细胞中的DNA超螺旋是在DNA旋转酶作用下,由ATP提供能量形成的环状DNA负超螺旋,真核细胞中的DNA与组蛋白形成的核小体以正超螺旋结构存在。DNA超螺旋有两种存在形式:具绞旋线超螺旋以及螺管式超螺旋。具绞旋线是发生在当DNA从细胞中独立出来后形成的超螺旋状态,而螺管式则是当DNA处于染色质中维持的超螺旋状态。其中以螺管式缠绕的更加紧密,且需要蛋白质的辅助方能形成——染色质中组蛋白。参考资料来源:百度百科-原核生物百度百科-超螺旋简述DNA的结构1、dna结构是双链结构,DNA即脱氧核糖核酸。脱氧核糖核酸是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。2、细胞核是真核细胞内最大、最重要的细胞结构,是细胞遗传与代谢的调控中心,是真核细胞区别于原核细胞最显著的标志之一。,它主要由核膜、染色质、核仁、核基质等组成。更多关于dna结构是什么,进入:查看更多内容

dna双螺旋结构是哪一年发现的

dna双螺旋结构是哪一年发现的?1953年双螺旋被发现詹姆斯.杜威.沃森,一九二八年四月六日生于美国芝加哥,由于提出DNA的双螺旋结构而获得一九六二年诺贝尔生理学或医学奖,被称谓DNA之父.还有克里克于1916年6月8日出生在英国的北汉普顿.美国和英国~请采纳~
 首页 上一页  1 2 3 4  下一页  尾页