氧气

DNA图谱 / 问答 / 标签

实验室中常用高锰酸钾或过氧化氢和二氧化锰来制取氧气,你认为其中较好的方法是?其理由是?

过氧化氢和二氧化锰来制取氧气,因为反应比较平缓,而且产物是水和氧气,对环境没有污染。方程式为:氧气为无色无味气体,氧元素最常见的单质形态。不易溶于水,1L水中溶解约30mL氧气。在空气中氧气约占21% 。液氧为天蓝色。固氧为蓝色晶体。常温下不很活泼,与许多物质都不易作用。但在高温下则很活泼,能与多种元素直接化合,这与氧原子的电负性仅次于氟有关。氧在自然界中分布最广,占地壳质量的48.6%,是丰度最高的元素。在烃类的氧化、废水的处理、火箭推进剂以及航空、航天和潜水中供动物及人进行呼吸等方面均需要用氧。动物呼吸、燃烧和一切氧化过程(包括有机物的腐败)都消耗氧气。氧气的结构:化学性质:氧气的化学性质比较活泼。除了稀有气体、活性小的金属元素如金、铂、银之外,大部分的元素都能与氧气反应,这些反应称为氧化反应,而经过反应产生的化合物(有两种元素构成,且一种元素为氧元素)称为氧化物。制取:1、加热高锰酸钾:2、二氧化锰与氯酸钾共热:3、过氧化氢溶液催化分解,催化剂主要为二氧化锰:应用:1、冶炼工艺:在炼钢过程中吹以高纯度氧气,氧便和碳及磷、硫、硅等起氧化反应,这不但降低了钢的含碳量,还有利于清除磷、硫、硅等杂质;2、化学工业:在生产合成氨时,氧气主要用于原料气的氧化,以强化工艺过程,提高化肥产量;3、国防工业:液氧是现代火箭最好的助燃剂,在超音速飞机中也需要液氧作氧化剂,可燃物质浸渍液氧后具有强烈的爆炸性,可制作液氧炸药;4、其它方面:它本身作为助燃剂与乙炔、丙烷等可燃气体配合使用,达到焊割金属的作用。

制取氧气时双氧水的质量分数一般是多少?

实验室用质量分别为15%的过氧化氢制取氧气时,发现反应速度太快气体难以收集。研究发现用双氧水制取氧气,溶液质量最好在7.5%左右。原因是:浓度大,分解速度快,H2O2自身也要分解,不便收集.浓度太小,分解速度很慢,收集一定体积的气体需要长时间。

过氧化氢制氧气的现象

过氧化氢分解有加热分解和常温下加催化剂分解两种情况:前者现象:有气泡产生。后者:剧烈反应有大量气泡产生。

用过氧化氢制取氧气是吸热还是放热

放热应为过氧化氢制取氧气是氧化反应 1.物质与氧发生的反应叫氧化反应;得电子的作用叫还原.狭义的氧化指物质与氧化合;还原指物质失去氧的作用.氧化时氧化值升高;还原时氧化值降低.氧化、还原都指反应物(分子、离子或原子).氧化也称氧化作用或氧化反应.有机物反应时把有机物引入氧或脱去氢的作用叫氧化;引入氢或失去氧的作用叫还原.物质与氧缓慢反应缓缓发热而不发光的氧化叫缓慢氧化,如金属锈蚀、生物呼吸等.剧烈的发光发热的氧化叫燃烧. 2.一般物质与氧气发生氧化时放热,个别可能吸热如氮气与氧气的反应.电化学中阳极发生氧化,阴极发生还原. 所以双氧水制取氧气会放热.

用过氧化氢和二氧化锰制取氧气的步骤

1、检查气密性 2、在锥形瓶中装入二氧化锰,往长颈漏斗里加入双氧水,过一会儿开始收集,用排水法或者向上排空气法进行收集. 3、排空气法要验满,用带火星木条放瓶口,复燃说明收集满了.排水法是看到瓶口有大量气泡向外冒出就可以了

分解过氧化氢制取氧气步骤

1、用广口瓶或试管作为反应容器,并在口处配双孔胶塞。2、检查装置气密性。3、向反应容器加少量二氧化锰固体。4、塞好带有分液漏斗和导管的双孔塞。5、向分液漏斗加入过氧化氢液体。6、用排水法收集氧气。

过氧化氢制取氧气的步骤

过氧化氢溶液催化分解(催化剂主要为二氧化锰,三氧化二铁、氧化铜也可):解释:1、实验先查气密性,受热均匀试管倾:“试管倾”的意思是说,安装大试管时,应使试管略微倾斜,即要使试管口低于试管底,这样可以防止加热时药品所含有的少量水分变成水蒸气,到管口处冷凝成水滴而倒流,致使试管破裂。“受热均匀”的意思是说加热试管时必须使试管均匀受热。2、收集常用排水法:意思是说收集氧气时要用排水集气法收集。3、先撤导管后移灯:意思是说在停止制氧气时,务必先把导气管从水槽中撤出,然后再移去酒精灯(如果先撤去酒精灯,则因试管内温度降低,气压减小,水就会沿导管吸到热的试管里,致使试管因急剧冷却而破裂)。扩展资料:主要用途冶炼工艺:在炼钢过程中吹以高纯度氧气,氧便和碳及磷、硫、硅等起氧化反应,这不但降低了钢的含碳量,还有利于清除磷、硫、硅等杂质。而且氧化过程中产生的热量足以维持炼钢过程所需的温度,因此,吹氧不但缩短了冶炼时间,同时提高了钢的质量。高炉炼铁时,提高鼓风中的氧浓度可以降焦比,提高产量。在有色金属冶炼中,采用富氧也可以缩短冶炼时间提高产量。化学工业:在生产合成氨时,氧气主要用于原料气的氧化,以强化工艺过程,提高化肥产量。再例如,重油的高温裂化,以及煤粉的气化等。国防工业:液氧是现代火箭最好的助燃剂,在超音速飞机中也需要液氧作氧化剂,可燃物质浸渍液氧后具有强烈的爆炸性,可制作液氧炸药。医疗保健:供给呼吸:用于缺氧、低氧或无氧环境,例如:潜水作业、登山运动、高空飞行、宇宙航行、医疗抢救等时。参考资料来源:百度百科-氧气

用过氧化氢制取氧气的内容及步骤

由方程式可知氧气是气体. 1.把二氧化锰放入试管中. 2.在试管口插上双孔橡皮塞,一个孔插分液漏斗,一个孔插导气管. 3.将过氧化氢倒入漏斗,用分液漏斗控制反应速度. 4.根据氧气的物理性质,用向下排水法收集氧气.

过氧化氢和二氧化锰制取氧气的化学方程式

过氧化氢和二氧化锰制取氧气的化学方程式是:2H2O2(MnO2)=2H2O+O2↑,过氧化氢在常温可以发生分解反应生成氧气和水(缓慢分解),在加热或者加入催化剂后能加快反应。过氧化氢(hydrogenperoxide)是一种无机化合物,化学式H2O2。纯过氧化氢是淡蓝色的黏稠液体,可任意比例与水混溶,是一种强氧化剂,水溶液俗称双氧水,为无色透明液体。其水溶液适用于医用伤口消毒及环境消毒和食品消毒。

过氧化氢制氧气的实验装置有哪些?

过氧化氢制氧气的实验装置可以包括以下几个主要部分:1. 过氧化氢溶液容器:用于储存和供应过氧化氢溶液。可以使用玻璃瓶或塑料瓶等容器,容器要具有一定的密封性。2. 反应器:用于将过氧化氢溶液进行分解,产生氧气。反应器可以是一个玻璃容器,内部放置催化剂,如铁、铜、银等金属或金属氧化物。3. 导管或管道:用于连接过氧化氢溶液容器和反应器,将过氧化氢溶液输送到反应器中。4. 水槽或水浴:用于控制反应器的温度。可以使用一个水槽或水浴将反应器浸泡其中,通过加热或冷却来控制反应器的温度。5. 气体收集装置:用于收集生成的氧气。可以使用气体收集瓶或气球等装置。6. 气体分离装置:用于将氧气与可能的残留氢气或过氧化氢分离。一种常见的分离装置是水封瓶,通过水封的原理将氧气与其他气体分离。7. 安全设施:包括适当的防护措施,如手套、护目镜等,以确保实验操作的安全。在实验过程中,过氧化氢溶液加入到反应器中,并通过加热、催化剂的作用以及适当的温度和压力条件,使过氧化氢分解产生氧气。氧气通过导管输送到气体收集装置中,并通过气体分离装置将氧气与其他气体分离,得到纯净的氧气样品。需要注意的是,在进行过氧化氢制氧气实验时,要严格控制实验条件和操作,确保安全,并遵循相应的实验规范和操作流程。

初三化学 实验现象 双氧水(过氧化氢)制取氧气

化学方程式为:2H2O2(过氧化氢)=MnO2=2H2O+O2↑,实验现象为观察到有气泡生成,考试时回答这个就行了,有放热,真正的实验会观察到有白雾,这是放热使水变成水蒸气的结果。希望能帮助到你O(∩_∩)O

过氧化氢制取氧气的实验原理是什么

久置于实验室的过氧化氢溶液会变质,其原因就是过氧化氢会分解成水和氧气。在常温下过氧化氢就会分解放出氧气,但是速度非常非常慢,我们肉眼是看不见的。为了加速反应的进行,我们可以采取加热的方式,也就是说加热时过氧化氢会比较快的分解出氧气(“比较快”是和常温下比较),但是与此同时,大量的水蒸气也会随之蒸发出来,所以这样的做法并不是很理想的实验室制备氧气的方法。但是加热确实会产生氧气的。最理想的实验室制氧气的方法:常温下在过氧化氢溶液中加入二氧化锰,二氧化锰起催化作用,能够加速反应的进行。

过氧化氢溶液如何制取氧气的文字表达式

文字表达式:过氧化氢 等号 (箭头上写二氧化锰) 水+氧气。化学方程式:2Hu2082Ou2082(MnOu2082催化剂)=2Hu2082O+Ou2082↑过氧化氢:化学式为Hu2082Ou2082,其水溶液俗称双氧水,外观为无色透明液体,是一种强氧化剂。过氧化氢在常温可以发生分解反应生成氧气和水(缓慢分解),在加热或者加入催化剂后能加快反应,催化剂有:二氧化锰、硫酸铜、碘化氢、二氧化铅、三氯化铁、氧化铁,及生物体内的过氧化氢酶等。扩展资料实验室制氧气的方法:1、用高锰酸钾或氯酸钾制氧气选甲装置:固体与固体加热制气体(实验室常用说法:固固加热型)2、用过氧化氢制氧气选乙装置:液体与固体不加热制气体(实验室常用说法:固液常温型)氧是人体进行新陈代谢的关键物质,是人体生命活动的第一需要。呼吸的氧转化为人体内可利用的氧,称为血氧。血液携带血氧向全身输入能源,血氧的输送量与心脏、大脑的工作状态密切相关。参考资料来源:百度百科-过氧化氢参考资料来源:百度百科-实验室制氧气

过氧化氢制取氧气催化剂有哪些

过氧化氢制取氧气催化剂:重金属物的氧化物,如氧化铜、氧化锰、三氧化二铁等等,甚至用猪肝也行,它的有机催化剂有过氧化氢酶也很好催化作用。过氧化氢本身不燃,但能与可燃物反应放出大量热量和氧气而引起着火爆炸。过氧化氢在pH值为3.5~4.5时最稳定,在碱性溶液中极易分解,在遇强光,特别是短波射线照射时也能发生分解。当加热到100℃以上时,开始急剧分解。扩展资料:与许多有机物如糖、淀粉、醇类、石油产品等形成爆炸性混合物,在撞击、受热或电火花作用下能发生爆炸。过氧化氢与许多无机化合物或杂质接触后会迅速分解而导致爆炸,放出大量的热量、氧和水蒸气。大多数重金属及其氧化物和盐类都是活性催化剂,尘土、香烟灰、碳粉、铁锈等也能加速分解。浓度超过74%的过氧化氢,在具有适当的点火源或温度的密闭容器中,能产生气相爆炸。所以生活中要特别注意它的安全性。

过氧化氢制氧气化学方程式

过氧化氢制氧气的化学方程式为:2H2O2=MnO2=2H2O+O2(气体符号)

用过氧化氢制取氧气的方法是什么?

步骤:①连接装置②检查装置气密性③再锥形瓶中装入二氧化锰④倒入过氧化氢溶液⑤收集氧气注意事项:①、分液漏斗可以用长颈漏斗代替,但其下端应该伸入液面以下,防止生成的气体从长颈漏斗中逸出;②、导管只需略微伸入试管塞③、气密性检查:用止水夹关闭,打开分液漏斗活塞,向漏斗中加入水,水面不持续下降,就说明气密性良好。④、装药品时,先装固体后装液体⑤、该装置的优点:可以控制反应的开始与结束,可以随时添加液体。

过氧化氢分解制取氧气的化学方程式

  1、过氧化氢:化学式为H2O2。   2、 二氧化锰催化过氧化氢分解,H2O2 + MnO2 +2H+ = Mn2+ + 2H2O + O2Mn2+ + H2O2 = MnO2 + 2H+ MnO2虽然参与了化应反应,但在反应前后质量和性质都没有发生变化,而且加快了反应速率,故二氧化锰是作为过氧化氢分解的催化剂。   3、过氧化氢分解制取氧气的化学方程式为:2H2O2(MnO2)=2H2O+O2↑。

用过氧化氢制取氧气

实验原理:过氧化氢(H2O2) ————→ 水(H2O) + 氧气(O2)注意事项: a). 分液漏斗可以用长颈漏斗代替,但其下端应该深入液面以下,防止生成的气体从长颈漏斗中逸出;b). 导管只需略微伸入试管塞c). 气密性检查:用止水夹关闭,打开分液漏斗活塞,向漏斗中加入水,水面不持续下降,就说明气密性良好。d). 装药品时,先装固体后装液体 e). 该装置的优点:可以控制反应的开始与结束,可以随时添加液体a、步骤:连—查—装—固—点—收—移—熄 b、注意点 ①试管口略向下倾斜:防止冷凝水倒流引起试管破裂 ②药品平铺在试管的底部:均匀受热 ③铁夹夹在离管口约1/3处 ④导管应稍露出橡皮塞:便于气体排出 ⑤试管口应放一团棉花:防止高锰酸钾粉末进入导管 ⑥排水法收集时,待气泡均匀连续冒出时再收集(刚开始排出的是试管中的空气) ⑦实验结束时,先移导管再熄灭酒精灯:防止水倒吸引起试管破裂 ⑧用排空气法收集气体时,导管伸到集气瓶底部 (6)氧气的验满:用带火星的木条放在集气瓶口 检验:用带火星的木条伸入集气瓶内

用过氧化氢制取氧气

初中实验室制取氧气的方法: 反应物为:过氧化氢。 反应条件:二氧化锰等催化剂,作用是加快过氧化氢的分解速率。 生成物:氧气和水。 方程式为:2分子过氧化氢在二氧化锰等催化剂的作用下分解为2分子的氢气和1分子的氧气。 实验药品:3%过氧化氢溶液、小木条、二氧化锰固体。 实验步骤: 1、在试管中加入少量过氧化氢溶液,把带火星的小木条放在试管口,观察现象为:无明显现象。 2、在试管中加入少量二氧化锰,观察现象为:出现大量气泡,木条复燃。 3、当停止生成气泡时,继续加入过氧化氢溶液,观察现象为:出现大量气泡,木条复燃。可得出过氧化氢在催化剂作用下会生成氧气的结论。

如何用双氧水制取氧气?

你好,很高兴为你解答:双氧水制取氧气具体步骤:①连接装置②检查装置气密性③再锥形瓶中装入二氧化锰④倒入过氧化氢溶液⑤收集氧气双氧水制取氧气注意事项:①分液漏斗可以用长颈漏斗代替,但其下端应该伸入液面以下,防止生成的气体从长颈漏斗中逸出;②导管只需略微伸入试管塞③气密性检查:用止水夹关闭,打开分液漏斗活塞,向漏斗中加入水,水面不持续下降,就说明气密性良好。④装药品时,先装固体后装液体⑤该装置的优点:可以控制反应的开始与结束,可以随时添加液体。双氧水制取氧气总结:若固体(或固体+固体)加热生成气体,选用高锰酸钾制氧气装置;若固体+液体常温下制取气体,选用双氧水制取氧气装置.催化剂:在化学反应中能改变其他物质的反应速率,但本身的化学性质和质量在反应前后没有发生变化的物质.

用过氧化氢制取氧气的化学方程式

2H2O2 == 2H2O + O2↑反应物中无气体,生成物中有气体,所以要加箭头

过氧化氢制取氧气的化学方程式

过氧化氢是一种强氧化剂,水溶液俗称双氧水,为无色透明液体。过氧化氢制取氧气的化学方程式为2H 2 O 2 =2H 2 O+O 2 ↑。 过氧化氢制取氧气 实验药品:3%过氧化氢溶液、小木条、二氧化锰固体。 实验步骤 (1)在试管中加入少量过氧化氢溶液,把带火星的小木条放在试管口,观察现象(无明显现象)。 (2)在试管中加入少量二氧化锰,观察现象(出现大量气泡,木条复燃)。 (3)当停止生成气泡时,继续加入过氧化氢溶液,观察现象(出现大量气泡,木条复燃)。 (4)化学方程式:2H 2 O 2 =2H 2 O+O 2 ↑。 过氧化氢的性质 过氧化氢的化学式为H 2 O 2 。纯过氧化氢是淡蓝色的黏稠液体,可任意比例与水混溶,是一种强氧化剂,水溶液俗称双氧水,为无色透明液体。其水溶液适用于医用伤口消毒及环境消毒和食品消毒。过氧化氢溶于水、醇、乙醚,不溶于苯、石油醚。 纯过氧化氢很不稳定,加热到153°C便猛烈的分解为水和氧气。过氧化氢是一种极弱的酸:H 2 O 2 =(可逆)=H + +HO 2 - (Ka=2.4×10-12)。因此金属的过氧化物可以看做是它的盐。

过氧化氢制取氧气的化学方程式

  过氧化氢化学式为H2O2,俗称双氧水  过氧化氢,它的分子是由2个氢原子和2个氧原子组成的,在常温下能少量分离出氧气,在加入二氧化锰的情况下能剧烈反应,分解出大量的氧气,中学化学实验室常用这种方式制取氧气。  2H2O2=MnO2催化=2H2O+O2气

过氧化氢制氧气的化学方程式

过氧化氢制氧气的化学方程式:过氧化氢在金属氧化物的催化作用下,即可分解形成水和氧气。

写出实验室用过氧化氢制取氧气的化学方程式:______

  过氧化氢在二氧化锰的催化作用下生成水和氧气,反应的化学方程式为2H2O2=2H2O+O2。  氧是人体进行新陈代谢的关键物质,是人体生命活动的第一需要。呼吸的氧转化为人体内可利用的氧,称为血氧。血液携带血氧向全身输入能源,血氧的输送量与心脏、大脑的工作状态密切相关。心脏泵血能力越强,血氧的含量就越高;心脏冠状动脉的输血能力越强,血氧输送到心脑及全身的浓度就越高,人体重要器官的运行状态就越好。  实验室制备氧气有多种方法,例如:高锰酸钾制氧、过氧化氢(双氧水)制氧。u200d

过氧化氢制取氧气的化学方程式

  1、过氧化氢分解制氧气的化学方程式:2Hu2082Ou2082(MnOu2082催化剂)=2Hu2082O+Ou2082↑。过氧化氢的化学式为Hu2082Ou2082,其水溶液俗称双氧水,外观为无色透明液体,是一种强氧化剂。   2、过氧化氢它的分子是由2个氢原子和2个氧原子组成的,在常温下能少量分离出氧气,在加入二氧化锰的情况下能剧烈反应,分解出大量的氧气,中学化学实验室常用这种方式制取氧气。   3、过氧化氢在常温可以发生分解反应生成氧气和水(缓慢分解),在加热或者加入催化剂后能加快反应,催化剂有:二氧化锰、硫酸铜、碘化氢、二氧化铅、三氯化铁、氧化铁,及生物体内的过氧化氢酶等。

过氧化氢制取氧气的文字表达式

过氧化氢——→水+氧气(二氧化锰在箭头上方);化学方程式:2Hu2082Ou2082(MnOu2082催化剂)==2Hu2082O+Ou2082↑。过氧化氢其水溶液俗称双氧水,外观为无色透明液体,是一种强氧化剂。 过氧化氢应用领域 通常将过氧化氢配制成水溶液双氧水使用。 双氧水的用途分医用、军用和工业用三种,日常消毒的是医用双氧水,医用双氧水可杀灭肠道致病菌、化脓性球菌,致病酵母菌,一般用于物体表面消毒。双氧水具有氧化作用,但医用双氧水浓度等于或低于3%,擦拭到创伤面,会有灼烧感、表面被氧化成白色并冒气泡,用清水清洗一下就可以了,过3-5分钟就恢复原来的肤色。 化学工业用作生产过硼酸钠、过碳酸钠、过氧乙酸、亚氯酸钠、过氧化硫脲等的原料,酒石酸、维生素等的氧化剂。医药工业用作杀菌剂、消毒剂,以及生产福美双杀虫剂和40l抗菌剂的氧化剂。印染工业用作棉织物的漂白剂,还原染料染色后的发色。用于生产金属盐类或其他化合物时除去铁及其他重金属。也用于电镀液,可除去无机杂质,提高镀件质量。还用于羊毛、生丝、象牙、纸浆、脂肪等的漂白。高浓度的过氧化氢可用作火箭动力助燃剂。 民用:处理厨房下水道的异味,到药店购买双氧水加水加洗衣粉倒进下水道可去污,消毒,杀菌;3%的过氧化氢(医用级)可供伤口消毒。

双氧水制取氧气的化学方程式

双氧水制取氧气的化学方程式是:2Hu2082Ou2082(MnOu2082催化剂)=2Hu2082O+Ou2082↑。过氧化氢:化学式为Hu2082Ou2082,其水溶液俗称双氧水,外观为无色透明液体,是一种强氧化剂。过氧化氢在常温可以发生分解反应生成氧气和水缓慢分解。过氧化氢的化学性质:1、氧化性:过氧化氢具有很强的氧化性,是非常强的氧化剂。2、还原性:和氯气、高锰酸钾等强氧化剂反应被氧化生成氧气。3、遇有机物、受热分解放出氧气和水,遇铬酸、高锰酸钾、金属、碳酸反应剧烈。为了防止分解,可以加入微量的稳定剂,如锡酸钠、焦磷酸钠等等。

双氧水制取氧气

双氧水在化学中,实验室制取氧气有三种方法:(1)2KMnO4 =加热= K2MnO4 + MnO2 + O2(2)2KClO3 =MnO2、加热= 2KCl + 3O2(3)2H2O2 =MnO2= 2H2O + O2双氧水,就是过氧化氢(H2O2)溶液,其制取氧气的反应原理是上述的反应(3).可以用“锥形瓶+ 长颈漏斗”的装置来通过H2O2制取氧气.另外,中学化学还介绍氧气的工业制法:分离液态空气法.

地球上的生物都依赖氧气。有没有可能某外星人不需要氧气也可以存活?

我们地球人是炭基生物,所以氧和水必不可少。但是在我们未知的世界里,诺大宇宙不可能仅仅地球有生物存在。但谁也无法判断外星人没有氧和水是否能够存活。因为谁都没有确定没有水和氧就不能诞生生物,也就是说没有水和氧也可能孕育生物,并且已经发现在有机溶剂中有微生物存在,根本就不需要水。比如土星的第六颗卫星,表面上有液体甲烷,科学家们认为也可能会产生生命,而生命必须要有水,那已经是多少年之前的事了。地球上不是也有厌氧菌吗?不但不需要氧,反而氧对它来说还是毒气。所以生命的诞生,不是没有水和氧就不可能产生生物,而是必须要有液体,液体才是诞生生命的必须,而水绝不是液体的唯一。都现在为止,地球人还没有发现任何外星生物,不知道它们是否也是碳基的生物,可以断定它们不一定需要水和氧维持生命,一切都要等到有一天真正接触了外星人,才会有明确的答案。在地球生命演化史上有一件事大部分人都不知道,那就是24.5亿年前大气游离氧含量突然增加的“大氧化事件”,而地球最早的生命在38亿年前就诞生了,由于当时的大气氧含量只有0.02%因此最初的地球生命都是厌氧生物,氧气在那个时候还没有今天的地位。 但34亿年前地球上出现了能够进行光合作用的原核生物蓝藻,它靠二氧化碳和水生存而把氧气排出,10亿年后蓝藻将原始海洋中的亚铁离子全部氧化进而导致大气氧含量从0.02%猛增至4%,结果就是海洋中原来的大量厌氧生物几乎全部被氧气杀死,只剩下海底热泉附近还有一些厌氧的古细菌。氧气充盈的地球灭绝了大部分厌氧生物后,剩下的生物逐渐接受了氧气并在氧气环境下发展进化,我们熟悉的海洋动植物登陆以及后来的爬行类都是需要氧气的。 所以说地球上的生物并不是天生就需要氧气的,因此从厌氧生物的角度去寻找外星生命甚至是外星人也是一个好办法,但问题是目前的技术水平无法近距离观测行星,而且厌氧生物的生存环境也不是人类的主场。 早在几百年前就有人提出了完全不需要氧气的硅基生命,但它们的生存环境是高温高压高浓度二氧化碳的“死亡之星”,探测难度还是非常大,所以人类目前只能从氧气和液态水方向入手寻找外星人。 茫茫宇宙一定存在着若干智慧生命产生的不同类型文明,但只要是智慧生命就都会对宇宙进行 探索 和思考,因此不排除未来人类在太空中发现外星人飞船或者舰队的情况。地球上的生都依赖氧气,有没有可能某外星人不需要氧气也可以存活? 外星人可以不需要氧气问题很有意思,但有一点需要纠正,并不是地球上所有生物都需要氧气,一些微生物属于厌氧生物,不能接触氧气。可以肯定的是目前为止发现的地球多细胞的生物几乎没有例外都需要氧气。那么,外星生物有没有可能不需要氧气呢?答案是肯定的。 生物需要能量不管需不需要氧气,所有生物,包括外星生物,要想活着,就必须要有足够的能量。地球生物利用氧化反应获得能量,外星球的生物也许可以通过其他形式获得能量。 但无论何种形式的能量,必然都要把外界能量(或自身能量)转变为自不管需不需要氧气,所有生物,包括外星生物,要想活着,就必须要有足够的能量。地球生物利用氧化反应获得能量,外星球的生物也许可以通过其他形式获得能量。但无论何种形式的能量,必然都要把外界能量(或自身能量)转变为自身的活动能力,因此不管何种形式的生命都需要能量供给。 外星人可以利用化学能以外的能量 1.太阳能,地球上的植物可以利用太阳能把无机原料合成生命物质,并获取自身生存所需要的能量。 外星的生物,也许也可以利用某种机制,直接利用太阳(光)能,满足自身的能量需要。当然这种利用方式不一定是叶绿素,更不一定像地球上的植物一样(白天光合作用,晚上呼吸氧气)。只要不利用氧气,实现起来并不困难。 2.核能,如果外星生物可以直接利用核裂变甚至核聚变获得能量,完全可以满足自身的能量需求。 靠氧气氧化食物获得的那些能量,对能利用核能的外星生物来说是微不足道的,完全可以摆脱。 3.其他能量,其他能量也可以被生物所利用,只要它们进化出合适的生存机制。 比如热能、电能、磁能、风能等,都可以通过一定的生物组织实现转化,根据能量守恒定律,只要满足自身能量需求,就可以了。至于生物的存在形式,也不一定如地球生物一样是碳基生物,也有可能是硅基生物或者是完全不一样的生物形式,甚至有可能根本不是由原子构成的。对于这些生物来说,能量必不可少,而氧气则可有可无了。 化学能也不是必须有氧气参加才能获得 1.地球上的生物也有不需要氧气的,地球上有些单细胞生物,并不需要氧气就能生存,有些生物还有厌氧的特征 。在寒武纪以前,地球上还没有氧气的时候,所有的生物都是不需要氧气生存的。而今天,依然存在大量厌氧生物存在。只是目前没有发现多细胞厌氧(自养)生物。地球上这些厌氧生物是怎样获得能量的呢?主要有两种形式,一种是寄生,主要是利用其它生物的肌体营养或者其它生物尸体来生存;另一种是自养,猜测是地球上最初的生命形式,它们使用完全不同于人类和普通地球生物的方式获得能地球上这些厌氧生物是怎样获得能量的呢?主要有两种形式,一种是寄生,主要是利用其它生物的肌体营养或者其它生物尸体来生存;另一种是自养,猜测是地球上最初的生命形式,它们使用完全不同于人类和普通地球生物的方式获得能量,它们可以进行一种不需要氧气的氧化过程,从而获取生存物质和能量。 2.外星生物可以利用的非氧化学能有很多如果外星球有大量的营养物质,无需氧气就可以获得能量,那么它们就无需进化出利用氧气呼吸的机制。 同时,氧化,不一定只有氧气才能完成,比如硝酸盐、硫酸盐、氯酸盐、高锰酸盐等,都可以代替氧气完成氧化过程。当然,它们还可以用硫、氯、溴、碘、磷等物质来氧化自身的物质。此外,像全氮阴离子、全氮阳离子等物质蕴藏着大量的化学能,它们的反应产物是氮气,无需氧气的参加,外星生物如果能利用这一类物质,而且它们的星球刚好有大量这样的物质的话,氧气的存在就是多余的了。好了,就介绍这么多。虽然,我们没有见过外星人,也不知道外星人长什么样子,但是利用人类现有的知识可以畅想出很多种不利用氧气生存的方式。当然,外星生物也有可能以一种人类目前完全无法理解的方式生存,至少不需要氧气。其实是有可能的,因为,外星生物并不一定是碳基生物。所谓碳基生物就是以碳元素为基础的生物,地球上所有的生物都是碳基生物。地球上的大部分生物都依赖氧气,这是由地球的环境决定的。其实早在25亿年前,地球上几乎没有氧气,也没有动植物,唯一的生命就是微生物,比如细菌,这些细菌不需要氧气就能新陈代谢。之后地球上经历了一次大爆发,导致地球上一切生命都变了。先是大规模出现蓝藻细菌,他们可以进行光合作用,于是地球上的氧气含量开始慢慢上升,那些不需要氧气的微生物很快死亡。在地球上,都是碳基生物,氧气和水是必须的。那么在外星上,有没有可能不需要氧气的生命?比如硅基生命,电磁生命。当然是有可能的,人类一直在寻找适合人类生存的星球时,首先要考虑的就是氧气和水。而外星人生存的条件不一定和地球一样,那么氧气也就不是必须的了。地球上现在依然存在很多不需要氧气的生物,比如厌氧生物和兼性厌氧生物。如果外星人不是碳基生物,那么甚至连水也不是必需品。但是人类之所以一直以氧气和水作为寻找生命的条件也是有原因的。因为目前为止,碳基生命是最容易形成的,所以说概率会更大一点。地球上的生物都需要氧气,因为都是碳基构成的生物,那么如果以硅基、硫基或氨基等物质构成的外星生物是否也需要氧气呢?在人类等地球是碳基生物的质量构成当中,是由65%的氧、18%的碳、10%的氢、3%的氮四大基本元素构成,其余是钙、磷、钾、硫、铁…微量元素。这65%的氧大多是以水(Hu2082O)的形式存在,但液态的水难以与其它元素搭建完整的骨骼,于是这个任务交给了碳。以碳聚合的化合物搭起了丰富多彩的碳基生物世界。由上文可知,碳基生物的氧含量最多,也需要呼吸氧气维持生命。 那么如果硅基生命的外星人他们该如何呼吸呢? 碳基生物呼出的是二氧化碳气体,硅基生命就会呼出二氧化硅固体么?石英或是水晶?并且多数科学家认为硅元素连活体细胞都难以形成,更别谈形成生命。那么氨基生物呢? 氨基生物是以氨为基础的复杂化合生物,实际是以液态氨代替水为溶剂的甲氨(CHu2083NHu2082)为生存的生物,就像碳基生物的体内就有65%以上的水一样。并且液态氨比水的溶解性更好。据科学家推测,氨基生物可在-34 50 的低压或高压环境下生存。但地球上的空气对他们而言就是毒气,海洋就是强酸海,因为水跟氨会产生NH 离子,呈现强酸性。所以他们比较适应气态行星上生存,当然不必呼吸氧气。浩瀚的宇宙包含无数可能,而我们挖空心思想要找的外星人可能与我们想象的相差悬殊,他们可以不用呼吸氧气,反而我们赖以生存的环境对他们而言无异于地狱。这使得他们对我们会敬而远之,如此,我们找外星人之路将会是崎岖坎坷的。外星人不需要氧气就可以存活是有可能的,而且这种可能性非常大。这从以下三点可以看出:1、地球上生命起源就是从无氧环境中开始的; 2、对于硅基生物、氨基生物来说,氧气不是必须的; 3、地球上目前厌氧生物就有很多。 地球的年龄大概是46岁,但是46亿年前到35亿年前的这段时间内,地球上并没有发现有生物存在的迹象,人类目前发现最早的生物化石是35亿年前的生物,是一些及其微小的藻类,大小仅有几微米。而大气中的氧气大约诞生在20亿年前至24亿年前,是由绿色藻类植物产生的。 即地球上最初的氧气是生物产生的,所以没有氧气生物照样可以生存。对于碳基生物来说,氧元素非常重要, 氧离子是最终的电子接受者, 一个氧原子与两个氢原子就构成了水分子,水的溶解性很好,可以溶解运输生命体需要的各种钠、镁、硒等微量元素,是地球上高等生物维持生命必须的物质,同时高等生物还需要吸收氧气来分解有机物。 对于氨基生物来说,呼吸气体变成了氮气 ,氮气作为了呼吸链中电子传递的最终受体,氮元素和氢元素结合成液态氨,液态氨运送微量元素的能力更强, 所以对于氨基生物来说,有氮气就可以生活的更好,并不需要氧气。地球上现在就有很多厌氧生物,比如每个人的体内,比如人体肠道内的双歧杆菌就是一种专性厌氧菌,有氧就无法生存,不过目前地球上的厌氧生物都是微生物,并没有发现大型厌氧生物,但是在宇宙中不排除大型厌氧生物。 今天的科普就到这里了,更多科普欢迎关注本号! 现在地球上的动植物都需要氧气才能生存,但本质上来说氧气也是一种“毒气”,毕竟氧化反应某种程度上促进了人类的摔老和死亡,以前就有个笑话说氧气是慢性毒气,百年之内就能置人于死地。 其实在34亿年之前,地球上的氧含量只有0.02%可以说基本没有,因此那时候生活在地球上的基础生物都是厌氧的,由此可见氧气绝对不是生存之必须,然而34亿年前诞生的蓝藻却可以吸收二氧化碳释放出氧气,因此地球大气氧含量才迅速增长。在富氧的地球上以往的厌氧生物都完蛋了,因此后来诞生的物种包括我们人类都需要氧气才能生存,而我们之所以用氧气和水作为准则去寻找外星文明,纯粹只是因为寻找外星文明需要一个准则或者说筛选条件,这种情况下用人类生存发条件去寻找外星文明是很正常的事,而且难度足够低。 构成地球生命最基础的元素是碳,所以我们都是碳基生命,而早在上上个世纪就有科学家提出了硅基生命的概念,理论上这种生命不能碰水不能碰氧气,生存的环境必须是高温高压而及其恶劣的。不需要水和氧气的生物或许真的存在于我们宇宙之中,但它们的生存环境是人类目前的技术远远无法到达的,而想要用哈勃望远镜看见它们更是难上加难。虽然以人类现在的科学技术,已经对于宇宙空间有了一个大致的了解,但是我们对于宇宙的了解还是很有限甚至说是很粗略的。人类一直致力于发现外星人,然而很遗憾的是直到今天人类也没有发现一点有关外星人的痕迹,我们知道我们的生命的基础是水和氧气,至少在地球上,大多数生物都是需要氧气才是可以生存的,高级生物基本都是有氧生物,只有少数低级生物才会是厌氧生物。 我们地球上大气层的含氧量约是五分之一,但是很多的星球上,并不具备氧气的条件,或者说氧气含量很少,所以有人就怀疑,外星人真的会和人类一样,都是需要氧气和水才能够生存的吗?水的问题这里暂且不说,单说氧气的话,,我觉得并不是所有生物都需要氧气才能够生存,有些高级生物,他们的生命活动并不需要氧气,这些生物也就是我们所说的外星人了。没有人能够保证水和氧气就一定是宇宙间所有生命的物质基础,只能说地球上的生命体基本上是都满足这个设定的。人类从一开始寻找外星人开始,就致力于寻找和地球相似程度最大的星球,为的就是提高发现外星生命体几率,但是这一定是对的吗?有一些科学家就表示了疑问,或许我们从一开始的时候就已经错了,因为我们是以地球的生命体系为模型来 探索 地外生命的,而实际上外星人可能有不同的生命基础。 在不同的环境条件之下,完全是有可能演化成不同形式的生命体的,对于外星生命而言,他们或许不一定需要氧气,或许他们也不是以碳为基本元素。我们有理由坚信宇宙中绝对不止人类文明一个文明,生命的诞生的条件虽然艰难,但是在这么大的星球基数之下,一定会有为数不少的文明诞生。如果外星文明存在的话,那么他们完全有可能是和我们完全不一样的,因为生命诞生的过程是非常艰难的,而外星生命产生的条件和地球有所不同,但是宇宙寿命这么长,是很有可能诞生其它的不同于人类的物种的。从进化的条件来说,生物产生的条件不那么苛刻,那么只要有足够的时间,就一定会进化出智慧生物。 当然有可能,深海几公里也有生物,高温的火山边缘也有生物,说明生物不一定要按照人类的生存标准。 第一句就错。目前地球上就存在不依赖氧气的生物。

全氮阴离子盐燃烧需要氧气吗

需要。氧气是燃烧的氧化剂,具有支持燃烧的功能,全氮阴离子盐在燃烧中需要氧气的存在,一旦处于无氧状态下就会停止燃烧。全氮阴离子盐是一种新型超高能含能材料,是世界首个全氮阴离子盐。

钠与氧气生成过氧化钠的条件是什么

在常温时:4Na+O2==2Na2O (氧化钠,由于衍射显得有点灰色)在点燃时:2Na+O2=点燃=Na2O2 (淡黄色粉末) 并发生:Na+O2=点燃=NaO2(超氧化钠)钠在空气中点燃时,迅速熔化为一个闪亮的小球,发出黄色火焰,生成过氧化钠(Na2O2)和少量超氧化钠(NaO2)淡黄色的烟。过氧化钠比氧化钠稳定,氧化钠可以和氧气加热时化合成为过氧化钠,化学方程式为:2Na2O+O2=△=2Na2O2

钠在氧气中燃烧,反应的化学方程式都有哪些

一、现象:bai1、金属钠置于水中后du,钠浮在水面上。2、钠在水面上迅速zhi游动,并有轻微的嘶dao嘶声。3、钠融成一个光亮的小球。4、反应后溶液中滴入酚酞,溶液变红。5、生成的气体可点燃,有爆鸣声。二、化学分析:离子方程式:2Na+2Hu2082O=2Na++2OH-+Hu2082↑。还原剂:Na;氧化剂:Hu2082O。扩展资料:金属钠的化学性质:钠原子的最外层只有1个电子,很容易失去,所以有强还原性。因此,钠的化学性质非常活泼,能够和大量无机物,绝大部分非金属单质反应和大部分有机物反应,在与其他物质发生氧化还原反应时,作还原剂,都是由0价升为+1价(由于ns1电子对),通常以离子键和共价键形式结合。金属性强,其离子氧化性弱。钠与盐溶液反应时先与水反应,它包括两种情况:1、如果盐溶液中的溶质与氢氧化钠不反应,只发生钠与水的反应。2、如果盐溶液中的溶质与氢氧化钠反应,则会发生两个反应,如钠与硫酸铜溶液的反应:2Na+2Hu2082O=2NaOH+Hu2082↑,2NaOH+CuSOu2084=Cu(OH)u2082↓+Nau2082SOu2084。参考资料来源:百度百科-钠 28 评论 分享 举报 收起 jxqjim 推荐于2018-08-08关注钠与水反应放热。导致钠熔化。-----熔点低由于液体表面张力,钠就变成小球形这个反应放出气体H2 所以小球四处游动----还原性 本回答被提问者和网友采纳 66 评论(3) 分享 举报 西安四方超轻材料有限公司 2020-05-06 广告微弧氧化、阳极氧化、电镀、喷漆,化学转化膜,表面陶瓷化。微弧氧化、阳极氧化、电镀、喷漆,化学转化膜,表面陶瓷化。微弧氧化、阳极氧化、电镀、喷漆,化学转化膜,表面陶瓷化。点击进入详情页本回答由西安四方超轻材料有限公司提供更多回答(2)其他类似问题2010-08-02金属钠与水反应的实验现象?4132009-11-22钠与水反应的现象9962010-11-11金属钠与水反应的现象?1352016-08-07金属钠与水的反应体现了它的哪些性质142013-08-04观察金属钠及金属钠与水的反应现象92018-11-18乙醇和水均能与金属钠反应,反应现象有什么不同62012-03-30金属钠与水反应现象是什么?152012-11-25金属钠与水反应需要的仪器和实验过程是什么?32更多相关金属钠与水反应的问题 >为你推荐:特别推荐

钠在氧气中燃烧的化学方程式为什么?

加热或点燃条件下:2Na+O2=Na2O2。氧气过量:Na+O2=NaO2。氧气不足:4Na+O2=2Na2O。钠在氧气中燃烧,火焰呈黄色,产生淡黄色固体Na2O2。钠是一种金属元素,在周期表中位于第3周期、第IA族,是碱金属元素的代表,质地柔软,能与水反应生成氢氧化钠,放出氢气,化学性质较活泼。钠钠是一种金属元素,元素符号是Na,英文名sodium。在周期表中位于第3周期、第ⅠA族,是碱金属元素的代表,质地柔软,能与水反应生成氢氧化钠,放出氢气,化学性质较活泼。钠元素以盐的形式广泛的分布于陆地和海洋中,钠也是人体肌肉组织和神经组织中的重要成分之一。钠的化学性质很活泼,常温和加热时分别与氧气化合,和水剧烈反应,量大时发生爆炸。钠还能在二氧化碳中燃烧,和低元醇反应产生氢气,和电离能力很弱的液氨也能反应。钠原子的最外层只有1个电子,很容易失去,所以有强还原性。以上内容参考:百度百科——钠

请问:二战战斗机飞行员在座舱里有没有氧气供给?老式的歼7战斗机为什么是皮制飞行帽?另外,歼7、8

以问题计: 1.二战大部分战斗机由于升限低,没必要弄个氧气瓶。早期战斗机很多座舱还是开放式的,比如鬼子的96式舰载战斗机,民国空军的霍克。后来有几种战斗机因为需要高空作战,就有了氧气瓶,比如F4U,零战。 二战轰炸机,因为设计之初就得在大口径高射炮射高之上投弹,高度太高,很多都有氧气装置。 后来随着战斗机升限提高,氧气瓶就成了标配。 2.中国空军早期使用皮质飞行帽,后来就用飞行头盔了,我军于20世纪70年代开始配发飞行员头盔。在此之前,人们脑海中飞行员的固定形象一直是佩带着耳机、大号黑色风镜、双耳皮帽的样子,风镜架在双耳皮帽上几乎成了飞行员的典型特征。到了70年代之后,这些简单的防护装备终于被蓝色的TK-2飞行头盔取代了。 首架歼-7于1966年1月在沈阳飞机厂首飞,那么戴皮质飞行帽的情况应该发生在换装飞行头盔之前了。 歼7使用的飞行头盔是TK-11、TK-11A,歼-7G使用的TK-14A。 3.那不是加强筋,是背鳍。 由于飞机在高空高速飞行时航向静稳定性和空气动力阻尼力矩均相对降低,容易诱发惯姓交感现象。所谓惯姓交感是飞机作快速横滚机动飞行时,由于本身质量的惯性力矩而使迎角和侧滑角大幅度变化的现象。 它可能导致丧失飞行稳定性,严重的惯姓交感会使飞机在高滚转速率下完全失稳而进入危及飞行安全的气动惯性旋转状态。当飞行员不能及时发现并改出这种危险状态时,便很可能发生空中事故或导致载荷过大致使结构损坏而失事。 利用增大背鳍或加装腹鳍的方法可以增加阻尼力矩,从而改善飞机的航向稳定性。 惯姓交感现象最早是在美国F-100战斗机上被发现,该机因此造成了多起机毁人亡的事故。苏联米格-19飞机早期背鳍较小,虽然未见资料提到因此造成事故,但其后期改型为了保险也改用了较大的背鳍,以防止高速飞行时可能发生的航向稳定性下降问题。 利用背鳍可以增加飞机载油量,添加飞机电子设备和机械组件。米格21和歼7和歼8I早期主要追求高速歼击机,故机身修长使飞机速度得到提高,背鳍可以有效的降低细长机身带来的不利影响。 由于米格-21是基于大量生产,便于战时补充的战略下设计的,所以机体偏小,设计不够精细,为了布置设备,就放进背鳍了,中国的歼-7、8是基于米格-21的,自然就继承了背鳍。 其实类似背鳍的情况在导弹、潜艇上都有存在,比如说电子线路、拖曳声纳线,处理好了,没问题,美国的F-5也有背鳍。当然随着上述战斗机改进的需要,电子设备和机械组件越来越多,背鳍也越来越大,阻挡后向视界的问题就更严重了。 4.像苏-27这样气泡型座舱的是不需要担心后向视界,至于F-35有光电传感系统,有全向视野。一般来说,战斗机会在座舱盖肋条上装后视镜补足视野,像米格-21、歼-7有的机型后向视野基本被背鳍遮蔽的情况下,就在座舱盖上安装了潜望镜来观察后方,题图中座舱盖上黑色的就是,有的歼7型号背鳍较小,就没有用潜望镜。

氧气瓶与制氧机哪个氧气好?

肯定是氧气瓶的氧气好了。。首先可以肯定的是制氧机和氧气瓶出来的氧气都是一样的,一般制氧机的氧气浓度在90%以上,氧气瓶的氧气浓度在99%以上,从浓度上来说氧气瓶更浓一些。短期吸氧建议选择氧气瓶一般来说短期暂时性的吸氧,氧气瓶是更好的选择。其实氧气瓶吸氧有它独有的优势,这个优势就是氧气浓度高、流量高、静音性好。氧气瓶里面的氧气是在加气站高压冲进去的,所以氧气瓶里面的氧气压力很高,可以把氧气流量调的很大。氧气流量表调的越大,氧气出来的越多,所以氧气瓶的优点之一就是流量高。氧气瓶还有一个优点就是“安静”,氧气瓶供氧没有额外的噪音,使用起来很安静,基本不会影响到病人休息。

家用氧气机哪个牌子的好用?

制氧机十大品牌有:鱼跃、新松医疗、海龟、飞利浦伟康、德维比斯、杭氧、英维康、苏氧、海氧之家、龙飞、易氧源、康尚。具体如下:1、鱼跃(yuwell)国产制氧机影响力品牌,创立于1998年,我国特大的医用供氧医疗器械制造商,火炬计划重点高新技术企业,国产制氧机第一人气品牌,连续10年全国销量第一名、鱼跃连续3年全球销量第一,市场份额第一名,鱼跃制氧机是由我国大型的康复护理和医用供氧及医用临床系列医疗器械企业。2、新松医疗SYSMED新松医疗,国产家庭医用制氧机知名品牌,呼吸康复知名品牌,医疗级制氧机专业制造商,国内新三板上市,中国第一台小型医用氧气机制造商,由著名研究机构中国科学院沈阳自动化研究所、大连化学物理研究所等共同投资组建。3、海龟Turtle国产制氧机知名品牌,医用氧气机行业标准YY0732制定单位,知名的数字化家用制氧机研制单位,辽宁省著名商标,市场份额在国内排名长期稳居前列。海龟制氧机,是由沈阳海龟医疗科技有限公司所研发、生产,是一家致力于家用呼吸类医疗设备研发及制造的高新技术企业。4、飞利浦伟康进口家庭医用级制氧机热门人气品牌,全球大型睡眠紊乱诊疗仪器及呼吸系统医疗设备生产商,为目前行业能提供睡眠障碍诊断及睡眠通气治疗整体方案的生产商,荷兰皇家飞利浦旗下企业,飞利浦伟康16次获得美国呼吸协会颁发的泽尼斯奖。5、德维比斯(DriveDevilbiss)欧美知名制氧机品牌,高端家用制氧机品牌,创立于1888年,世界大型的家用医疗器械研发制造厂商,产品制造标准符合且高于行业标准,压缩机支持365天持续运转,制氧机支持全天不停机制氧。

AJ12氧气呼吸器校验仪作用有哪些?

呼吸器校验仪的作用 AJ12氧气呼吸器校验仪的参数 方法/步骤 1 AJ12氧气呼吸器校验仪是要仪器对自动的充气压力和抽气压力的测定是基于自动肺的换气量为1L/min时而设定的。

AJ12氧气呼吸器校验仪的作用是什么?

AJ12氧气呼吸器校验仪主要配备于煤矿、矿山救护队或其它使用了氧气呼吸器的单位,当其需要对正负压氧气呼吸器产品及其组件的性能进行检查或校验时使用。AJ12氧气呼吸器校山东验仪也可以对其它方面的气体压力、流量做单独测量。是正、负压型氧气呼神华吸器的多功能校验仪。AJ12氧气呼吸器校验仪是要仪器对自动的充气压力和抽气压力的测定是基于自动肺的换气量为1L/min时而设定的。shenhua09

想知道这是什么龟?而且能不能放在鱼缸里和鱼一起养?可能是满水的鱼缸,水里有氧气的那种鱼缸?

中华草龟(学名:Chinemys reevesiis)俗称乌龟,是我国龟类当中分布最广,在国际市场上,中华草龟十分畅销。日本、菲律宾以及欧美各国人民将其视为象征“吉祥,延年益寿”之物。中文学名:中华草龟,别称,乌龟、金龟、金线龟、墨龟、泥龟、山龟、臭青龟、长寿龟。草龟全身是宝,是《神农本草经》、《本草纲目》等中奉为食补和药补的上上品,常用来煲汤。李时珍说“介虫三百六十,而龟为长龟,介虫之灵长者也”。草龟被世界自然保护联盟列为濒危物种,它们受到过度捕猎所威胁 。而对香港及中国大陆而言,草龟有人工繁殖的市场,所以市面有大量的草龟提供给饲养者。自然界中草龟的动物性饲料主要为蠕虫、小鱼、虾、螺蛳、蚌、蚬蛤、蚯蚓、动物尸体及内脏、猪血等;植物性饲料主要为植物茎叶、瓜果皮、麦麸等。详见:http://baike.baidu.com/link?url=mIqDGBv1eJsX3t922IdTr1HQ8rbEpCxDTItRkKBRpcNQTcEXNVH8v1Hs1n1xCoQzNLrvswosKvRYwvZ4w0xxSWs_1nlLOkBsEImH19ydGjYBlzS6XQOB_3zGSvj8_Dk0

水焊机。就是可以产生氢气跟氧气。国内哪个品牌的好,进行铜管焊接。

铜管焊接,可以用氧丙烷代替氧乙炔火焰气焊。水焊机,不适合焊铜管。相比氧乙炔,氧丙烷等火焰气焊,水焊机(氢氧焊机)利用电将水电解成氢气,氧气,氢气用于燃烧,氧气助燃,气体随用随取不存在爆炸等危险性等优点,但是目前氢氧焊机只有少数厂家掌握核心技术,焊机售价高,维修配件是个大问题。水焊机用于焊接,只有小功率水焊机用来焊接金银首饰等贵重精细金属。

工业上制取氧气,蒸发液态空气,为什么是氮气先蒸发出来?

控制温度蒸发液态氮气,沸点较低的(液态氮)先蒸发出来,余下的是沸点较高的(蓝)色液态氧气,贮存使用,然后在(高压)的条件下,使空气沸腾氧气的工业制法,它是利用氧气和氮气的(沸点)不同分离出氧气。具体步骤是:首先将空气(液化)除去杂质等

氧气的实验室制法与工业制法的本质区别是什么

  氧气的实验室制法与工业制法的本质区别  工业上液化空气法制氧气,主要是将空气液化,利用液氮和液氧的沸点不同,通过控制液化空气的温度,使氧气和氮气在不同温度下释放出来,是物理变化;实验室制氧主要是利用含氧化合物的分解,来制取氧气,是化学变化。  工业制氧的方法:1、空气冷冻分离法 空气中的主要成分是氧气和氮气。利用氧气和氮气的沸点不同,从空气中制备氧气称空气分离法。首先把空气预冷、净化(去除空气中的少量水分、二氧化碳、乙炔、碳氢化合物等气体和灰尘等杂质)、然后进行压缩、冷却,使之成为液态空气。然后,利用氧和氮的沸点的不同,在精馏塔中把液态空气多次蒸发和冷凝,将氧气和氮气分离开来,得到纯氧(可以达到99.6%的纯度)和纯氮(可以达到99.9%的纯度)。如果增加一些附加装置,还可以提取出氩、氖、氦、氪、氙等在空气中含量极少的稀有惰性气体。由空气分离装置产出的氧气,经过压缩机的压缩,最后将压缩氧气装入高压钢瓶贮存,或通过管道直接输送到工厂、车间使用。使用这种方法生产氧气,虽然需要大型的成套设备和严格的安全操作技术,但是产量高,每小时可以产出数干、万立方米的氧气,而且所耗用的原料仅仅是不用买、不用运、不用仓库储存的空气,所以从1903年研制出第一台深冷空分制氧机以来,这种制氧方法一直得到最广泛的应用。 2、分子筛制氧法(吸附法) 利用氮分子大于氧分子的特性,使用特制的分子筛把空气中的氧离分出来。首先,用压缩机迫使干燥的空气通过分子筛进入抽成真空的吸附器中,空气中的氮分子即被分子筛所吸附,氧气进入吸附器内,当吸附器内氧气达到一定量(压力达到一定程度)时,即可打开出氧阀门放出氧气。经过一段时间,分子筛吸附的氮逐渐增多,吸附能力减弱,产出的氧气纯度下降,需要用真空泵抽出吸附在分子筛上面的氮,然后重复上述过程。这种制取氧的方法亦称吸附法.利用吸附法制氧的小型制氧机已经开发出来,便于家庭使用。

下列氧气的用途,主要利用了氧气的物理性质的是(  )A.液化空气制氧气B.炼钢C.气割气焊D.火箭发射

A、是利用氧气和氮气沸点的不同来分离的,不需要通过化学变化表现出来的性质,属于氧气的物理性质.故正确;B、氧气能用于炼钢需要通过化学变化表现出来,属于氧气的化学性质.故错误;C、气割气焊是利用氧气的助燃性,需要通过化学变化表现出来,是化学性质,故错误.D、料燃烧需要氧气,需要通过化学变化表现出来,属于氧气的化学性质.故错误;故选A

在液化空气中分离氧气和氮气是用到了它们的什么

氧气和氮气的沸点不同 空气--纯净干燥的空气----加压降温液态空气---升温液氧和氮气

工业上用液化空气法制氧气与实验室常用的制氧气的方法在原理上有什么本质区别?

工业上液化空气法制氧气,主要是将空气液化,利用液氮和液氧的沸点不同,通过控制液化空气的温度,使氧气和氮气在不同温度下释放出来,是物理变化;实验室制氧主要是利用含氧化合物的分解,来制取氧气,是化学变化.

在实验室中,为什么不能分离液化空气制氧气如题

实验室中不具有加压降温设备。空气中的主要成分是氧气和氮气。利用氧气和氮气的沸点不同,从空气中制备氧气称空气分离法。首先把空气预冷、净化(去除空气中的少量水分、二氧化碳、乙炔、碳氢化合物等气体和灰尘等杂质)、然后进行压缩、冷却,使之成为液态空气。然后,利用氧和氮的沸点的不同,在精馏塔中把液态空气多次蒸发和冷凝,将氧气和氮气分离开来,得到纯氧(可以达到99.6%的纯度)和纯氮(可以达到99.9%的纯度)。如果增加一些附加装置,还可以提取出氩、氖、氦、氪、氙等在空气中含量极少的稀有惰性气体。由空气分离装置产出的氧气,经过压缩机的压缩,最后将压缩氧气装入高压钢瓶贮存,或通过管道直接输送到工厂、车间使用。使用这种方法生产氧气,虽然需要大型的成套设备和严格的安全操作技术,但是产量高,每小时可以产出数干、万立方米的氧气,而且所耗用的原料仅仅是不用买、不用运、不用仓库储存的空气,所以从1903年研制出第一台深冷空分制氧机以来,这种制氧方法一直得到最广泛的应用。

工业制取氮气是液化空气,但是是怎么液化呢~?是氧气先液化还是氮气先液化?另外它两个谁的熔点高?

把空气加压并降温,就变成液态空气了。从理论上讲,由于氮气的沸点比氧气的低,因此,加压降温时,氧气先液化;其实混合在一起时,不一定就是按照沸点高低来区分先后,分子之间会相互影响。固态氧气的熔点较高

液化空气制氧气属于什么反应

物理反应,液化只是状态变化。空气是由多种气体混合的,氧气包括在其中,分离出来也是物理变化,不涉及新物质产生和旧物质灭亡的是物理变化。

液化空气制氧气的具体过程

初三化学教材中有详细介绍。利用液态氧和液态氮的沸点不同,当把液化空气升温至-196℃,达到氮气沸点,开始汽化。而液态氧的沸点是-183℃,不汽化。当氮气全部汽化后,剩余液体为液态氧。

氧气,氮气,采用液化空气提取这些气体,当温度升高时,液态空气气化,首先分离出谁?

先分离出氮气。氮气沸点-195.8℃,氧气沸点-183°C,液化空气(此时的温度低于-195.8℃)由低温向高温回升温度,到-195.8℃时氮气有液态气化为气态,就分离出来了氮气,此时氧气仍以液态存在。

氧气,氮气,采用液化空气提取这些气体,当温度升高时,液态空气气化,首先分离出谁?

先分离出氮气。氮气沸点-195.8℃,氧气沸点-183°C,液化空气(此时的温度低于-195.8℃)由低温向高温回升温度,到-195.8℃时氮气有液态气化为气态,就分离出来了氮气,此时氧气仍以液态存在。

何为「压缩氧气」和「液化氧气」?

「压缩氧气」 透过对氧气进行加压 将 molecule 既动能同势能降低 令本来系气体既氧变成液体 「液化氧气」 液化空气既其中一种 空气系由有好多唔同既气体组成 当中氮(78%)同氧(21%)占多数 (% by mass) 如果要提取氧 就要进行液化空气既分馏作用 fraction distillation of liquefied air 即系将空气净化后 pump 入一细小空间 之后突然 pump 入一大空间 当 molecule 由小空间澎涨至大空间 佢需要大量既能量 于是佢就会提走附近 molecule 既能量 果 d 冇咁多能量既 molecule 就会液体化 液化氧系其中一个 product 参考: me* 「压缩氧气」就听过 人地可以系太空同潜水用 「液化氧气」就无咩听过 不过听过「压缩氮气」和「液化氮气」。 「压缩氮气」:透过不断压缩和自动解压 气体会有能量流失 即是冻左。 到左一个温度 氮气会由气体变液体 液化氮气可以用黎作医学冷藏用。 2007-04-20 22:53:44 补充: liquified oxygen usually uses as a source of gas for breathing.Besides liquified oxygen can be used in some chemical researches and biological researches. 2007-04-20 22:57:43 补充: Further information:In chemical researches liquified oxygen is used to study about the atomic structure of O2 such as the bonding in O2 the shape of bonded orbitals e.

使用氧气瓶和乙炔瓶为什么调不到青火?

使用氧气瓶和乙炔瓶调不到青火,是焊枪头的问题。俗话说炉火纯青,纯青色的火焰温度最高,因此在切割时应尽量调整至青色火焰。氧炔焰调不到青火,是焊枪头的问题,焊枪头内氧气和乙炔混合出现问题,混合不均匀,使得局部乙炔大大过量,燃烧不完全,始终呈现部分红色的火焰。

水怎样分解成氢气和氧气

水分解不是自发过程,需要加入能量,如水的电解。氧气和氢气能变成水可以是自发过程,氢气燃烧产物就是水。1.水(H2O)被直流电电解生成氢气和氧气的过程被称为电解水,电流通过水(H2O)时,在阴极通过原水形成氢气(H2)。在阳极则通过氧化水形成氧气(O2),氢气生成量大约是氧气的两倍,电解水是取代蒸汽重整制氢的下一代制备氢燃料方法。2.水电解制氢装置theinstallationofhydrogengasproducedbyelectro1ysisingwater以水为原料,由水电解槽、氢(氧)气液分离器、氢(氧)气冷却器、氢(氧)气洗涤器等设备组合的统称。3.水电解制氢是一种较为方便的方法。在充满氢氧化钾或氢氧化钠的电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。其化学反应式如下:阴极:2H2O+2eH2↑+2OH-阳极:2OH—2eH2O+1/2O2↑总反应式:2H2O=2H2↑+O2↑根据法拉弟定律,气体产量与电流成正比,与其它因素无关。氢氧化钾的作用在于增加水的电导,本身不参加电解反应,理论上是不消耗的。电解液中加入五氧化二矾的作用是在于降低电解电压。单位气体产量的电耗,取决于电解电压,电解槽的工作温度越高,电解电压越低,同时也增加了对电解槽材料,主要是隔膜材料的腐蚀。石棉在碱液中长期使用温度不能超过100℃,因此操作温度选择在80~85℃为宜。电解压力的选择主要根据用氢的需要。气体纯度决定于制氢机结构和操作情况。在设备完好(主要是电解槽隔膜无损坏)操作压力正常(主要是压差控制正常)的条件下,纯度是稳定的。

水如何变成氧气?

水变成氧气可以通过电解水, 反应式:2H2O=MNO2=2H2↑+O2↑ ,阳极产生氧,阴极析出氢气。一、水电解制氧原理:水电解制氧系统的工作原理是由浸没在电解液中的一对电极中间隔以防止气体渗透的隔膜而构成的水电解池,当通以一定的直流电时,水就发生分解, 阳极析出氧气,在阴极析出氢气。其反应式如下:阴极:4H2O+4e- =2H2↑+4OH阳极:4OH- -4e- =2H2O+O2↑总反应式:2H2O=2H2↑+O2↑二、水电解设备要求:1、电解槽电解槽为水电解制氢核心设备,当电解槽接通直流电源,电解电流上升到一定数值 时,电解槽内的水被电解成氢气和氧气,H2主要产生于阴极室,O2产生于阳极室。2、气液分离器来自电解槽内各电解小室阴极侧的H2和电解液,借助循环泵的扬程和气体升力,进入气液分离器,在重力的作用下H2和电解液分离,电解液循环回流至电解槽,H2进入冷却洗涤工段。3、冷却洗涤器水电解制氢工艺为放热反应,通过冷却工艺,降低气体温度的同时,减少气体中水份含量。本项目选用循环冷却水进行气体降温,确保洗涤器出口气体温度≤40℃,冷凝水回流至电解槽,H2进入下一工段。4、脱氧系统H2溢出过程会带出少量O2,为提升H2纯度,需对O2进行去除。本项目脱氧器主要利用H2和O2在催化剂作用下,加热可生成H2O的原理进行脱氧。原料H2进入脱氧器后,在高温(温度控制在330℃左右)和催化剂的作用下,少量O2经过催化剂催化后与H2结合生成水,使含氧量低于1ppm。5、干燥系统H2经脱氧后会生成少量H2O,由于高温作用会以蒸汽形式和H2一起溢出。本项目通过干燥剂过滤工艺进行H2干燥纯化。干燥剂选用Al2O3和硅酸盐混合物,具有吸附量大、耐温性好等特点。本项目每套干燥系统由三台干燥器组成,生产运行过程交替使用,以实现吸附、再生同步进行,保证装置工作的连续性。本项目干燥器主要通过高纯度H2反吹实现再生。小贴士:还是可以通过光合作用产生的,光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。

有一个问题,在海拔这么高的地方,万一出现高原反应而氧气瓶又用完怎么办?

可以吃一些药品或者保健食品,比如红景天,奥默蓝养片,葡萄糖口服液等等,效果不错,能够有效的缓解高原反应的情况。吸氧,吸氧可以说是最快的解决高原反应的症状,立马见效,但是不到紧急情况下不要使用,长时间的吸氧会容易对氧气产生依赖的性,不吸就很难受,有人不利于自身的调节作用。

点燃的卫生香在氧气中

A,因为酶催化过氧化氢生成氧气

检验光合作用释放氧气1.将带火星的卫生香或木条伸入试管后会发生什么现象?说明了什么?2.光合作用产生的

1.将带火星的卫生香或木条伸入试管后会复燃,说明产生氧气2.光合作用产生的助燃气体是是氧气

脱碳甲醛遇到氧气会怎么样?

脱碳甲醛(HCHO)是一种无色气体,同时也是有害的挥发性有机物。在室内装修中,HCHO往往源自于各类装修和装饰材料,对人体健康和空气质量产生不良影响。氧气(O2)是一种化学元素,与其他元素或化合物发生特定的化学反应。如果HCHO遇到氧气,可能会发生氧化反应,形成一些次氯酸盐、甲酸等物质。这些物质在日常生活中也具有一定的危害性,需要避免直接接触。但HCHO与氧气的反应涉及具体反应条件、温度、浓度等因素的影响,因此具体反应情况需要综合多方面因素进行量化分析。总的来说,避免HCHO与其他有害物质发生反应,对保障室内的人体健康和空气质量有一定的积极意义。

生命没有氧气也能生存吗?地球曾被厌氧生物主宰

关于宇宙是否存在生命,在科学界曾引起过广泛的探讨,一些科学家认为地球生命的存在是偶然的,宇宙不存在其他生命;而认为存在生命的科学界则分为两派,一方认为水、氧气、阳光是生命存在的客观条件,认为宇宙其他星球存在的生命形式和地球类似;而另一方则认为宇宙存在其他的生命形式。 著名科学家、作家艾萨克·阿西莫夫就曾在他的作品《并非我们所知的:论生命的化学形式》(”Not As We Know It-The Chemistry of Life”)中,提出了六种可能的生命形式: 1. 以氟化硅酮为介质的氟化硅酮生物; 2. 以硫为介质的氟化硫生物; 3. 以水为介质的核酸/蛋白质生物; 4. 以氨为介质的核酸/蛋白质生物; 5. 以甲烷为介质的类脂化合物生物; 6. 以氢为介质的类脂化合物生物。 这六种对于生命的猜想是结合了物质分子结构、运行速度,依据温度的不同,从炽热到接近绝对零度依次序列的。 阿西莫夫的猜想或许是有道理的,在地球最早期,厌氧生物就曾主宰地球,在地球上,存在两种生命形式,一种是好氧生物,这是指生活在有氧气中的生物,而另外一种则是厌氧生物,指不需要氧气生长的生物,一些厌氧生物甚至不能接触氧气,当暴露于有氧气的环境之下,它们就会死亡。 地球刚诞生的时候,处于熔融状态,高温的地球在旋转过程中其中的物质发生分异,重的元素下沉到中心凝聚为地核,较轻的物质构成地幔和地壳,逐渐出现了圈层结构。这个过程经过了漫长的时间,大约在38亿年前出现原始地壳。各种证据表明当时地球液态的水圈是热的,甚至是沸腾的。早期地球是极端缺氧的。 在这个时候,厌氧原核生物开始出现,厌氧生物可以忍受极端的条件进行生存,即使现在,科学家也发现尚有生存于高温环境最适生长温度为100-103C甚至有高达1059C的超嗜热专性氏氧细菌,亦发现有能生长在南极的嗜冷厌氧菌,尚发现有能在22- 25 %盐浓度中生长的专性厌氧发酵的嗜盐菌。 在当时,产甲烷菌族群发展非常繁荣,它们以金属镍为食物来源,能制造大量的甲烷,这也让地球一直以来无法产生足够的氧气。 在约30亿年前,蓝细菌开始出现,这是一类进化 历史 悠久、革兰氏染色阴性、无鞭毛、含叶绿素a,但不含叶绿体(区别于真核生物的藻类)、能进行产氧性光合作用的大型单细胞原核生物。蓝细菌每产生一丝氧气,都与地表的二价铁矿物发生反应生成三价铁矿物,到地球表面所有的二价铁全部氧化——然后才开始积累大气游离氧。 然而在最早期,因为产甲烷菌的数量非常庞大,因此蓝细菌释放出来的氧气只能被数量更多的甲烷所消耗。 但是,大约25亿年前,地壳降温,地球上的镍含量急剧减少,没有了食物来源的产甲烷菌也随之减少,所以,空气中的氧也终于摆脱了总是被甲烷菌破坏的命运,空气中的氧含量得以大幅提升。 大约24亿年前后。由于蓝细菌数亿年的努力,产生的氧气终于消耗掉了地球早期存在的大量还原性物质,开始了氧气的原始积累,使得大气中的氧气达到了现代大气氧含量的1%水平,并导致真核生物在地球上首次出现。 然而因为蓝细菌的造氧运动,生的氧气则会与甲烷产生反应,生成二氧化碳,虽然二氧化碳也是温室气体, 但是 1立方米的甲烷造成的温室效应为二氧化碳的20~25倍左右。甲烷被大量消耗,地球开始大幅度降温,地球进入了雪球地球时期,那个时候,地球的平均低温极值达到了零下50度。几乎所有的生物都在寒冬中死亡,整个寒冬持续了3亿年。 经过了16亿年的休 养生 息,距今5.7亿年前后寒武纪时期,地球上的主要大陆通过拼合形成了一个冈瓦纳超大陆和位于超大陆内部的超级中央造山带,将8亿年前后大量沉积的蒸发岩矿物风化剥蚀输入海洋。大规模造山运动将大量蒸发岩输入海洋,蒸发岩作为大洋的氧化剂,寒武纪大爆发之前普遍缺氧的深部大洋得以氧化,使得地球早期大气和海洋中的氧气含量发生了快速增加,为该时期地球大型复杂多细胞生命的快速演化奠定了基本条件。 地球上在2000多万年时间内出现了突然涌现出各种各样的动物,它们不约而同的迅速起源、立即出现。节肢、腕足、蠕形、海绵、脊索动物等等一系列与现代动物形态基本相同的动物在地球上来了个“集体亮相”,形成了多种门类动物同时存在的繁荣景象。 可以说,如果蓝细菌没有出现,地球或许还是厌氧生物的天下,也就不可能有人类。但是厌氧生物究竟能否进化成高端生物,这种学界来说还是存在争议的。 很多人说,人类又没有时光机,不可能回到过去去看,那人类怎么知道,地球早期的情况,科学家通过对地层的研究,从而了解地球早期的情况。 地层是具有某种共同特征或属性的岩石体,能以明显的界面或经研究后推论的某种解释性界面与相邻的岩层和岩石体相区分特征。我们根据地球演化进程中,某种突发的作用力或异常因素所导致的自然界剧烈变化的短期现象,研究岩石体中突发事件的标志、规模、性质及成因,进而对地球上的相关层状岩石体进行划分对比和环境演变分析。 比如在之前,由于太古宙底界没有得到很好的定义,只是被粗略地置于大约4000Ma(百万年),因此也造成了一个没有得到较好定义的"冥古宙"。 而科学家在西澳大利亚Jack山脉太古宙砾岩中发现了真正古老的锆石晶体,其不仅可将地层时代延伸到4404Ma,而且包含了有关地球早期环境条件较为丰富的信息;,与此同时,他们在加拿大北部发现了大约4030Ma的Acasta片麻岩。根据这些发现,并结合月球和陨石的测年数据,就产生了大量有关太阳系和地球早期 历史 的新知识,包括太阳系与地球的形成、初生地球时期的重要变化及其物质记录和生命的起源及早期进化,这成为修订冥古宙地层学属性的重要基础。 地球被冰封3亿年也是通过岩石反馈的信息得到的,比如冰碛岩。 这些呈灰褐色或暗褐色、质量重、坚而脆的石头体积差异很大,说明这些看似集中在一起的石头,其实原本来自不同的水动力环境,而有能力推动从高纬度至赤道所有地区的石头都整装集合的唯一可能性就是冰川作用。 关于寒武纪生命大爆发的原因,也是朱茂炎等中英合作团队通过分析距今9亿年以来全球海水碳酸盐的碳同位素(δ13C)演变过程,通过数学模型计算,海洋有机碳库氧化需要的蒸发岩向海洋的输入通量与新生代青藏高原隆起后蒸发岩输入海洋的通量相当,得到了的结论。 科学家们说地层岩石是地球最好的 历史 书,记录了地球46亿年的发展,而人类目前还在努力完全读懂这本 历史 书。 参考文献: 1、Shields, G. A.*, Mills, B. J. W. *, Zhu, M.*, Raub, T. D., Daines, S., Lenton, T. M., 2019. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nature Geoscience, 2、前寒武纪海洋厌氧环境下的铁沉积实验模拟 3、冥古宙的地层学属性:了解地球形成初期古地理背景和演变 历史 的重要线索 4、地球早期厌氧生物改变气候 5、厌氧微生物研究的新进展

氮气、氧气占空气的百分之几?

20.93%氧气,78.03%氮气,0.98%稀有气体,0.03%二氧化碳,0.03%其他 在远古时代,空气曾被人们认为是简单的物质,在1669年梅猷曾根据蜡烛燃烧的实验,推断空气的组成是复杂的。德国史达尔约在1700年提出了一个普遍的化学理论,就是“燃素学说”。他认为有一种看不见的所谓的燃素,存在于可燃物质内。例如蜡烛燃烧,燃烧时燃素逸去,蜡烛缩小下塌而化为灰烬,他认为,燃烧失去燃素现象,即:蜡烛-燃素=灰烬。然而燃素学说终究不能解释自然界变化中的一些现象,它存在着严重的矛盾。第一是没有人见过“燃素”的存在;第二金属燃烧后质量增加,那么“燃素”就必然有负的质量,这是不可思议的。1774年法国的化学家拉瓦锡提出燃烧的氧化学说,才否定燃素学说。拉瓦锡在进行铅、汞等金属的燃烧实验过程中,发现有一部分金属变为有色的粉末,空气在钟罩内体积减小了原体积的1/5,剩余的空气不能支持燃烧,动物在其中会窒息。他把剩下的4/5气体叫做氮气(原文意思是不支持生命),在他证明了普利斯特里和舍勒从氧化汞分解制备出来的气体是氧气以后,空气的组成才确定为氮和氧. 空气的成分以氮气、氧气为主,是长期以来自然界里各种变化所造成的。在原始的绿色植物出现以前,原始大气是以一氧化碳、二氧化碳、甲烷和氨为主的。在绿色植物出现以后,植物在光合作用中放出的游离氧,使原始大气里的一氧化碳氧化成为二氧化碳,甲烷氧化成为水蒸气和二氧化碳,氨氧化成为水蒸气和氮气。以后,由于植物的光合作用持续地进行,空气里的二氧化碳在植物发生光合作用的过程中被吸收了大部分,并使空气里的氧气越来越多,终于形成了以氮气和氧气为主的现代空气。 空气是混合物,它的成分是很复杂的。空气的恒定成分是氮气、氧气以及稀有气体,这些成分所以几乎不变,主要是自然界各种变化相互补偿的结果。空气的可变成分是二氧化碳和水蒸气。空气的不定成分完全因地区而异。例如,在工厂区附近的空气里就会因生产项目的不同,而分别含有氨气、酸蒸气等。另外,空气里还含有极微量的氢、臭氧、氮的氧化物、甲烷等气体。灰尘是空气里或多或少的悬浮杂质。总的来说,空气的成分一般是比较固定的。 由于地球有强大的吸引力,使百分之八十的空气集中在离地面平均为十五公里的范围里。这一空气层对人类生活、生产活动影响很大。人们通常所说的大气污染指的是这一范围内的空气污染。工业的发展,向空气排放了有害物质,污染了空气,使空气里增加了有害成分。当空气里的有害物质达到一定浓度后,就会严重地损害人类的健康和农作物的生长,破坏了某些物质,又会使人的能见度降低,影响交通安全等等。因此,必须大力防止空气的污染。 排放到空气里的有害物质,可以分为以下几类:粉尘类(如炭粒等),金属尘类(如铁、铝等),湿雾类(如油雾、酸雾等),有害气体类(如一氧化碳、硫化氢、氮的氧化物等)。从世界范围来看,排放量较多、危害较大的有害气体是二氧化硫和一氧化碳。二氧化硫是煤、石油在燃烧中产生的。一氧化碳主要是汽车开动时排出的。从全球估计,一氧化碳的排出量超过二氧化硫的排出量。

氧气中氧原子的杂化类型是什么?

双原子分子不讨论杂化。氧气(oxygen)是氧元素形成的一种单质,化学式O2,其化学性质比较活泼,与大部分的元素都能与氧气反应。氧气是无色无味气体,是氧元素最常见的单质形态。熔点-218.4℃,沸点-183℃。不易溶于水,1L水中溶解约30mL氧气。在空气中氧气约占21%。液氧为天蓝色。固氧为蓝色晶体。发现历史:普利斯特里从布莱克煅烧石灰石对CO2的发现受到启发,利用凸透镜聚集太阳光使一些物质燃烧或分解放出气体并进行研究。1774年8月1日,普利斯特里终于成功地制得了氧气,成为化学史上有重大意义的事件。他的实验非常简单,把氧化汞放在一个充满水银的玻璃瓶里,然后,把玻璃瓶倒放在水银槽中,玻璃瓶完全被水银充满,空气全被排除掉,氧化汞浮在最上面。然后,他用凸透镜聚集太阳光,照射到氧化汞上,使氧化汞受热。以上内容参考:百度百科--氧气

氧气所占空气的比种和压强的关系是什么? 就是法国的拉瓦锡实验

拉瓦锡实验拉瓦锡的著名实验之一 拉瓦锡把少量的汞(水银)放在密闭的容器里,连续加热达十二天之久,结果发现有一部分银白色的液态汞变成了红色的粉末,同时容器里的空气的体积差不多减少了五分之一。拉瓦锡研究了剩余的那部分空气,发现这部分空气既不能供给人类及动物呼吸来维持人类及动物的生命,也不能支持可燃物的燃烧。这种气体后来被人们称之为氮气。拉瓦锡再把汞表面上所生成的红色粉末(现已证明是氧化汞)收集起来,放在另一个较小的容器里经过强热后,得到了汞和氧气,而且氧气的体积恰好等于原来密闭容器里所减少的空气的那部分体积。他把得到的氧气加到前一个容器里剩下的约五分之四体积的气体里去,结果得到的气体同空气的物理性质、化学性质都完全一样。通过这些实验拉瓦锡得出了空气是由氧气和氮气所组成的这一结论。拉瓦锡的著名实验之二一七四三年,拉瓦锡出生在一个律师之家。二十岁的时候,拉瓦锡从大学法律系毕业。可是,他酷爱化学,二十五岁时成为法国科学院院士。就在他成为院士的时候,他读到的一篇论文,说金刚石在空气中加热,会燃烧起来,变成一股气体,消踪匿迹(金刚石的化学成分是碳。它会燃烧,变成二氧化碳)。这篇论文使拉瓦锡深感兴趣。拉瓦锡重做实验。不过,他采用不同的方法:他在金刚石上面涂了一层厚厚的石墨稠膏,加热到发红。几小时以后,冷却,剥掉外面的稠膏,金刚石好端端的,没有烧掉!“燃烧,跟空气大有关系。”拉瓦锡猜测道。他认为,用石墨稠膏涂在金刚石上,使金刚石隔绝了空气,所以金刚石没有烧掉。也就是说,空气在燃烧现象中,扮演了很重要的角色。一七七二年十一月,法国科学院收到拉瓦锡密封的论文。院士们拆开信封,获知拉瓦锡对于燃烧现象的研究,又前进了一步:磷,在空气中会燃烧,冒出白色的浓烟,这是早就知道的化学现象。拉瓦锡别出心裁地想办法把这些浓烟全部收集起来。他指出,浓烟是一种极细的白色粉末,它的总重量比原来的磷要重!也就是说,在磷燃饶的时候,可能与空气化合了。两年之后——一七七四年十月,普利斯特里来到巴黎,拜访了拉瓦锡。拉瓦锡盛宴招待普利斯特里。在宴会上,普利斯特里把自己两个月前的重要发现,告诉了拉瓦锡。拉瓦锡非常仔细地听着,脸上露出了惊讶的神色。也就在这个时候,拉瓦锡还收到瑞典化学家舍勒九月三十日的来信,舍勒把自己发现氧气的情况告诉了拉瓦锡。不过,舍勒也是一个“燃素学说”的虔诚的拥护者,他把氧气称为“火空气”。正因为这样,他同样没有揭开燃烧的奥秘,坐失良机。拉瓦锡受到普利斯特里和舍勒的启发,做了很精细的实验。由于这个实验一连进行了二十天,所以被人们称为“二十天实验”。拉瓦锡夫人是拉瓦锡在化学研究工作中的好助手。她不仅帮助拉瓦锡做实验,而且精确地描绘了实验时的情景,使后人能够一目了然。拉瓦锡所有化学著作的插图,几乎都是拉瓦锡夫人亲手绘制的。从下面这张拉瓦锡夫人绘制的插图,可以看出“二十天实验”是怎么回事。那个瓶颈弯曲的瓶子,叫做“曲颈甑”。瓶中装有水银。瓶颈通过水银槽,与一个钟形的玻璃罩相通。玻璃罩内是空气。拉瓦锡用炉子昼夜不停地加热曲颈甑中的水银。在水银那发亮的表面,很快出现了红色的渣滓。拉瓦锡明白,那是水银与空气中的“失燃素空气”化合所生成的“三仙丹”。红色的渣滓越来越多。拉瓦锡和夫人本来是很喜欢社交的,各种宴会、舞会总少不了他们夫妇。可是,在实验进行的那些日子里,他们成天价守在炉子旁,观察着变化。他们发现,到了第十二天,红色渣滓不再增多了。他们继续加热,一直到第二十昼夜,红色渣滓仍不增多,才结束了实验。于是这个“马拉松”式漫长的实验,成为化学史上著名的实验。拉瓦锡发现,实验结束时,钟罩里的空气的体积,大约减少了五分之一。他收集了红色的渣滓,用高温加热。“三仙丹”分解了,重新释放出气体。拉瓦锡总共得到7~8立方英寸(1立方英寸等于16.377cm3)的气体,正好与原先钟罩中失去的气体体积相等。至于剩下来的气体,既不能帮助燃烧,也不能供呼吸用。拉瓦赐把那占空气总体积五分之一的气体,称为“氧气”(也就是普利斯特里所谓的“失燃素空气”、舍勒所谓的“火空气”)。至于剩下的占空气总体积五分之四的气体,拉瓦锡称它为“氮气”。在空气中,还有“固定空气”,即二氧化碳,不过,含量很少。就这样,千百年来被人们当作“元素”的空气,终于被拉瓦锡揭开了真面目——原来,空气是由氧气、氮气、二氧化碳等气体混合组成的。随着空气之谜被揭开,燃烧的本质也随着被拉瓦锡查清楚了。一七八九年,拉瓦锡在他的名著《化学概论》里,清楚地阐明了燃烧的本质:一、燃烧时发出光和热;二、物质只有在氧气中燃烧(也有例外,如氢气能在氯气中燃烧,氯气也能在氢气中燃烧);三、氧气在燃烧时被消耗;四、燃烧物在燃烧后所增加的重量,等于所消耗的氧气的重量。拉瓦锡坚决摈弃了“燃素学说”。他指出:世界上根本不存在什么“燃素”!拉瓦锡的理论有大量实验作为依据,很有说服力。他的理论,得到绝大多数化学家的支持。象普利斯特里那样至死坚持“燃素学说”的人极少,难怪连他自己也不得不承认“几乎是孤立的”。当然,拉瓦锡也有他的缺点。在谈到氧气的发现时,拉瓦锡说:“这种气体,普利斯特里先生、舍勒先主和我大约同时发现。”这显然不符合事实。他明明是在普利斯特里和舍勒告诉他发现氧气之后,才着手做实验。这样掠人之美,不是一个正直的科学家所应具有的道德。然而,拉瓦锡勇敢地冲破“燃素学说”的束缚,揭示了氧和燃烧的本质,这却是难能可贵的。恩格斯在《资本论》第二卷的《序言》中,很中肯地评价了这一段化学史:“当时在巴黎的普利斯特里……把他的发现告诉了拉瓦锡,拉瓦锡就根据这个新事实研究了整个燃素说化学,方才发现:这种新气体是一种新的化学元素;在燃烧的时候,并不是神秘的燃素从燃烧物体中分离出来,而是这种新元素与燃烧物体化合。这样,他才使过去在燃素说形式上倒立着的全部化学正立过来了。即使不是象拉瓦锡后来硬说的那样,他与其他两人同时和不依赖他们而析出了氧气,然而真正发现氧气的还是他,而不是那两个人(即指普利斯特里和舍勒),因为他们只是析出了氧气,但甚至不知道自己所析出的是什么。”

用实验方法将氧气提取出来,并命名为"脱燃素空气"的化学家是谁

  普里斯特利,全称:约瑟夫·普里斯特利(J.Joseph Priestley)。  普利斯特里的重大贡献是发现氧和其他气体。  1772年发现了二氧化氮;1773年发现氨;1774年发现二氧化硫。  1774年他利用一个大凸透镜,把阳光聚焦起来,加热氧化汞,用排水集气法收集产生的气体,并研究了这种气体的性质。他发现蜡烛在这种气体中以极强的火焰燃烧;老鼠在瓶中存活时间为相同容积的普通空气的两倍。他并用玻璃吸管从放满这种气体的大瓶里吸取它,感到十分轻松舒畅。普里斯特利是第一位详细叙述了氧气的各种性质的科学家。由于他是燃素说的信徒,遂推断出新气体必然含有极少的燃素或不含燃素,称它为“脱燃素空气”。  参考资料:http://baike.baidu.com/link?url=vdnWtGLt6ONI5DtXQgeoGy5GjkjEHAkRRr_jTUizfeZmgZREf3HAqjN48mlvRXr7-sQFQmInxtUmmUDxCeoAovw5T6yddNfZ0zK4L8mQ1tw0zNfXqhWjZ_NV6IVENbjLBfLNpb_6T6UeobfBRIOMNcYfqg4D0T0nV1jFpSCtciu

一般空气中氧气占多大比例?

空气中的氧气含量一般在21%左右。在一般情况下,大气中的含氧量为21%左右。据科学家研究,大气的含氧量如果超过35%,那是很危险的,大气极容易产生自燃,地球随时随地都有可能发生火灾,那时,地球就会成为一片火的海洋,成为生命的一座地狱。氧在自然界中分布最广,占地壳质量的48.6%,是丰度最高的元素。在烃类的氧化、废水的处理、火箭推进剂以及航空、航天和潜水中供动物及人进行呼吸等方面均需要用氧。动物呼吸、燃烧和一切氧化过程(包括有机物的腐败)都消耗氧气。但空气中的氧能通过植物的光合作用不断地得到补充。在金属的切割和焊接中。是用纯度93.5%~99.2%的氧气与可燃气(如乙炔)混合,产生极高温度的火焰,从而使金属熔融。冶金过程离不开氧气。为了强化硝酸和硫酸的生产过程也需要氧。不用空气而用氧与水蒸气的混合物吹入煤气气化炉中,能得到高热值的煤气。医疗用气极为重要。普利斯特里对氧气的研究:普利斯特里从布莱克煅烧石灰石对CO2的发现受到启发,利用凸透镜聚集太阳光使一些物质燃烧或分解放出气体并进行研究。1774年8月1日,普利斯特里终于成功地制得了氧气,成为化学史上有重大意义的事件。他的实验非常简单,把氧化汞放在一个充满水银的玻璃瓶里,然后,把玻璃瓶倒放在水银槽中,玻璃瓶完全被水银充满,空气全被排除掉,氧化汞浮在最上面。然后,他用凸透镜聚集太阳光,照射到氧化汞上,使氧化汞受热。经过长期加热,温度逐渐升高,氧化汞受热分解成汞,并放出氧气。于是,氧气聚集起来排走玻璃瓶中的汞,使汞面降低。气体空间体积不断增加,直到气体体积为氧化汞体积的三四倍为止。

空气中氧气的含量约为百分之几?

空气中的氧气含量一般在21%左右。在一般情况下,大气中的含氧量为21%左右。据科学家研究,大气的含氧量如果超过35%,那是很危险的,大气极容易产生自燃,地球随时随地都有可能发生火灾,那时,地球就会成为一片火的海洋,成为生命的一座地狱。氧在自然界中分布最广,占地壳质量的48.6%,是丰度最高的元素。在烃类的氧化、废水的处理、火箭推进剂以及航空、航天和潜水中供动物及人进行呼吸等方面均需要用氧。动物呼吸、燃烧和一切氧化过程(包括有机物的腐败)都消耗氧气。但空气中的氧能通过植物的光合作用不断地得到补充。在金属的切割和焊接中。是用纯度93.5%~99.2%的氧气与可燃气(如乙炔)混合,产生极高温度的火焰,从而使金属熔融。冶金过程离不开氧气。为了强化硝酸和硫酸的生产过程也需要氧。不用空气而用氧与水蒸气的混合物吹入煤气气化炉中,能得到高热值的煤气。医疗用气极为重要。普利斯特里对氧气的研究:普利斯特里从布莱克煅烧石灰石对CO2的发现受到启发,利用凸透镜聚集太阳光使一些物质燃烧或分解放出气体并进行研究。1774年8月1日,普利斯特里终于成功地制得了氧气,成为化学史上有重大意义的事件。他的实验非常简单,把氧化汞放在一个充满水银的玻璃瓶里,然后,把玻璃瓶倒放在水银槽中,玻璃瓶完全被水银充满,空气全被排除掉,氧化汞浮在最上面。然后,他用凸透镜聚集太阳光,照射到氧化汞上,使氧化汞受热。经过长期加热,温度逐渐升高,氧化汞受热分解成汞,并放出氧气。于是,氧气聚集起来排走玻璃瓶中的汞,使汞面降低。气体空间体积不断增加,直到气体体积为氧化汞体积的三四倍为止。

空气中氧气含量是多少

空气中的氧气含量一般在21%左右。在一般情况下,大气中的含氧量为21%左右。据科学家研究,大气的含氧量如果超过35%,那是很危险的,大气极容易产生自燃,地球随时随地都有可能发生火灾,那时,地球就会成为一片火的海洋,成为生命的一座地狱。氧在自然界中分布最广,占地壳质量的48.6%,是丰度最高的元素。在烃类的氧化、废水的处理、火箭推进剂以及航空、航天和潜水中供动物及人进行呼吸等方面均需要用氧。动物呼吸、燃烧和一切氧化过程(包括有机物的腐败)都消耗氧气。但空气中的氧能通过植物的光合作用不断地得到补充。在金属的切割和焊接中。是用纯度93.5%~99.2%的氧气与可燃气(如乙炔)混合,产生极高温度的火焰,从而使金属熔融。冶金过程离不开氧气。为了强化硝酸和硫酸的生产过程也需要氧。不用空气而用氧与水蒸气的混合物吹入煤气气化炉中,能得到高热值的煤气。医疗用气极为重要。普利斯特里对氧气的研究:普利斯特里从布莱克煅烧石灰石对CO2的发现受到启发,利用凸透镜聚集太阳光使一些物质燃烧或分解放出气体并进行研究。1774年8月1日,普利斯特里终于成功地制得了氧气,成为化学史上有重大意义的事件。他的实验非常简单,把氧化汞放在一个充满水银的玻璃瓶里,然后,把玻璃瓶倒放在水银槽中,玻璃瓶完全被水银充满,空气全被排除掉,氧化汞浮在最上面。然后,他用凸透镜聚集太阳光,照射到氧化汞上,使氧化汞受热。经过长期加热,温度逐渐升高,氧化汞受热分解成汞,并放出氧气。于是,氧气聚集起来排走玻璃瓶中的汞,使汞面降低。气体空间体积不断增加,直到气体体积为氧化汞体积的三四倍为止。

氧气一下什么意思

氧是一种化学元素,其原子序数为8,由符号“O”表示。在元素周期表中,氧是氧族元素的一员,它也是一个高反应性的第2周期非金属元素,很容易与几乎所有其它元素形成化合物(主要为氧化物)。在标准状况下,两个氧原子结合形成氧气,是一种无色无嗅无味的双原子气体,化学式为O2。如果按质量计算,氧在宇宙中的含量仅次于氢和氦,在地壳中,氧则是含量最丰富的元素。氧不仅占了水质量的88%,也占了空气体积的20.9%。x0dx0a  构成有机体的所有主要化合物都含有氧,包括蛋白质、碳水化合物和脂肪。构成动物壳、牙齿及骨骼的主要无机化合物也含有氧。由蓝藻、藻类和植物经过光合作用所产生的氧气化学式为O2,几乎所有复杂生物的细胞呼吸作用都需要用到氧气。对于厌氧性生物来说,氧气是有毒的。这类生物曾经是早期地球上的主要生物,直到2.5亿年前O2开始在大气层中逐渐积累。氧气的另一个同素异形体是臭氧。在高海拔形成的臭氧层能够隔离来自太阳的紫外线辐射。但是接近地表的臭氧则是一种污染,这些臭氧主要存在与光化学烟雾中。x0dx0a  氧气是由约瑟夫·普利斯特里和卡尔·威廉·舍勒独立发现的。虽然卡尔比约瑟夫早发现一年,但由于约瑟夫首先发表论文,所以很多人仍然认为是约瑟夫首先发现的。氧气的英文名是“Oxygen”,由拉瓦锡定名与1777年,拉瓦锡利用氧气所进行的试验在燃烧和腐蚀的方面打败了当时流行的燃素说。在工业上,氧气是通过分馏液态空气制备的,同时使用分子筛除去二氧化碳和氮气。也可以通过电解水等其他方式制备氧气。氧气的运用包括钢铁的冶炼、塑料和纺织品的制造以及作为火箭推进剂与进行氧气疗法,也用来在飞机、潜艇、太空船和潜水中维持生命。 x0dx0a  氧的单质形态有氧气(O2)和臭氧(O3)。氧气在标准状况下是无色无味无臭,能帮助燃烧的双原子的气体。液氧呈淡蓝色,具有顺磁性。氧能跟氢化合成水。臭氧在标准状况下是一种有特殊臭味的蓝色气体。氧的单质形态有氧气(O2)和臭氧(O3)。氧气在标准状况下是无色无味无臭,能帮助燃烧的双原子的气体。液氧呈淡蓝色,具有顺磁性。氧能跟氢化合成水。臭氧在标准状况下是一种有特殊臭味的蓝色气体。x0dx0a  1.【物理性质】x0dx0a  在标准状况下,氧气的密度是1.429g_L,比空气的密度(1.293g_L)略大。它不易溶于水,在室温下,1L水中只能溶解于约30mL氧气。在压强为101kPa时,氧气在-183°C时变为蓝色液体,在-218°C时会变成淡蓝色雪花状的固体。  2.【化学性质】x0dx0a  x0dx0a  氧气的化学性质比较活泼。除了惰性气体、活性小的金属元素如金、铂、银、钯之外,大部分的元素都能与氧起反应,这些反应称为氧化反应,而反应产生的化合物称为氧化物。一般而言,非金属氧化物的水溶液呈酸性,而碱金属或碱土金属氧化物则为碱性。此外,几乎所有的有机化合物,可在氧中剧烈燃生成二氧化碳与水。 氧原子的结构x0dx0a  (1)、氧气跟金属反应:x0dx0a  与钾的反应:x0dx0a  4K+O2=2K2O,钾的表面变暗x0dx0a  2K+O2=K2O2;K+O2=KO2(超氧化钾),(条件:点燃或加热,两个反应同时进行)x0dx0a  与钠的反应:x0dx0a  4Na+O2=2Na2O,钠的表面变暗x0dx0a  2Na+O2=Na2O2(条件:点燃或加热),产生黄色火焰,放出大量的热,生成淡黄色粉末。x0dx0a  与镁的反应;2Mg+O2=2MgO(条件:点燃),剧烈燃烧发出耀眼的强光,放出大量热,生成白色固体。x0dx0a  与铝的反应;4Al+3O2=2Al2O3(条件:点燃),发出明亮的光,放出热量,生成白色固体。x0dx0a  与铁的反应;x0dx0a  4Fe+3O2+2xH2O=2Fe2O3·xH2O,(铁锈的形成)x0dx0a  3Fe+2O2=Fe3O4(条件:点燃),红热的铁丝剧烈燃烧,火星四射,放出大量热,生成黑色固体。x0dx0a  与锌的反应:2Zn+O2=2ZnO(条件:点燃),x0dx0a  与铜的反应;2Cu+O2=2CuO(条件:加热),加热后亮红色的铜丝表面生成一层黑色物质。x0dx0a  (2)、氧气跟非金属反应:x0dx0a  与氢气的反应:2H2+O2=2H2O(条件:点燃),产生淡蓝色火焰,放出大量的热,并有水生成。x0dx0a  与碳的反应:CO2(carbon dioxide)x0dx0a  (碳+氧气→二氧化碳)C+O2=CO2(条件:点燃),剧烈燃烧,发出白光,放出热量,生成使石灰水变浑浊的气体。x0dx0a  氧气不完全时则产生一氧化碳:2C+O2=2CO(条件:点燃)。x0dx0a  与硫的反应:S+O2=SO2(条件:点燃),发生明亮的蓝紫色火焰,放出热量,生成有刺激性气味的气体,该气体也能使成清石灰水变浑浊,且能使酸性高锰酸钾溶液或品红溶液褪色。x0dx0a  与红磷的反应:4P+5O2=2P2O5(条件:点燃),剧烈燃烧,发光放热,生成白烟。(P4O10为五氧化二磷的分子式,此处写P2O5亦可)x0dx0a  与白磷的反应:P4+5O2=2P2O5,白磷在空气中自燃,发光发热,生成白烟。x0dx0a  与氮气的反应:N2+O2=2NO(条件:放电)x0dx0a  与氧气的反应:3O2=2O3(条件:放电)x0dx0a  (3)、氧气跟一些有机物反应,如甲烷、乙炔、酒精、石蜡等能在氧气中燃烧生成水和二氧化碳。x0dx0a  气态烃类的燃烧通常发出明亮的蓝色火焰,放出大量的热,生成水和能使澄清石灰水变浑浊的气体。x0dx0a  甲烷:CH4+2O2=CO2+2H2O(条件:点燃)x0dx0a  乙烯:C2H4+3O2=2CO2+2H2O(条件:点燃)x0dx0a  乙炔:2C2H2+5O2=4CO2+2H2O(条件:点燃)x0dx0a  苯:2C6H6+15O2=12CO2+6H2O(条件:点燃)x0dx0a  甲醇:2CH3OH+3O2=2CO2+4H2O(条件:点燃)x0dx0a  乙醇:CH3CH2OH+3O2=2CO2+3H2O(条件:点燃)x0dx0a  碳氢氧化合物与氧气发生燃烧的通式:4CxHyOz+(4x+y-2z)O2=4xCO2+2yH2O(条件:点燃)(通式完成后应注意化简!下同)x0dx0a  烃的燃烧通式:4CxHy+(4x+y)O2=4xCO2+2yH2O(条件:点燃)x0dx0a  乙醇被氧气氧化:2CH3CH2OH+O2=2CH3CHO+2H2O(条件:Cu,加热)x0dx0a  此反应包含两个步骤:(1)2Cu+O2=2CuO(加热)(2)CH3CH2OH+CuO=CH3CHO+Cu+H2O(加热)x0dx0a  氯仿与氧气的反应:2CHCl3+O2=2COCl2(光气)+2HClx0dx0a  (4)、氧气与其它化合物的反应:x0dx0a  硫化氢的燃烧:(完全)2H2S+3O2=2H2O+2SO2;(不完全)2H2S+O2=2H2O+2S(条件:点燃)x0dx0a  煅烧黄铁矿:4FeS2+11O2=2Fe2O3+8SO2(条件:高温)x0dx0a  二氧化硫的催化氧化:2SO2+O2=2SO3(条件:V2O5,加热)x0dx0a  空气中硫酸酸雨的形成:2SO2+O2+2H2O=2H2SO4x0dx0a  氨气在纯氧中的燃烧:4NH3+3O2(纯)=2N2+6H2O (条件:点燃)x0dx0a  氨气的催化氧化:4NH3+5O2=4NO+6H2O (条件:Pt,加热)x0dx0a  一氧化氮与氧气的反应:2NO+O2=2NO2

氧气是怎么发明出来的?

1774年8月1日,是一个阳光灿烂、适于试验的日子。普利斯特里在一个大玻璃瓶底放了厚厚一层黄色的粉末——水银灰(即氧化汞),把透镜聚集的阳光投射到水银灰上。光照在粉末上形成了耀眼的光点。普利斯特里细心地观察,突然发现了一种奇怪的现象:粉末微微地颤动、腾跃,似乎有人在向它们吹风。数分钟过后,在这个地方出现小水银珠。这可是意外的收获!“看来,光是燃素!也许燃素留在玻璃容器中了?”普利斯特里点燃干木条,将它放入玻璃瓶内,想去点燃燃素。气体燃着了,而且燃烧得更旺,光焰更亮!他迅速地取出小木条,扑灭了火焰,把它再次伸入玻璃瓶内时,冒烟的木条又重新燃烧起来了。他把这个实验又做了一次,并用排水集气法搜集产生的气体。通过研究,他发现蜡烛在这种气体中以极强的火焰燃烧;老鼠在瓶中存活时间为相同容积的普通空气的两倍。他并用玻璃吸管从放满这种气体的大瓶里吸取它,感动十分轻松舒畅。其实,他搜集到的气体就是氧气。普利斯特里是第一位详细叙述了氧气的各种性质的科学家。但是,由于他笃信燃素说,于是推断这种气体必然含有极少的燃素或不含燃素,称它为“脱燃素空气”。普利斯特里正准备对它进行深入的研究的时候,英国的政治家舍尔伯恩勋爵邀他陪同到欧洲旅行。到法国巴黎后,普利斯特里立即访问了法兰西科学院。在那里,他向科学家们讲述了自己对气体的研究。在巴黎期间,他还会见了拉瓦锡,在他的实验室进行了学术交流。普利斯特里向拉瓦锡揭示了他刚刚发现的秘密,并向他表演了制取这种新空气的方法。拉瓦锡立即着手研究了它,并由此创立了新的氧气燃烧理论,揭示了燃烧的本质。因而使“燃素说”彻底破产,使化学生发生了一场革命,开创了化学发展的新纪元。普利斯特里的职业是牧师,化学只是他的业余爱好。但他却为这一学科的发展作出了不可磨灭的贡献。除了氧气之外,他还于1772年发现了二氧化氮,1773年发现氨,1774年发现二氧化硫。由于普利斯特里在化学方面的贡献,1782年,他当选为巴黎皇家科学院的外国院士。1804年2月6日,普利斯特里卒于美国宾夕法尼亚州诺森伯兰。

谁告诉氧气的发现过程?

氧气的发现经历过一段曲折的历史。18世纪初,德国化学家施塔尔(Stahl G E,1660—1734)等人提出“燃素理论”,认为一切可以燃烧的物质由灰和“燃素”组成,物质燃烧后剩下来的是灰,而燃素本身变成了光和热,散逸到空间去了。这样一来,燃烧后物质的质量应当减轻,但人们发现,短比忌展铁块的质量不是减轻,而是增加了,锡、汞等燃烧后,也都比原先重。为什么燃素跑掉后,物质反而会增加呢?随着欧洲工业革命的发展,金属的冶炼和煅烧在生产实践中给化学提出了许多新问题,冲击着燃素理论。 1771—1772年间,瑞典化学家舍勒(Scheele K W,1742—1786)在加热红色的氧化汞、黑色的氧化锰、硝石等时制得了氧气,把燃着的蜡烛放在这个气体中,火烧得更加明亮,他把这个气体称为“火空气”。他还将磷、硫化钾等放置在密闭的玻璃罩内的水面上燃烧,经过一段时间后,钟罩内的水面上升了1/5高度,接着,舍勒把一支点燃的蜡烛放进剩余的“用过了的”空气里去,不一会儿,蜡烛熄灭了。他把不能支持蜡烛燃烧的空气称为“无效的空气”。他认为空气是由这两种彼此不同的成分组成的。1774年8月,英国科学家普利斯特里( Priestley J,1773—1804 )在用一个直径达一英 尺的聚光透镜加热密闭在玻璃罩内的氧化汞时得到了氧气,他发现物质在这种气体里燃 烧比在空气中更强烈,他称这种气体为“脱去燃素的空气”。舍勒和普利斯特里虽然先后独立地发现了氧气,但由于他们墨守陈旧的燃素学说,使他 们不知道自己找到了什么。1774年,法国著名的化学家拉瓦锡(Lavoisier A L,1743—1794)正在研究磷、硫以及一些金属燃烧后质量会增加而空气减少的问题,大量的实验事实使他对燃素理论发生了极大怀疑,正在这时,10月份普利斯特里来到巴黎,把他的实验情况告诉了拉瓦锡,拉瓦锡立刻意识到他的英国同事的实验的重要性。他马上重复了普利斯特里的实验,果真得到了一种支持燃烧的气体,他确定这种气体是一种新的元素。1775年4月拉瓦锡向法国巴黎科学院提出报告——金属在煅烧时与之相化合并增加其重量的物质的性质——公布了氧的发现,他说这种气体几乎是同时被普利斯特里、舍勒和他自己发现的。氧的发现不是一个人所做的。恩格斯在《资本论》第二卷序言中提到:“普利斯特里和舍勒已经找出了氧气,但不知道他们找到的是什么。他们不免为现有燃素范畴所束缚。 这种本来可以推翻全部燃素观点并使化学发生革命的元素,没有在他们手中结下果实。 不过普利斯特里不久就把他的发现告诉了巴黎的拉瓦锡;拉瓦锡依据这个新的事实研究 了整个燃素化学,方才发现这种新的气体是一种新的化学元素。燃烧的时候,并不是什么神秘的燃素从燃烧体分离,而是这种新的元素和这种物体化合。因此,在燃素形式上 倒立着的整个化学才正立起来。照拉瓦锡后来主张,他和其他两位学者是同时并且相互 独立地发现氧气。虽然事实不是如此,但同其他两位比较起来,他仍不失为氧气的真正 发现者,因为其他两位不过找出了氧气,但一点儿也不知道他们自己找出了什么。” 正是拉瓦锡的实验和结论,使当时的化学研究者们正确地认识了空气的组成成分和氧气 对物质燃烧所起的作用,才击破了燃素学说,发现了氧。拉瓦锡一生虽然没有发明过什 么新化合物和新化学反应,但他是历史上最杰出的化学家之一,他杰出的天才表现在他 能看到旧理论的主要弱点,并能把有用的事实和更正确、更全面的新理论结合起来。1777年,拉瓦锡命名此种气体为Oxygen(氧),是由希腊文oxus-(酸)和geinomai(源)组成,即“成酸的元素”的意思。它的化学符号为O。我国清末学者徐寿把这种气体 称为“羊气”,后来为了统一,取了其中的“羊”字,因是气体,又加了部首“气”头 ,成为今天我们使用的“氧”字。

地球上的氧气是从哪儿来的

氧气的出现源于两种作用,一个是非生物参与的水的光解,一个是生物参与的光合作用。地球的大气层形成初期是不含氧气的。原始大气是还原性的,充满了甲烷、氨等气体。大气层氧气源于两个过程:非生物参与的水光解和生物参与的光合作用。生物光合作用对大气有很大的影响。它使大气由还原性大气转变为氧化性大气。水光解产生的氢可以氧化回地球而不扩散到外层空间,从而防止地球上的水流失。同时,光合作用也加速了大气中氧气的积累,深刻地改变了地球上物种的代谢方式和体形。石炭纪大气中的氧含量上升到35%。氧气含量的增加造成了依赖于渗透方式输氧的昆虫在体型上的巨型化。在石炭纪曾出现过翼展2英尺半的巨蜻蜓。扩展资料:氧气的发现:普利斯特里从布莱克煅烧石灰石对CO2的发现受到启发,普利斯特里使用凸面透镜来浓缩阳光,使一些物质燃烧或分解并释放气体。1774年8月1日,普里斯特利终于成功产氧,成为化学史上的一件大事。普利斯特里从实验中得出,这种气体具有助燃和呼吸的功能。这些性质与普通空气相似,但效果更强。然而,普利斯特里误解了新气体错误地用燃素说来解释,并把制得的氧气称为“脱燃素空气”。由于运用了错误的理论,这种命名是不恰当的。参考资料来源:百度百科-氧气参考资料来源:百度百科-氧

氧气是否易溶于水

氧气不易溶于水,微溶于醇。氧气在水中的溶解度不大,标准大气压下1L水中溶解30mL氧气,水中的鱼类等生物能够生存,就是因为这一点的缘故,如果水中氧含量降低,就容易导致水质恶化。绝对不溶于水的物质是不存在的,溶解度再小也能溶解,所谓难溶不溶都是相对的。是因为氧气是一种非极性分子,而水分子是一种极性分子。在水中,氧气分子的极性相互作用较弱,因此不易溶解于水。氧气(oxygen)是氧元素形成的一种单质,化学式O2,其化学性质比较活泼,与大部分的元素都能与氧气反应。常温下不是很活泼,与许多物质都不易作用。但在高温下则很活泼,能与多种元素直接化合,这与氧原子的电负性仅次于氟有关。氧气是无色无味气体,是氧元素最常见的单质形态。熔点-218.4℃,沸点-183℃。不易溶于水,1L水中溶解约30mL氧气。在空气中氧气约占21%。液氧为天蓝色。固氧为蓝色晶体。氧在自然界中分布最广,占地壳质量的48.6%,是丰度最高的元素。在烃类的氧化、废水的处理、火箭推进剂以及航空、航天和潜水中供动物及人进行呼吸等方面均需要用氧。动物呼吸、燃烧和一切氧化过程都消耗氧气。但空气中的氧能通过植物的光合作用不断地得到补充。在金属的切割和焊接中。是用纯93.5%~99.2%的氧气与可燃气混合,产生极高温度的火焰,从而使金属熔融。冶金过程离不开氧气。为了强化硝酸和硫酸的生产过程也需要氧。不用空气而用氧与水蒸气的混合物吹入煤气气化炉中,能得到高热值的煤气。医疗用气极为重要。普利斯特里对氧气的研究普利斯特里从布莱克煅烧石灰石对CO2的发现受到启发,利用凸透镜聚集太阳光使一些物质燃烧或分解放出气体并进行研究。1774年8月1日,普利斯特里终于成功地制得了氧气,成为化学史上有重大意义的事件。把氧化汞放在一个充满水银的玻璃瓶里,把玻璃瓶倒放在水银槽中,玻璃瓶完全被水银充满,空气全被排除掉,氧化汞浮在最上面。用凸透镜聚集太阳光受热。

地球上的空气中大约多少是氧气

在正常情况下,地球上的空气中大约21%左右是氧气。地球上的氧气含量并不是一直都保持不变,而是在漫长的生命岁月里,呈现了暴增到不断下降,最后维持在现有21%左右。21%的含量氧正好让氧气对人类无法产生什么危害,这是人体跟氧气达成一种平衡状态。早期在没有生命诞生的40亿年前,地球的氧气含量是非常稀少的,后来生命是海洋中诞生,这个时候的生命对于氧气的需求是非常少的,也就是说这些生物基本都是厌氧生物。可是随着时间的推移,海洋中出现了一种特别霸道的生物,那就是蓝藻。据科学家研究,大气的含氧量如果超过35%,那是很危险的,大气极容易产生自燃,地球随时随地都有可能发生火灾,那时,地球就会成为一片火的海洋,成为生命的一座地狱。氧是地壳中最丰富、最广泛的原料,是生物界和非生物界的主要原料,在地壳中含量为48.6%。空气中单质氧占20.9%。普利斯特里对氧气的研究普利斯特里从布莱克煅烧石灰石对CO2的发现受到启发,利用凸透镜聚集太阳光使一些物质燃烧或分解放出气体并进行研究。1774年8月1日,普利斯特里终于成功地制得了氧气,成为化学史上有重大意义的事件。他的实验非常简单,把氧化汞放在一个充满水银的玻璃瓶里,然后,把玻璃瓶倒放在水银槽中,玻璃瓶完全被水银充满,空气全被排除掉,氧化汞浮在最上面。然后,他用凸透镜聚集太阳光,照射到氧化汞上,使氧化汞受热。经过长期加热,温度逐渐升高,氧化汞受热分解成汞,并放出氧气。于是,氧气聚集起来排走玻璃瓶中的汞,使汞面降低。气体空间体积不断增加,直到气体体积为氧化汞体积的三四倍为止。以上内容参考:百度百科-空气

空气中的氧气含量有多少?

空气中的氧气含量一般在21%左右。在一般情况下,大气中的含氧量为21%左右。据科学家研究,大气的含氧量如果超过35%,那是很危险的,大气极容易产生自燃,地球随时随地都有可能发生火灾,那时,地球就会成为一片火的海洋,成为生命的一座地狱。氧在自然界中分布最广,占地壳质量的48.6%,是丰度最高的元素。在烃类的氧化、废水的处理、火箭推进剂以及航空、航天和潜水中供动物及人进行呼吸等方面均需要用氧。动物呼吸、燃烧和一切氧化过程(包括有机物的腐败)都消耗氧气。但空气中的氧能通过植物的光合作用不断地得到补充。在金属的切割和焊接中。是用纯度93.5%~99.2%的氧气与可燃气(如乙炔)混合,产生极高温度的火焰,从而使金属熔融。冶金过程离不开氧气。为了强化硝酸和硫酸的生产过程也需要氧。不用空气而用氧与水蒸气的混合物吹入煤气气化炉中,能得到高热值的煤气。医疗用气极为重要。普利斯特里对氧气的研究:普利斯特里从布莱克煅烧石灰石对CO2的发现受到启发,利用凸透镜聚集太阳光使一些物质燃烧或分解放出气体并进行研究。1774年8月1日,普利斯特里终于成功地制得了氧气,成为化学史上有重大意义的事件。他的实验非常简单,把氧化汞放在一个充满水银的玻璃瓶里,然后,把玻璃瓶倒放在水银槽中,玻璃瓶完全被水银充满,空气全被排除掉,氧化汞浮在最上面。然后,他用凸透镜聚集太阳光,照射到氧化汞上,使氧化汞受热。经过长期加热,温度逐渐升高,氧化汞受热分解成汞,并放出氧气。于是,氧气聚集起来排走玻璃瓶中的汞,使汞面降低。气体空间体积不断增加,直到气体体积为氧化汞体积的三四倍为止。

普利斯特利对氧气的判断研究发现了什么现象?

普利斯特里对氧气的判断研究发现:1、将研究的气体放在玻璃瓶中,倒一些水进去,该气体不溶解。2、把燃烧的蜡烛放进该气体中,蜡烛竟放出耀眼的强光。3、把一只老鼠放到充满该气体的瓶子里,老鼠活蹦乱跳,很自在,他猜想人吸入了可能也好受。4、用玻璃管把大瓶中的氧气吸入肺中,并记下自己的感觉:“我觉得十分愉快,我肺部的感觉好像和平常呼吸空气一样,没有什么不适。扩展资料氧气的化学性质比较活泼。除了稀有气体、活性小的金属元素如金、铂、银之外,大部分的元素都能与氧气反应,这些反应称为氧化反应,而经过反应产生的化合物称为氧化物。一般而言,非金属氧化物的水溶液呈酸性,而碱金属或碱土金属氧化物则为碱性。此外,几乎所有的有机化合物,可在氧中剧烈燃生成二氧化碳与水。化学上曾将物质与氧气发生的化学反应定义为氧化反应,氧化还原反应指发生电子转移或偏移的反应。氧气具有助燃性,氧化性。制氧机适用于氧疗和氧保健的人群:1、易患缺氧的人群:中老年人、孕妇、长期从事脑力劳动的学生、公司职员、机关干部等;2、高原缺氧病症:高原肺水肿、急性高山病、慢性高山病、高原昏迷、高原缺氧症等;3、体弱多病肌体免疫力差的人群、中暑、煤气中毒、药物中毒等;4、处于代谢亢进状态下如发烧、抽搐、甲亢以及使用甲状腺素及胰岛素时;5、使用促肾上腺皮质激素、肾上腺皮质激素、肾上腺素、去甲肾上腺素等;6、 缺乏维生素E、C及缺乏微量元素硒(清除过多自由基能力减退,抗氧化能力差);7、 受X线等照射;8、参加剧烈运动后或过度运动劳累氧供济不足的人群等;9、通风不良的公共场所(如电影院、健身房、电脑机房、娱乐场等)内,人多味杂、空气污浊;10、封闭严密的汽车、空调房内、地下商场、防空设施、军用地下指挥场所;11、工作学习紧张的脑力劳动者及初、高中学生及其他应试备考人群等。参考资料来源:百度百科-氧气参考资料来源:百度百科-家用制氧机

普利斯特利是用什么东西来取制取氧气的

在气体化学的研究成果中,普利斯特里最重要的是对氧气的发现。1774年,他得到了一个大型凸透镜(火镜),开始研究某些物质在凸透镜聚光产主的高温下放出的各种气体。他研究的物质中有“红色沉淀物”(氧化汞)和“汞灰”亦称水银烧渣,也就是氧化汞)。普利斯特里把氧化汞放置在玻璃钟罩内的水银面上,用一个直径30厘米、焦距为50厘米的火镜,将阳光聚集在氧化汞上。很快就发现氧化汞被分解了,放出一种气体,将玻璃罩内的水银排挤出来。他把这种气体叫做”脱燃素的空气”。他以排水集气法,把这种气体收集起来,然后研究其性质。发现蜡烛会在这种空气中燃烧,火焰非常明亮,老鼠在这种气体中生活正常,且比在等体积的普通空气中活的时间长了约4倍;他还亲自尝试了一下,感觉这种空气使人呼吸轻快、舒畅。他对实验的全过程做了详细的描述。其实早在1771年,普利斯特里把硝石加热对,已经制得了氧气。他在题为“各种空气的观察”一文中,曾提到:“在我从硝石得到的一定量(的空气)中,不仅蜡烛能点燃,而且火焰增大,还听到了响声,好像硝石在明火中烧爆的声音。”但由于他当时把这种气体,混同于一般空气,所以未能发现氧。普利斯特里认为空气是单一的气体,助燃能力之所以不同,其区别仅在于其中含燃素量的不同。从汞烧渣中分解出来的是新鲜的、不含一点燃素的空气,所以吸收燃素的能力和助燃能力都特别强。因此他把这种气体叫做“脱燃素空气”。而寻常的空气,由于经过动物呼吸、植物的燃烧和腐烂,已经吸收了不少燃素,所以助燃能力就差了:一旦空气被燃素饱和,那么它就不再助燃,变成“被燃素饱和了的空气”(指氮气)或叫“燃素化空气”。在后来的研究中,普利斯特里发现,绿色植物在阳光中也能放出“脱燃素空气”,成为光化学作用研究的基础。

裸鼹鼠如何在没有氧气的情况下存活18分钟

当氧含量降低时,裸鼹鼠就像植物一样活动。与其他哺乳动物不同,它们能代谢植物糖果糖以避免大脑损伤。Thomas Park/UIC) 这只完全怪异的裸鼹鼠变得更加怪异。 这只无毛的社会哺乳动物几乎从未得过癌症,而且有高水平的促进大脑的蛋白质,这可能解释了为什么它的寿命比普通老鼠长10倍。现在,新的研究发现裸鼹鼠也能在没有氧气的情况下存活18分钟,并且没有持续的影响。 作为对比,人类通常在没有氧气的情况下仅3分钟左右就开始积累严重的脑损伤。裸鼹鼠通过转向植物使用的一种分子把戏来实现他们的壮举:它们停止代谢葡萄糖,开始代谢另一种糖,果糖。[地球上的极端生命:8种奇异生物] “我们的工作是第一个证明哺乳动物转变成果糖作为燃料的证据,”柏林赫尔姆霍兹协会马克斯代尔布吕克分子医学中心生理学家加里·莱文在一份声明中说, 没有空气,毫无问题的 裸鼹鼠(heterochephalus glaber)长得很奇怪,它的皮肤秃,有皱纹,嘴唇上有凸出的龅牙,所以它可以用它们来挖洞,而不会弄到一口泥土。这些东非土著人生活在大型社会群体的地下洞穴里。 “这些地下洞穴里的空气会变得非常闷热,”勒温说。 但是低氧水平似乎并不能使鼹鼠感到难受。当老鼠洞里的氧气变低时,这些动物有时会在某种代谢性恍惚状态下游荡,但它们很快就会起来,开始再次四处奔跑。Lewin和他的同事们想知道为什么。 研究小组分析了组织、血液和代谢物,这些小分子是由细胞内的代谢反应形成的。他们发现,当氧气充足时,裸鼹鼠的新陈代谢看起来就像老鼠的新陈代谢(就这点而言,也就是人类的新陈代谢):动物分解葡萄糖分子以释放能量并启动有氧呼吸过程。 当氧气不足时,老鼠和人类都有麻烦:没有办法继续有氧呼吸没有它的呼吸。但莱文和他的同事发现,裸鼹鼠的洞里有一张王牌。它们有高水平的一种叫做GLUT5的转运分子和一种叫做KHK的酶。结合起来,转运体和酶允许老鼠使用果糖,而不是葡萄糖作为能量——这是一个无氧的分子过程,意味着它不需要氧气。 医学应用 为裸鼹鼠挖掘数英里长的洞穴,暂时转为无氧呼吸可以挽救生命。Lewin和他的同事们希望这一发现最终也能拯救人类的生命。Lewin说: “梗塞或中风患者在缺氧几分钟后会经历无法弥补的损伤。”。如果医生能在中风或心脏病发作时在大脑或心脏基因上开启果糖代谢途径,他们可能就能保护脑组织,直到氧气供应能够重新建立。 这项研究在4月21日出版的《科学》杂志上有详细报道。 是关于生命科学的原始文章。

吉林省通钢企业公司氧气厂怎么样?

吉林省通钢企业公司氧气厂是2005-03-10在吉林省通化市二道江区注册成立的集体所有制,注册地址位于通化市二道江区通钢厂区内。吉林省通钢企业公司氧气厂的统一社会信用代码/注册号是912205018253735655,企业法人张忠杰,目前企业处于开业状态。吉林省通钢企业公司氧气厂的经营范围是:氧气运输、装卸、修理氧气瓶、气瓶检验、冶金机械修理、医用氧气、钢材深加工、机电设备、管道设备检修、房屋维修、劳务服务(仅限本公司内)、不绣钢丝深加工;氧气、乙炔、氮气、氩气、二氧化碳销售(危险化学品经营许可证有效期至2014年1月24日)。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。在吉林省,相近经营范围的公司总注册资本为12003万元,主要资本集中在 5000万以上 和 1000-5000万 规模的企业中,共3家。本省范围内,当前企业的注册资本属于一般。通过百度企业信用查看吉林省通钢企业公司氧气厂更多信息和资讯。

为什么氧气用于气割气焊?其中氧气起什么作用?O2的氧化性用于炼钢是什么意思?O2又起什么作用?

氧气是一种比较活泼的气体,可燃物在氧气中燃烧更旺,在空气中不易燃烧的铁、铜、铝等金属也可以在氧气中燃烧(助燃性)。这体现了它的助燃性。生铁中含有大量的碳,而钢中的碳含量很少。在炼钢中,加入氧气是为了使铁中的碳可以被更加充分的除去,以炼成好钢。
 首页 上一页  1 2 3 4  下一页  尾页