- 苏萦
-
有机化学中的取代基优先顺序
有机化学中的取代基优先顺序,有机化学中的“取代基优先顺序”是什么?有机化学中的“取代基优先顺序”即为官能团优先顺序:
-COOH>-SO3H>-COOR>-COX>-CONH2>-COOCO->-CN>-CHO>-CO->-OH>-SH>-NH2>-C三C->-C=C->-OR>-SR>-F>-Cl>-Br>-I>-NO2>-NO
有机化学的相关规则:
1、原子:原子序数大的排在前面,同位素质量数大的优先。几种常见原子的优先次序为:I>Br>Cl>S>P>O>N>C>H
2、不饱和基团:可看作是与两个或三个相同的原子相连。不饱和烃基的优先次序为:
-C≡CH>-CH=CH2>(CH3)2CH-
3、若与双键碳原子相连的基团互为顺反异构时,Z型先于E型。
有机化学中基团优先顺序怎么判断由双键碳上直接相连的两个原子的原子序数的大小来决定,原子序数大者为优。若原子序数相同时,则比较相对原子质量数大小。若与双键碳原子直接相连的第一个原子相同,要依次比较第二个甚至第三个原子,依此类推,直到比较出优先顺序为止。
相关规则:
(1)原子:原子序数大的排在前面,同位素质量数大的优先。几种常见原子的优先次序为:I>Br>Cl>S>P>O>N>C>H
(2)饱和基团:如果第一个原子序数相同,则比较第二个原子的原子序数,依次类推。常见的烃基优先次序为:(CH3)3C->(CH3)2CH->CH3CH2->CH3-
(3)不饱和基团:可看作是与两个或三个相同的原子相连。不饱和烃基的优先次序为:
-C≡CH>-CH=CH2>(CH3)2CH-
(4)若与双键碳原子相连的基团互为顺反异构时,Z型先于E型。
次序规则主要应用于烷烃的系统命名和烯烃中几何异构体的命名。
烷烃的系统命名:如果在主链上连有几个不同的取代基,则取代基按照“次序规则”依次列出,优先基团后列出。
按照次序规则,烷基的优先次序为:叔丁基>仲丁基>异丙基>异丁基>丁基>丙基>乙基>甲基。
有机化学取代基命名(二)(1)2,2-二甲基丙基,(2)2-甲基环丙基,(3)1-甲基戊基,(6)1-甲基-3-丙基戊基
有机化学优先顺序。是这样吗?你的编号是正确的,“近”是首要原则。但是书写顺序要求由简到繁,正确命名为
4-甲基-6-乙基癸烷
有机化学取代基的顺序是按什么制定的依据系统命名法的规则来:
1、先选择主链。
2、再为主链编号。
3、编号时就决定了取代基的顺序。
4、第一原则:靠近主官能团一段开始编号。
5、第二原则:最先碰面原则。(还有取代基位数之和最小)
6、第三原则:先小后大原则。
7、写出完整的名称。
注:第三原则中谁小谁大,并不是看分子量,而是有一套次序规则。
(1)按第一原子的原子序数,由小到大排列。
I>Br>Cl>F>O>N>C>H-Cl>-C(CH3)3
(2)第一原子相同时,以此类推。
-CH2CH3>-CH3
(3)重键相当于几个相同原子。
-CH=CH2>-CH2CH3
有机化学。如何比较基团的优先顺序。谢谢1.氢基
2.重氢基(氘基)
3.甲基
4.乙烯基
5.叔丁基
6.乙炔基
7.苯基
8.氰基
9.醛基
10.甲酰基
11.乙酰基
12.羧基
13.甲酯基
14.氨基
15.乙酰氨基
16.二甲氨基
17.亚硝基
18.硝基
19.羟基
20.乙氧基
21.乙酰氧基
22.巯基
23.磺基
24.氯
25.溴
26.碘
有机化学中-R是指取代基还是仅指烷烃基?-R是指烷烃基,-X是卤原子,-Ph是苯基~每种取代基都有自己的表示方法
有机化学,RS命名基团优先顺序的比较方法。基团优先顺序
COOH>-SO3H>-COOR>-COX>-CONH2>-CN>-CHO>-CO->-OH>-SH>-NH2>-C三C->-C=C->-OR>-SR>-F>-Cl>-Br>-I>-NO2
有机化学稳定构象两个取代基相邻如果是顺式结构两个基团必须一个在a键,一个在e键上,而且大的取代基在e键比在a键稳定。如果是反式,则都在e键上稳定。
相关推荐
哪些基团吸电子能力强?
一、吸电子基团1、强吸电子基团叔胺正离子(-N+R3)、硝基(-NO2)、三卤甲基(-CX3)X=F、Cl2、中吸电子基团氰基(-CN)、磺酸基(-SO3H)3、弱吸电子基团甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)二、推电子基团1、超强基团氧负离子(-O-)2、强给电子基团二烷基氨基(-NR2)、烷基氨基(-NHR)、氨基(-NH2)、羟基(-OH)、烷氧基(-OR)3、中等基团酰胺基(-NHCOR)、酰氧基(-OCOR)扩展资料:举例:一、硝基硝基是化学中的一个概念,是指硝酸分子中去掉一个羟基后剩下的基团。硝基与其他基团(主要是烃基)相连的化合物称为硝基化合物。二、氰基氰基(CN)中的碳原子和氮原子通过叁键相连接。这一叁键给予氰基以相当高的稳定性,使之在通常的化学反应中都以一个整体存在。因该基团具有和卤素类似的化学性质,常被称为拟卤素。通常为人所了解的氰化物都是无机氰化物,俗称山奈(来自英语音译“Cyanide”),是指包含有氰根离子(CN-)的无机盐,可认为是氢氰酸(HCN)的盐,常见的有氰化钾。三、甲酰基可以看作甲酸分子中去掉羟基后,剩下的一价基团。实际就是醛基(aldehyde group)。四、氨基氨基(Amino)是有机化学中的基本碱基,所有含有氨基的有机物都有一定碱的特性,由一个氮原子和两个氢原子组成。五、羟基羟基化学式为-OH,是一种常见的极性基团。羟基主要分为醇羟基,酚羟基等。羟基与水有某些相似的性质,羟基是典型的极性基团,与水可形成氢键,在无机化合物水溶液中以带负电荷的离子形式存在(-OH),称为氢氧根。参考资料来源:百度百科-给电子基团参考资料来源:百度百科-吸电子基团2023-07-02 02:05:311
常见的吸电子基和供电子基有哪些?
供电子基1、超强供电子基团氧负离子(-O-)。2、强供电子基团二烷基氨基(-NR2)、烷基氨基(-NHR)、氨基(-NHu2082)、羟基(-OH)、烷氧基(-OR)。3、中等供电子基团酰胺基(-NHCOR)、酰氧基(-OCOR)。4、弱供电子基团烷基(-R)、羧基甲基(-CH2COOH)、苯基(-Ph)。吸电子基团1、强吸电子基团叔胺正离子(-Nu207aRu2083)、硝基(-NOu2082)、三卤甲基(-CXu2083)X=F、Cl。2、中吸电子基团氰基(-CN)、磺酸基(-SOu2083H)。3、弱吸电子基团甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)。扩展资料1、供电子基团判断方法基团是否为供电子基团是由诱导效应和共轭效应(超共轭效应)共同决定的。推电子诱导效应(+I)和推电子共轭效应(+C)的结果是基团表现为推电子,如:氧负离子(-O-)、烷基(-R)。吸电子诱导效应(-I)小于推电子共轭效应(+C)的结果是基团表现为推电子,如:二烷基氨基(-NRu2082)、烷基氨基(-NHR)、氨基(-NHu2082)、羟基(-OH)、烷氧基(-OR)、酰胺基(-NHCOR)、酰氧基(-OCOR)。2、吸电子基团判断方法只有吸电子诱导效应(-I),如:三卤甲基(-CXu2083)X=F、Cl吸电子诱导效应(-I)和吸电子共轭效应(-C)共同作用的结果是基团表现为吸电子,如:叔胺正离子(-NRu2083)、硝基(-NOu2082)、氰基(-CN)、磺酸基(-SOu2083H)、甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)。参考资料来源:百度百科-吸电子基团参考资料来源:百度百科-供电子基团2023-07-02 02:05:482
有机取代基命名顺序(包括烃的衍生物)
化合物母体名称的选择 对于多官能团化合物,选择哪一个官能团作为化合物的母体名称,遵循如下顺序: 优先顺序 基团化合物母体名称的选择 作官能团母体名 作取代基名 1 -COOH 羧酸 羧基 2 -SO3H 磺酸 磺基 3 -COOR 酯 烃氧羰基 4 -COX 酰卤 卤甲酰基 5 -CONH2 酰胺 氨基甲酰基 6 -CN 腈 氰基 7 -CHO 醛 甲酰基 8 -CO(R) 酮 酮羰基 9 -OH 醇 羟基 10 -NH2 胺 氨基 11 -OR 醚 烃氧基 12 C≡C 炔 炔基 13 C=C 烯 烯基 14 -R 烷基 注:-X、-NO2、-NO只作为取代基出现在命名中,分别称为卤素、硝基、亚硝基。2023-07-02 02:06:044
二甲基甲酰胺为什么没有氨基
这是因为DMF的分子中没有氨基(NH2)官能团。DMF分子中只有酰胺官能团(C=O-N),没有氨基官能团(NH2)。酰胺是由酰基和氨基缩合而成的一类化合物。在DMF中,甲酰基(C=O)对应于酰基,而分子中没有氨基。其化学结构中的碳原子周围连接着两个甲基基团和一个甲酰基,而没有连接任何氨基(NH2)。DMF是一种高极性、具有良好溶解性的有机溶剂,在有机化学中有广泛的应用。2023-07-02 02:06:111
醛基的化学式如何表示?
甲醛、乙醛、丙醛化学方法区分方法:1、用本尼迪特试剂可以鉴别出甲醛: 甲醛不与本尼迪特试剂反应,乙醛、丙醛均可与本尼迪特试剂反应产生砖红色沉淀。2、乙醛可以发生碘仿反应,丙醛则不能。即乙醛可以与单质I2在NaOH溶液中发生反应,产生淡黄色的碘仿晶体。3、加银氨溶液:发生银镜反应的是乙醛和丙醛;无反应现象的是丙酮;再向乙醛和丙醛中加入碘和氢氧化钠,有黄色沉淀生成的为乙醛,无反应现象的为丙醛。扩展资料醛常见反应:醛具有很高的反应活性,参与了众多反应,从工业角度来看,重要的反应大多数是缩合反应,如:制备可塑剂和多羟基化合物、还原反应制备醇(尤其羰基醇类)。从生物角度,重要的反应主要包括:制备亚胺的反应,即甲酰基的亲核加成反应。一、还原反应甲酰基易被还原为伯醇(-CH2OH),这种典型转化使用了催化氢化,或直接的转移氢化进行。醛在酸性环境下被锌汞齐还原成亚甲基。二、氧化反应甲酰基还易被氧化成相应的羧酸(-COOH)。工业中最常用的氧化剂是空气或氧气。实验室条件下,常用的氧化试剂包括:高锰酸钾、硝酸、氧化铬和重铬酸。混合二氧化锰、氰化物、乙酸和甲醇可将醛转化成甲酯。参考资料来源:百度百科-醛2023-07-02 02:06:261
醛和酰的区别
醛和酰的区别为:指代不同、写法不同、侧重点不同、分子结构不同。一、指代不同1、醛:有机化合物的一类,“乙醛”在医药上用作催眠或镇痛剂。2、酰:无机或有机含氧酸除去羟基后所余下的原子团。亦称“酰基”。二、写法不同1、醛:2、酰:三、侧重点不同1、醛:醛是物质类别。2、酰:酰是一种取代基。四、分子结构不同1、醛:分子中含有-CHO(醛基)的化合物称为醛,通式为RCHO。R-可以不是烃基,比如羟基乙醛的R-是HOCH2-。2、酰:是脂肪酸的结构式中除羟基时所余下的原子团,通式是R·CO-,也叫“酰基”,旧称“醯”[acyl]。2023-07-02 02:06:424
苯环上氨基保护方法
苯环上氨基保护方法,苄氧基(C6H5CH2O-)保护法,甲酰基(CHO-)保护法,位苯甲酰(C6H5CO-)保护法,三嗪(C6H5CN2-)保护法,叔丁氧基羰基(t-BOC)保护法。从操作简便度,产率,脱保护条件等角度综合考虑,苄氧基保护法和甲酰基保护法是较为理想的选择,根据实验的具体需要选择使用不同的保护方法。2023-07-02 02:07:121
什么是取代基位次数和
取代基位次数和:就是指在有机物命名时除主链外,支链取代基的编号和。通常有:IUPAC有机物命名法一般规则 取代基的顺序规则 当主链上有多种取代基时,由顺序规则决定名称中基团的先后顺序。一般的规则是: 取代基的第一个原子质量越大,顺序越高; 如果第一个原子相同,那么比较它们第一个原子上连接的原子的顺序;如有双键或三键,则视为连接了2或3个相同的原子。 以次序最高的官能团作为主要官能团,命名时放在最后。其他官能团,命名时顺序越低名称越靠前。 主链或主环系的选取 以含有主要官能团的最长碳链作为主链,靠近该官能团的一端标为1号碳。 如果化合物的核心是一个环(系),那么该环系看作母体;除苯环以外,各个环系按照自己的规则确定1号碳,但同时要保证取代基的位置号最小。 支链中与主链相连的一个碳原子标为1号碳。 数词 位置号用阿拉伯数字表示。 官能团的数目用汉字数字表示。 碳链上碳原子的数目,10以内用天干表示,10以外用汉字数字表示。 各类化合物的具体规则 烷烃 找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙...)代表碳数,碳数多于十个时,以中文数字命名,如:十一烷。 从最近的取代基位置编号:1、2、3...(使取代基的位置数字越小越好)。以数字代表取代基的位置。数字与中文数字之间以 - 隔开。 有多个取代基时,以取代基数字最小且最长的碳链当主链,并依甲基、乙基、丙基的顺序列出所有取代基。 有两个以上的取代基相同时,在取代基前面加入中文数字:一、二、三...,如:二甲基,其位置以 , 隔开,一起列于取代基前面。 烯烃 命名方式与烷类类似,但以含有双键的最长键当作主链。 以最靠近双键的碳开始编号,分别标示取代基和双键的位置。 若分子中出现二次以上的双键,则以“二烯”或“三烯”命名。 烯类的异构体中常出现顺反异构体,故须注明“顺”或”反”。 炔烃 命名方式与烯类类似,但以含有叁键的最长键当作主链。 以最靠近叁键的碳开始编号,分别标示取代基和叁键的位置。 炔类没有环炔类和顺反异构物。 分子中既有双键又有三键时,名字以烯先炔后,分别标注位置号,碳数写在“烯”前面。 卤代烃·醚 卤代烃命名以相应烃作为母体,卤原子作为取代基。 如有碳链取代基,根据顺序规则碳链要写在卤原子的前面;如有多种卤原子,列出次序为氟、氯、溴、碘。 醚的命名以碳链较长的一端为母体,另一端和氧原子合起来作为取代基,称烃氧基。 醇 醇的命名,以含有醇羟基的最长碳链为主链; 由这条链上的碳数决定叫某醇,编号时让醇羟基的位置号尽量小; 其他基团按取代基处理。 主链上有多个醇羟基时,可以按羟基的数目分别称为二醇、三醇等。 醛 醛的命名,以含有醛基的最长的碳链为主链,其他部分作为取代基; 决定名称的碳数包括醛基的一个碳。 如果有多个醛基,则以含有2个醛基的最长碳链为主链,称二醛。 醛基作取代基时称甲酰基(或氧代)。 酮 以含有酮羰基最长的碳链为主链,按此链上的碳数(包括该羰基)称为“某酮”;并把羰基的位置号标在前面,尽量使位置号最小。 如果主链上有多个羰基,可称为二酮、三酮等。 羰基作取代基时称“氧代”。 羧酸 以含有羧基的最长碳链为主链,依照碳数(包括羧基)称为某酸。 主链上有2个羧基时,称为二酸。 羧酸酐 以形成酸酐的酸的名称称呼酸酐,再加“酐”字。 (如:CH3CO-O-CO-C2H5——乙酸丙酸酐) 若形成酸酐的两分子酸相同,直接称为“某酸酐”。 酯 以形成酯的酸和醇的名称命名,称为某酸某(醇)酯或某醇某酸酯。 若有多个醇或酸分子参与成酯,那么要在相应的醇或酸前面加上数目。 胺类 以与氮原子相连的最长碳链为主链,按照该链上的碳原子数称为“某胺”; 若是亚胺,氮原子上的较短烃基视作取代基,命名时称“N-某基”(N表示取代基连在氮上) 脂环烃类 单脂环烃 环烷烃的命名与烷烃类似,直接在烷类前面加“环”字即可。 环烯烃的命名与烯烃类似,编号由双键先设定为 1 , 2 号碳。 桥环烷烃 桥环烷烃中,多个环公用的碳原子称为桥头碳; 给碳原子编号,从一个桥头碳原子开始,依照环由大到小顺序编完所有的碳原子; 命名时,先称环的个数,然后在中括号里标明各个环上桥头碳之间的碳原子的个数,数字之间用点分隔,数字的个数总比环数多一个; 最后,按照环系上碳原子的个数,称为“某烷”。 如: 称为二环[3.2.0]庚烷。 螺环烷烃 螺环烷烃中,两个环公用的一个四级碳原子称为螺原子; 编号从小环开始,1号碳是紧挨螺原子的一个碳原子; 命名时,先称“螺”字,然后在中括号里标明各个环上非螺原子的个数,数字之间用点分隔; 最后,按照环系上碳原子的个数,称为“某烷”。 如: 称为螺[3.5]壬烷。 多环烯、炔烃 按照多环烷烃的规则命名,编号时尽量使重键的位置号最小,再把“烷”字换成“烯”或“炔”即可。 芳香族化合物 苯环系 苯的卤代物、烷基代物等,先称呼取代基的位置号和名称,再加“苯”字。甲基、乙基等简单烷基的“基”字可以省去。(如:1,2-二甲苯) 苯的烯、炔、醇、醛、酮、羧酸、磺酸、胺基代物等,以取代基的原形作为母体,先称“苯”(表示苯基),再称取代基的原形,编号时以取代基为主链,苯环为支链,与取代基相连的碳为1号碳。(如:苯乙烯) 芳烃的羟基代物称为酚,对于苯来说是苯酚。苯环上直接连有两个羟基时叫苯二酚。 其他环系 各种芳环系都有不同的名字,其取代物的命名方法和苯环类似。但这些环系一般都固定了编号的顺序(而不是像苯环一样只由取代基决定): 萘环系 蒽环系 等等。 杂环化合物 把杂环看作碳环中碳原子被杂原子替换而形成的环,称为“某杂(环的名称)”;(如:氧杂环戊烷) 给杂原子编号,使杂原子的位置号尽量小。 其他官能团视为取代基。 高中就涉及那么多,至于你是更高级的,我无能为力。2023-07-02 02:07:211
为什么卤苯的邻位和对位带负电荷,而甲酰基的邻位和对位带正电荷
卤素虽然是钝化苯环的吸电子基,但因为p-π共轭推电子效应,卤素仍属于第一类定位基。所以邻对位电子云密度大于间位。2023-07-02 02:07:301
5-甲酰基-2-羟基苄腈的合成路线有哪些?
基本信息:中文名称5-甲酰基-2-羟基苄腈英文名称5-formyl-2-hydroxybenzonitrile英文别名3-Cyano-4-hydroxybenzaldehyde;Benzonitrile,5-formyl-2-hydroxy;CAS号73289-79-9合成路线:1.通过邻羟基苯甲腈和乌洛托品合成5-甲酰基-2-羟基苄腈,收率约8%;更多路线和参考文献可参考http://baike.molbase.cn/cidian/21229512023-07-02 02:07:361
供电子基、吸电子基如何判定?
供电子基1、超强供电子基团氧负离子(-O-)。2、强供电子基团二烷基氨基(-NR2)、烷基氨基(-NHR)、氨基(-NH₂)、羟基(-OH)、烷氧基(-OR)。3、中等供电子基团酰胺基(-NHCOR)、酰氧基(-OCOR)。4、弱供电子基团烷基(-R)、羧基甲基(-CH2COOH)、苯基(-Ph)。吸电子基团1、强吸电子基团叔胺正离子(-N⁺R₃)、硝基(-NO₂)、三卤甲基(-CX₃)X=F、Cl。2、中吸电子基团氰基(-CN)、磺酸基(-SO₃H)。3、弱吸电子基团甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)。扩展资料1、供电子基团判断方法基团是否为供电子基团是由诱导效应和共轭效应(超共轭效应)共同决定的。推电子诱导效应(+I)和推电子共轭效应(+C)的结果是基团表现为推电子,如:氧负离子(-O-)、烷基(-R)。吸电子诱导效应(-I)小于推电子共轭效应(+C)的结果是基团表现为推电子,如:二烷基氨基(-NR₂)、烷基氨基(-NHR)、氨基(-NH₂)、羟基(-OH)、烷氧基(-OR)、酰胺基(-NHCOR)、酰氧基(-OCOR)。2、吸电子基团判断方法只有吸电子诱导效应(-I),如:三卤甲基(-CX₃)X=F、Cl吸电子诱导效应(-I)和吸电子共轭效应(-C)共同作用的结果是基团表现为吸电子,如:叔胺正离子(-NR₃)、硝基(-NO₂)、氰基(-CN)、磺酸基(-SO₃H)、甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)。参考资料来源:百度百科-吸电子基团参考资料来源:百度百科-供电子基团2023-07-02 02:07:432
3甲酰基戊二醛怎么写
CH3CH2CH2CHO。3甲酰基戊二醛也叫作丁醛,结构式是,CH3CH2CH2CHO,写的时候先写主链,含羰基最长的碳链作为主链,从靠近羰基一端编号。醛基的位次为1,可不标。2023-07-02 02:07:551
自由基怎么称呼啊?是不是有什么命名规则的啊?大家帮帮忙吧,谢谢啦
共价键发生均裂产生的就是自由基,若是单原子,可叫某自由基,也可叫某原子,如Cl.(称氯自由基或氯原子);若是多原子自由基,命名时根据其对应基团命名即可,举例:C2H5O. 对应的基团为C2H5O—,该基团称作乙氧基,所以对应的C2H5O.就叫做乙氧基自由基;而HCO.对应的基团为HCO—,该基团称作甲酰基,所以对应的HCO.就叫甲酰基自由基;再如(CH3)2N.,对应的基团为CH3)2N—,称为二甲氨基,所以相应的自由基为二甲氨基自由基。在此,不一一举例了,关键是掌握好基团的命名。2023-07-02 02:08:151
一个苯环邻位有一个醛基和-CONG2,怎么命名?
CONG2是什么基团呀?是不是CONH2?如果是,那么这个基团是主官能团,醛基是取代基,命名为甲酰基。因此命名为邻甲酰基苯甲酰胺;或2-甲酰基苯甲酰胺。2023-07-02 02:08:221
有机化学基团怎样大小判断
先比第一个原子大小:I>Br>...>C>D>H 第一个相同的情况下比较这个原子上连的基团。先从最大的开始比较,相同时再比第二个。如果这一级还是完全相同,在比较第二级中最大的那个相连的基团,方法和前面一样。 遇到双键和三键,当做连着两个(三个)相同的基团。 比如说甲酰基和羟甲基,第一个都是碳,第二个甲酰基连着两个氧,羟甲基只有一个,所以甲酰基大于羟甲基。如此。 更详细的可以看《基础有机化学》,邢其毅,裴伟伟,徐瑞秋,裴坚,高等教育出版社。2023-07-02 02:08:314
氨酰基和酰胺基的区别
氨酰基和酰胺基的区别主要在于主链连接的不同。1、酰氨基是指和母体所在的主链首先连接的是氨基,氨基这个侧链上又连接酰基。2、氨基酰基是特指氨基甲酰基,和主链相连接的是羰基,羰基又直接和氨基连接。2023-07-02 02:09:241
如何由对甲基苯甲醛合成对甲酰基苯甲酸
供参考:1,先乙二醇保护,得脱水的缩酮保护物,氧化制备苯甲酸,脱保护得到对甲酰基苯甲酸;2,先氧化制备对甲基苯甲酸,然后选择性氧化甲基至醛基(比较困难),得到对甲酰基苯甲酸。2023-07-02 02:09:331
氨基化是内质网中最常见的蛋白质修饰对不对
对啊。内质网对蛋白质的修饰体现在以下几个方面:1.氨基端和羧基端的修饰:在原核生物中几乎所有蛋白质都是从N-甲酰蛋氨酸开始,真核生物从蛋氨酸开始.甲酰基经酶水介而除去,蛋氨酸或者氨基端的一些氨基酸残基常由氨肽酶催化而水介除去.包括除去信号肽序列.因此,成熟的蛋白质分子N-端没有甲酰基,或没有蛋氨酸.同时,某些蛋白质分子氨基端要进行乙酰化在羧基端也要进行修饰.2.共价修饰:许多的蛋白质可以进行不同的类型化学基团的共价修饰,修饰后可以表现为激活状态,也可以表现为失活状态.(1)磷酸化:磷酸化多发生在多肽链丝氨酸,苏氨酸的羟基上,偶尔也发生在酪氨酸残基上,这种磷酸化的过程受细胞内一种蛋白激酶催化,磷酸化后的蛋白质可以增加或降低它们的活性,例如:促进糖原分解的磷酸化酶,无活性的磷酸化酶b经磷酸化以后,变居有活性的磷酸化酶a.而有活性的糖原合成酶I经磷酸化以后变成无活性的糖原合成酶D,共同调节糖元的合成与分介.(2)糖基化:质膜蛋白质和许多分泌性蛋白质都具有糖链,这些寡糖链结合在丝氨酸或苏氨酸的羟基上,例如红细胞膜上的ABO血型决定簇.也可以与天门冬酰胺连接.这些寡糖链是在内质网或高尔基氏体中加入的2023-07-02 02:09:433
5甲基四氢叶酸是什么?
5-甲基四氢叶酸是血清中叶酸的主要拥有形式,为活性叶酸。叶酸要想具备活性,需要有由MTHFR描绘出来5,l0-亚甲基四氢叶酸为5-甲基四氢叶酸。2023-07-02 02:09:512
氨基酰-tRNA详细资料大全
氨基酰-tRNA具有将胺基酸运转到核糖体合成蛋白质的功能。 基本介绍 中文名 :氨基酰-tRNA 外文名 :aminoacyl-tRNA 功能 :将胺基酸运转到核糖体合成蛋白质 生成要求 :必须先经过活化 概述,生成, 概述 (aminoacyl-tRNA )氨基酰-tRNA的氨基臂上结合有相应的胺基酸,并将胺基酸运转到核糖体上合成蛋白质。 生成 胺基酸在进行合成多肽链之前,必须先经过活化,然后再与其特异的tRNA结合,带到mRNA相应的位置上,这个过程靠氨基酰tRNA合成酶催化,此酶催化特定的胺基酸与特异的tRNA相结合,生成各种氨基酰tRNA.原核细胞中起始胺基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。 每种胺基酸都靠其特有合成酶催化,使之和相对应的tRNA结合,在氨基酰tRNA合成酶催化下,利用ATP供能,在胺基酸羧基上进行活化,形成氨基酰-AMP,再与氨基酰tRNA合成酶结合形成三联复合物,此复合物再与特异的tRNA作用,将氨基酰转移到tRNA的胺基酸臂(即3"-末端CCA-OH)上。 运载同一种胺基酸的一组不同tRNA称为同功tRNA。一组同功tRNA由同一种氨酰基tRNA合成酶催化。氨基酰tRNA合成酶对tRNA和胺基酸两者具有专一性,它对胺基酸的识别特异性很高,而对tRNA识别的特异性较低。 氨基酰tRNA合成酶是如何选择正确的胺基酸和tRNA呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的胺基酸和适合的tRNA进入合成酶的相应位点,才能合成正确的氨酰基tRNA。现已经知道合成酶与L形tRNA的内侧面结合,结合点包括接近臂,DHU臂和反密码子臂。 乍看起来,反密码子似乎应该与胺基酸的正确负载有关,对于某些tRNA也确实如此,然而对于大多数tRNA来说,情况并非如此,人们早就知道,当某些tRNA上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和Schimmel的实验证明丙氨酸tRNA酸分子的胺基酸臂上G3:U70这两个碱基发生突变时则影响到丙氨酰tRNA合成酶的正确识别,说明G3:U70是丙氨酸tRNA分子决定其本质的主要因素。tRNA分子上决定其携带胺基酸的区域叫做副密码子 一种氨基酰tRNA合成酶可以识别以一组同功tRNA,这说明它们具有共同特征。例如三种丙氨酸tRNA(tRNAAlm/CUA,tRNAAim/GGC,tRNAAin/UGC都具有G3:U70副密码子。)但没有充分的证据说明其它氨基酰tRNA合成酶也识别同功tRNA组中相同的副密码子。另外副密码子也没有固定的位置,也可能并不止一个碱基对。2023-07-02 02:10:091
醛类的化学式是什么?
甲醛、乙醛、丙醛化学方法区分方法:1、用本尼迪特试剂可以鉴别出甲醛: 甲醛不与本尼迪特试剂反应,乙醛、丙醛均可与本尼迪特试剂反应产生砖红色沉淀。2、乙醛可以发生碘仿反应,丙醛则不能。即乙醛可以与单质I2在NaOH溶液中发生反应,产生淡黄色的碘仿晶体。3、加银氨溶液:发生银镜反应的是乙醛和丙醛;无反应现象的是丙酮;再向乙醛和丙醛中加入碘和氢氧化钠,有黄色沉淀生成的为乙醛,无反应现象的为丙醛。扩展资料醛常见反应:醛具有很高的反应活性,参与了众多反应,从工业角度来看,重要的反应大多数是缩合反应,如:制备可塑剂和多羟基化合物、还原反应制备醇(尤其羰基醇类)。从生物角度,重要的反应主要包括:制备亚胺的反应,即甲酰基的亲核加成反应。一、还原反应甲酰基易被还原为伯醇(-CH2OH),这种典型转化使用了催化氢化,或直接的转移氢化进行。醛在酸性环境下被锌汞齐还原成亚甲基。二、氧化反应甲酰基还易被氧化成相应的羧酸(-COOH)。工业中最常用的氧化剂是空气或氧气。实验室条件下,常用的氧化试剂包括:高锰酸钾、硝酸、氧化铬和重铬酸。混合二氧化锰、氰化物、乙酸和甲醇可将醛转化成甲酯。参考资料来源:百度百科-醛2023-07-02 02:11:101
5-甲酰基-3-甲基-4-异恶唑羧酸乙酯的的上游原料和下游产品有哪些?
基本信息:中文名称5-甲酰基-3-甲基-4-异恶唑羧酸乙酯英文名称Ethyl5-formyl-3-methylisoxazole-4-carboxylate英文别名5-ethoxycarbonyl-3-(2-methoxycarbonyl)ethyl-4-methylpyrrole-2-carboxaldehyde;5-(ethoxycarbonyl)-2-formyl-3-(methoxycarbonyl)-4-methylpyrrole;5-(Ethoxycarbonyl)-2-formyl-4-methyl-1H-pyrrole-3-propanoicAcidMethylEster;2-Ethoxycarbonyl-5-formyl-3-methyl-4-(2-methoxycarbonyl-ethyl)-pyrrol;5-formyl-3-methylisoxazole-4-carboxylicacidethylester;ethyl5-formyl-3-methyl-4-(2-methoxycarbonyl-ethyl)pyrrole-2-carboxylate;CAS号129663-12-3上游原料CAS号中文名称870-85-93-(甲基氨基)巴豆酸乙酯下游产品CAS号名称129663-12-35-甲酰基-3-甲基-4-异恶唑羧酸乙酯更多上下游产品参见:http://baike.molbase.cn/cidian/15262742023-07-02 02:11:231
取代基的优先顺序
取代基的优先顺序取代基优先顺序口诀是-COOH-SO3H-COOR-COX-CONH2-COOCO--CN-CHO-CO--OH-SH-NH2-C三C--C=C--OR-SR-F-Cl-Br-I-NO2-NO。原子序数大的排在前面,同位素质量数大的优先。几种常见原子的优先次序为:IBrClSPONCH。可看作是与两个或三个相同的原子相连。不饱和烃基的优先次序为:-C≡CH-CH=CH22CH-。若与双键碳原子相连的基团互为顺反异构时,Z型先于E型。次序规则优先基团基团优先次序规则是由双键碳上直接相连的两个原子的原子序数的大小来决定,原子序数大者为优。次序规则也称为顺序规则,是有机化学中判断取代基或基团优先次序的一个重要规则,进行原子或原子团次序排列而提出的一个规则。若原子序数相同时,则比较相对原子质量数大小。若与双键碳原子直接相连的第一个原子相同,要依次比较第二个甚至第三个原子,依此类推,直到比较出优先顺序为止。邻对位定位基记忆口诀邻对位定位基记忆口诀是苯环上已有的取代基叫做定位取代基,含有取代基的苯衍生物,在进行芳香族亲电取代反应时,原有的取代基,对新进入的取代基主要进入位置,存有一定指向性的效应。这种效应称为取代基定位效应,当苯环上已带有这类定位取代基时,再引入的其它基团主要进入它的邻位或对位,而且第二个取代基的进入一般比没有这个取代基,即苯时容易,或者说这个取代基使苯环活化。取代基优先顺序口诀有机化学中的取代基优先顺序有机化学中的取代基优先顺序,有机化学中的“取代基优先顺序”是什么?有机化学中的“取代基优先顺序”即为官能团优先顺序:-COOH-SO3H-COOR-COX-CONH2-COOCO--CN-CHO-CO--OH-SH-NH2-C三C--C=C--OR-SR-F-Cl-Br-I-NO2-NO有机化学的相关规则:1、原子:原子序数大的排在前面,同位素质量数大的优先。几种常见原子的优先次序为:IBrClSPONCH2、不饱和基团:可看作是与两个或三个相同的原子相连。不饱和烃基的优先次序为:-C≡CH-CH=CH22CH-3、若与双键碳原子相连的基团互为顺反异构时,Z型先于E型。有机化学中基团优先顺序怎么判断由双键碳上直接相连的两个原子的原子序数的大小来决定,原子序数大者为优。若原子序数相同时,则比较相对原子质量数大小。若与双键碳原子直接相连的第一个原子相同,要依次比较第二个甚至第三个原子,依此类推,直到比较出优先顺序为止。相关规则:原子:原子序数大的排在前面,同位素质量数大的优先。几种常见原子的优先次序为:IBrClSPONCH饱和基团:如果第一个原子序数相同,则比较第二个原子的原子序数,依次类推。常见的烃基优先次序为:3C-2CH-CH3CH2-CH3-不饱和基团:可看作是与两个或三个相同的原子相连。不饱和烃基的优先次序为:-C≡CH-CH=CH22CH-若与双键碳原子相连的基团互为顺反异构时,Z型先于E型。次序规则主要应用于烷烃的系统命名和烯烃中几何异构体的命名。烷烃的系统命名:如果在主链上连有几个不同的取代基,则取代基按照“次序规则”依次列出,优先基团后列出。按照次序规则,烷基的优先次序为:叔丁基仲丁基异丙基异丁基丁基丙基乙基甲基。有机化学取代基命名2,2-二甲基丙基,2-甲基环丙基,1-甲基戊基,1-甲基-3-丙基戊基有机化学优先顺序。是这样吗?你的编号是正确的,“近”是首要原则。但是书写顺序要求由简到繁,正确命名为4-甲基-6-乙基癸烷有机化学取代基的顺序是按什么制定的依据系统命名法的规则来:1、先选择主链。2、再为主链编号。3、编号时就决定了取代基的顺序。4、第一原则:靠近主官能团一段开始编号。5、第二原则:最先碰面原则。6、第三原则:先小后大原则。7、写出完整的名称。注:第三原则中谁小谁大,并不是看分子量,而是有一套次序规则。按第一原子的原子序数,由小到大排列。I>Br>Cl>F>O>N>C>H-Cl>-C3第一原子相同时,以此类推。-CH2CH3>-CH3重键相当于几个相同原子。-CH=CH2>-CH2CH3有机化学。如何比较基团的优先顺序。谢谢1.氢基2.重氢基3.甲基4.乙烯基5.叔丁基6.乙炔基7.苯基8.氰基9.醛基10.甲酰基11.乙酰基12.羧基13.甲酯基14.氨基15.乙酰氨基16.二甲氨基17.亚硝基18.硝基19.羟基20.乙氧基21.乙酰氧基22.巯基23.磺基24.氯25.溴26.碘有机化学中-R是指取代基还是仅指烷烃基?-R是指烷烃基,-X是卤原子,-Ph是苯基~每种取代基都有自己的表示方法有机化学,RS命名基团优先顺序的比较方法。基团优先顺序COOH-SO3H-COOR-COX-CONH2-CN-CHO-CO--OH-SH-NH2-C三C--C=C--OR-SR-F-Cl-Br-I-NO2有机化学稳定构象两个取代基相邻如果是顺式结构两个基团必须一个在a键,一个在e键上,而且大的取代基在e键比在a键稳定。如果是反式,则都在e键上稳定。2023-07-02 02:11:301
3-甲酰基-2-硝基苯甲酸甲酯是不是危险品?
3-甲酰基-2-硝基苯甲酸甲酯不是危险品,可以按照非危险品正常运输,如果是要出口国外的话,那需要办理一份运输鉴定报告,正常海运,空运以及国际快递都是可以发的。2023-07-02 02:11:361
求助酯与水和肼的反应,但酯中含有一个氰基也会反应
1、概念:羰基中的一个共价键跟氢原子相连而组成的一价原子团,叫做醛基,醛基结构简式是-CHO,醛基是亲水基团,因此有醛基的有机物(如乙醛等)有一定的水溶性。2、引入方法:醛具有很高的反应活性,参与了众多反应。从工业角度来看,重要的反应大多数是缩和反应,如:制备可塑剂和多羟基化合物、还原反应制备醇(尤其羰基醇类)。从生物角度,重要的反应主要包括:制备亚胺的反应,即甲酰基的亲核加成反应,如:氧化去胺反应、半缩醛结构(醛糖)。(1)还原反应甲酰基易被还原为伯醇(-CH2OH)。这种典型转化使用了催化氢化,或直接的转移氢化进行。(2)氧化反应甲酰基还易被氧化成相应的羧酸(-COOH)。工业中最常用的氧化剂是空气或氧气。实验室条件下,常用的氧化试剂包括:高锰酸钾、硝酸、氧化铬和重铬酸钾。混合二氧化锰、氰化物、乙酸和甲醇可将醛转化成甲酯。还有一种氧化反应基于银镜反应,该反应中,醛与Tollens试剂混合(其制备方法为:滴加氢氧化钠溶液至硝酸银溶液中,得到析出的氧化银,而后滴加足量的氨水溶液以溶解析出的固体,并形成[Ag(NH3)2]络合物)。此反应过程不会影响碳碳双键。取名“银镜反应”是由于形成的氧化银能够转化为银镜,从而鉴定醛基结构。若醛不能够转化为烯醇式(没有α-H,如:苯甲醛),加入碱后可发生Cannizzaro反应。该反应机理即:歧化现象,反应最后产生自身氧化还原所形成的醇与酸。(3)加成反应亲核试剂易与羰基发生反应。在反应过程中,羰基碳发生sp杂化而与亲核试剂键合,氧原子则被质子化:RCHO + Nu → RCH(Nu)ORCH(Nu)O + H → RCH(Nu)OH通常一个水分子在加成发生时会被脱除,这种反应称为:加成-消除或加成-缩和反应。以下是几个亲核加成反应的变化:氧亲核试剂在缩醛化反应中,在酸或碱催化下,醇分子进攻羰基,质子转移后形成半缩醛。酸性条件下, 半缩醛与另外一个醇继续反应得到缩醛和一分子水。除环状半缩醛,如:葡萄糖可以稳定存外,其他简单的半缩醛通常不稳定。而相比缩醛就稳定的多,只有酸性条件下会转化为相应的醛。醛还可与水反应形成水合物(R-C(H)(OH)(OH))。这些二醇分子在很强的吸电子基团存在下比较稳定,如:三氯乙醛,其稳定的机理被证实与半缩醛形态有关。葡萄糖(醛式)转变为半缩醛式。在烷基氨化-去氧-双取代反应中,一级与二级胺进攻羰基,质子从氮原子转移至氧原子上,形成碳氮化合物。当底物为伯胺,一水分子可在该过程中消除,并形成亚胺,该反应通常由酸进行催化。此外羟氨(NH2OH)也可与醛基反应,所形成产物称为:肟;当亲核试剂是氨的衍生物(H2NNR2),如肼(H2NNH2)则形成了肼化合物,如:2,4-二硝基苯肼,其脱水后形成的化合物为:腙。该反应常用于鉴定醛酮。醛转化为肟与腙氢氰酸中的氰基可进攻羰基,形成氰醇(R-C(H)(OH)(CN))。在格氏反应中,格氏试剂进攻羰基,形成了格氏基团取代的醇。相类似的反应还有:Barbier反应和Nozaki-Hiyama-Kishi反应。在有机锡加成反应中,锡试剂取代了镁试剂参与该反应。在羟醛缩和反应中,酮、酯、酰胺、羧酸的金属烯醇式也可进攻醛形成:β-羟基羰基化合物,即:羟醛。酸或碱催化的脱水反应能继续让上述化合物发生脱水反应,形成α,β-不饱和羰基化合物,以上两步反应即熟知的:羟醛缩和反应。当亲核基团替代为烯烃或炔烃进攻羰基,称为:Prins反应,该反应产物因不同反应条件与底物而改变。2023-07-02 02:11:431
氨甲酰基结构式怎么写
CH3CONH-。氨甲酰基结构式,根据查询化学的相关知识,是CH3CONH-,由专业的人员测试发现的,再化学书中有相关内容。2023-07-02 02:11:501
2-甲酰基-5-羟基吡啶的合成路线有哪些?
基本信息:中文名称2-甲酰基-5-羟基吡啶中文别名5-羟基吡啶-2-甲醛;英文名称5-hydroxypyridine-2-carbaldehyde英文别名5-hydroxy-pyridine-2-carbaldehyde;5-Hydroxypyridine-2-carboxaldehyde;5-hydroxy-2-pyridinecarboxaldehyde;Picolinaldehyde,dimer;5-(hydroxy)picolinealdehyde;5-Hydroxy-2-pyridincarbaldehyd;2-formyl-5-hydroxypyridine;5-hydroxypicolinaldehyde;5-Hydroxypicolinaldehyde;CAS号31191-08-9合成路线:1.通过2-PYRIDINEMETHANOL,5-HYDROXY-合成2-甲酰基-5-羟基吡啶,收率约61%;更多路线和参考文献可参考http://baike.molbase.cn/cidian/1204392023-07-02 02:11:561
环己烷一号碳上有两个甲基四号碳上有个醛基(甲酰基)如何命名
是不是如图的有机物?4,4-二甲基环己醛2023-07-02 02:12:123
(4-溴-2-甲酰基苯氧基)乙酸甲酯的合成路线有哪些?
基本信息:中文名称(4-溴-2-甲酰基苯氧基)乙酸甲酯英文名称Methyl(4-bromo-2-formylphenoxy)acetate英文别名(4-bromo-2-formylphenoxy)aceticacidmethylester;methyl(4-bromo-2-formylphenoxy)acetate(SALTDATA:FREE);aceticacid,(4-bromo-2-formylphenoxy)-,methylester;CAS号24581-99-5合成路线:1.通过溴代乙酸乙酯和5-溴水杨醛合成(4-溴-2-甲酰基苯氧基)乙酸甲酯,收率约98%;2.通过溴乙酸甲酯和5-溴水杨醛合成(4-溴-2-甲酰基苯氧基)乙酸甲酯更多路线和参考文献可参考http://baike.molbase.cn/cidian/15269982023-07-02 02:12:351
一个mRNA分子有351个碱基,对应合成完整的n链要几个氨基酸脱水缩合?考虑终止密码子
我觉得题中所说的完整的肽链应该可以不包括起始密码子所翻译得到的氨基酸,起始密码子AUG和GUG除了分别决定甲硫氨酸和缬氨酸以外,还是翻译的起始信号。应该指出,当AUG和GUG不在起始点时,编码甲硫氨酸和缬氨酸;在起始点时,原核细胞的翻译过程证明,AUG将编码甲酰甲硫氨酸。肽链开始合成后不久,甲酰基会被甲酰基酶切除掉。如果这个题明确的指出是原核细胞的翻译过程的话,那起始密码子所编码的氨基酸是会被切掉的。所以(351-3-3)/3=1152023-07-02 02:12:421
卤代烃的官能团有哪些?
官能团的优先顺序:-COOH(羧基)>-SO3H(磺酸基)>-COOR(酯基)>-COX(卤基甲酰基)>-CONH2(氨基甲酰基)>-CN(氰基)>-CHO(醛基)>-CO-(羰基)>-OH(醇羟基)>-OH(酚羟基)>-SH(巯基)>-NH2(氨基)>-O-(醚基)>双键>叁键。官能团的引入和转换(1)C=C的形成:①一元卤代烃在强碱的醇溶液中消去HX。②醇在浓硫酸存在的条件下消去H2O。③二元卤代烃在锌粉存在的条件下消去X2。④烷烃的热裂解和催化裂化。(2)C≡C的形成:①二元卤代烃在强碱的醇溶液中消去2分子的HX。②一元卤代烯烃在强碱的醇溶液中消去HX。③实验室制备乙炔原理的应用。2023-07-02 02:12:481
官能团的优先顺序是什么,求详细
官能团的优先顺序:羧基,磺酸基,羧酸酐基,酯基,-COCl,-CONH2,-CN,-CNO,-CHO,-OH,-SH,-NH2。官能团是决定有机化合物的化学性质的原子或原子团。常见官能团烯烃、醇、酚、醚、醛、酮等。有机化学反应主要发生在官能团上,官能团对有机物的性质起决定作用,-X、-OH、-CHO、-COOH、-NO2、-SO3H、-NH2、RCO-,这些官能团就决定了有机物中的卤代烃、醇或酚、醛、羧酸、硝基化合物或亚硝酸酯、磺酸类有机物、胺类、酰胺类的化学性质。化学性质官能团对有机物的性质起决定作用,-X、-OH、-CHO、-COOH、-NO2、-SO3H、-NH2、RCO-,这些官能团就决定了有机物中的卤代烃、醇或酚、醛、羧酸、硝基化合物或亚硝酸酯、磺酸类有机物、胺类、酰胺类的化学性质。因此,学习有机物的性质实际上是学习官能团的性质,含有什么官能团的有机物就应该具备这种官能团的化学性质,不含有这种官能团的有机物就不具备这种官能团的化学性质,这是学习有机化学特别要认识到的一点。例如,醛类能发生银镜反应,或被新制的氢氧化铜悬浊液所氧化,可以认为这是醛类较特征的反应;但这不是醛类物质所特有的,而是醛基所特有的,因此,凡是含有醛基的物质,如葡萄糖、甲酸及甲酸酯等都能发生银镜反应,或被新制的氢氧化铜悬浊液所氧化。2023-07-02 02:13:054
对甲酰基苯酚在过酸反应吗
经过查询,对甲酰基苯酚在过酸不反应的,对甲酰基苯酚属于很弱的酸,各种酸都不能发生酯化反应。希望我的回答对你有所帮助。2023-07-02 02:13:356
吸电子基团有哪些?
吸电子基团有强吸电子基团、中吸电子基团、弱吸电子基团。吸电子基团是当取代基取代苯环上的氢后,苯环上电子云密度降低的基团;反之,苯环上电子云密度升高的叫供电子基团。一个基团到底是吸电子基团还是供电子基团,得看它对苯环的诱导效应、共轭效应、超共轭效应的总和。吸电子基团有强吸电子基团、中吸电子基团、弱吸电子基团。强吸电子基团:叔胺正离子(-N+R3)、硝基(-NO2)、三卤甲基(-CX3,X=F、Cl)。中吸电子基团:氰基(-CN)、磺酸基(-SO3H)。弱吸电子基团:甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)。吸电子基团的影响当卤代苯中卤素的邻、对位有强吸电子基团时,容易发生亲核取代反应,为取代苯酚的制备提供了理论基础。酚羟基的邻、对位连有供电子基团时,将使其酸性降低,供电子基团数目越多,酸性越弱。相反,酚羟基的邻、对位连有吸电子基团时,将使其酸性增加,吸电子基团数目越多,酸性越强。当吸电子基团处于间位时,由于它们之间只存在诱导效应的影响,而不存在共轭效应,故酸性的增加并不明显。二芳基醚的制备比较困难,由于芳卤难与亲核试剂反应;但当卤原子的邻、对位有强吸电子基团时,反应则易于发生。以上内容参考百度百科-吸电子基团2023-07-02 02:13:491
这个有机物如何命名
有机物命名方法 编辑词条 摘要 有机物命名法有机物的命名方法有系统命名法,习惯命名法,有些有机物还有俗名.一,系统命名法(IUPAC)IUPAC有机物命名法是一种有系统命名有机化合物的方法.该命名法是由国际纯粹与应用化学联合会(IUPAC)规定的,最近一次修订是在1993年.其前身是1892年日内瓦国际化学会的“系统命名法”.最理想的情况是,每一种有清楚的结构式的有机化合物都可以用一个确定的名称来描述它.它其实并不是严格的系统命名法,因为它同时接受一些物质和基团的惯用普通命名.中文的系统命名法是中国化学会在英文IUPAC命名法的基础上,再结合汉字的特点制定的.1960年制定,1980年根据1979年英文版进行了修定.1: 一般规则取代基的顺序规则 当主链上有多种取代基时,由顺序规则决定名称中基团的先后顺序.一般的规则是: 1. 取代基的第一个原子质量越大,顺序越高; 2.如果第一个原子相同,那么比较它们第一个原子上连接的原子的顺序;如有双键或三键,则视为 连接了2或3个相同的原子 以次序最高的官能团作为主要官能团,命名时放在最后.其他官能团,命名时顺序越低名称越靠前. 主链或主环系的选取 以含有主要官能团的最长碳链作为主链,靠近该官能团的一端标为1号碳. 如果化合物的核心是一个环(系),那么该环系看作母体;除苯环以外,各个环系按照自己的规则确定1号碳,但同时要保证取代基的位置号最小. 支链中与主链相连的一个碳原子标为1号碳. 数词 位置号用阿拉伯数字表示. 官能团的数目用汉字数字表示. 碳链上碳原子的数目,10以内用天干表示,10以外用汉字数字表示. 各类化合物的具体规则 烷烃 找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙...)代表碳数,碳数多於十个时,以中文数字命名,如:十一烷. 从最近的取代基位置编号:1、2、3...(使取代基的位置数字越小越好).以数字代表取代基的位置.数字与中文数字之间以 - 隔开. 有多个取代基时,以取代基数字最小且最长的碳链当主链,并依甲基、乙基、丙基的顺序列出所有取代基. 有两个以上的取代基相同时,在取代基前面加入中文数字:一、二、三...,如:二甲基,其位置以 , 隔开,一起列於取代基前面. 甲基 CH3- 乙基 CH3CH2- (正)丙基 CH3CH2CH2- (正)丁基 CH3CH2CH2CH2- 烯烃 命名方式与烷类类似,但以含有双键的最长键当作主链. 以最靠近双键的碳开始编号,分别标示取代基和双键的位置. 若分子中出现二次以上的双键,则以“二烯”或“三烯”命名. 烯类的异构体中常出现顺反异构体,故须注明“顺”或”反”. 炔烃 命名方式与烯类类似,但以含有叁键的最长键当作主链. 以最靠近叁键的碳开始编号,分别标示取代基和叁键的位置. 炔类没有环炔类和顺反异构物. 分子中既有双键又有三键时,名字以烯先炔后,分别标注位置号,碳数写在“烯”前面. 卤代烃?醚 卤代烃命名以相应烃作为母体,卤原子作为取代基. 如有碳链取代基,根据顺序规则碳链要写在卤原子的前面;如有多种卤原子,列出次序为氟、氯、溴、碘. 醚的命名以碳链较长的一端为母体,另一端和氧原子合起来作为取代基,称烃氧基. 醇 醇的命名,以含有醇羟基的最长碳链为主链; 由这条链上的碳数决定叫某醇,编号时让醇羟基的位置号尽量小; 其他基团按取代基处理. 主链上有多个醇羟基时,可以按羟基的数目分别称为二醇、三醇等. 醛 醛的命名,以含有醛基的最长的碳链为主链,其他部分作为取代基; 决定名称的碳数包括醛基的一个碳. 如果有多个醛基,则以含有2个醛基的最长碳链为主链,称二醛. 醛基作取代基时称甲酰基(或氧代). 酮 以含有酮羰基最长的碳链为主链,按此链上的碳数(包括该羰基)称为“某酮”;并把羰基的位置号标在前面,尽量使位置号最小. 如果主链上有多个羰基,可称为二酮、三酮等. 羰基作取代基时称“氧代”. 羧酸 以含有羧基的最长碳链为主链,依照碳数(包括羧基)称为某酸. 主链上有2个羧基时,称为二酸. 羧酸酐 以形成酸酐的酸的名称称呼酸酐,再加“酐”字. (如:CH3CO-O-CO-C2H5——乙酸丙酸酐) 若形成酸酐的两分子酸相同,直接称为“某酸酐”. 酯 以形成酯的酸和醇的名称命名,称为某酸某(醇)酯或某醇某酸酯. 若有多个醇或酸分子参与成酯,那么要在相应的醇或酸前面加上数目. 胺类 以与氮原子相连的最长碳链为主链,按照该链上的碳原子数称为“某胺”; 若是亚胺,氮原子上的较短烃基视作取代基,命名时称“N-某基”(N表示取代基连在氮上) 脂环烃类 单脂环烃 环烷烃的命名与烷烃类似,直接在烷类前面加“环”字即可. 环烯烃的命名与烯烃类似,编号由双键先设定为 1 , 2 号碳. 桥环烷烃 桥环烷烃中,多个环公用的碳原子称为桥头碳; 给碳原子编号,从一个桥头碳原子开始,依照环由大到小顺序编完所有的碳原子; 命名时,先称环的个数,然后在中括号里标明各个环上桥头碳之间的碳原子的个数,数字之间用点分隔,数字的个数总比环数多一个; 最后,按照环系上碳原子的个数,称为“某烷”. 如: 称为二环[3.2.0]庚烷. 螺环烷烃 螺环烷烃中,两个环公用的一个四级碳原子称为螺原子; 编号从小环开始,1号碳是紧挨螺原子的一个碳原子; 命名时,先称“螺”字,然后在中括号里标明各个环上非螺原子的个数,数字之间用点分隔; 最后,按照环系上碳原子的个数,称为“某烷”. 如: 称为螺[3.5]壬烷. 多环烯、炔烃 按照多环烷烃的规则命名,编号时尽量使重键的位置号最小,再把“烷”字换成“烯”或“炔”即可. 芳香族化合物 苯环系 苯的卤代物、烷基代物等,先称呼取代基的位置号和名称,再加“苯”字.甲基、乙基等简单烷基的“基”字可以省去.(如:1,2-二甲苯) 苯的烯、炔、醇、醛、酮、羧酸、磺酸、胺基代物等,以取代基的原形作为母体,先称“苯”(表示苯基),再称取代基的原形,编号时以取代基为主链,苯环为支链,与取代基相连的碳为1号碳.(如:苯乙烯) 芳烃的羟基代物称为酚,对于苯来说是苯酚.苯环上直接连有两个羟基时叫苯二酚. 其他环系 各种芳环系都有不同的名字,其取代物的命名方法和苯环类似.但这些环系一般都固定了编号的顺序(而不是像苯环一样只由取代基决定): 萘环系 蒽环系 等等. 杂环化合物 把杂环看作碳环中碳原子被杂原子替换而形成的环,称为“某杂(环的名称)”;(如:氧杂环戊烷) 给杂原子编号,使杂原子的位置号尽量小. 其他官能团视为取代基. 1.带支链烷烃 主链 选碳链最长、带支链最多者. 编号 按最低系列规则.从*侧链最近端编号,如两端号码相同时,则依次比较下一取代基位次,最先遇到最小位次定为最低系统(不管取代基性质如何). 2,3,5-三甲基己烷,不叫2,4,5-三甲基己烷,因2,3,5与2,4,5对比是最低系列. 取代基次序IUPAC规定依英文名第一字母次序排列.我国规定采用立体化学中“次序规则”:优先基团放在后面,如第一原子相同则比较下一原子. 2-甲基-3-乙基戊烷,因—CH2CH3>—CH3,故将—CH3放在前面. 2.单官能团化合物 主链 选含官能团的最长碳链、带侧链最多者,称为某烯(或炔、醇、醛、酮、酸、酯、……).卤代烃、硝基化合物、醚则以烃为母体,以卤素、硝基、烃氧基为取代基,并标明取代基位置. 编号 从*近官能团(或上述取代基)端开始,按次序规则优先基团列在后面. 3.多官能团化合物 (1)脂肪族 选含官能团最多(尽量包括重键)的最长碳链为主链.官能团词尾取法习惯上按下列次序, —OH>—NH2(=NH)>C≡C>C=C 如烯、炔处在相同位次时则给双键以最低编号. (2)脂环族、芳香族 如侧链简单,选环作母体;如取代基复杂,取碳链作主链. (3)杂环 从杂原子开始编号,有多种杂原子时,按O、S、N、P顺序编号. 4.顺反异构体 (1)顺反命名法 环状化合物用顺、反表示.相同或相似的原子或基因处于同侧称为顺式,处于异侧称为反式. (2)Z,E命名法 化合物中含有双键时用Z、E表示.按“次序规则”比较双键原子所连基团大小,较大基团处于同侧称为Z,处于异侧称为E. 次序规则是: (Ⅰ)原子序数大的优先,如I>Br>Cl>S>P>F>O>N>C>H,未共享电子对:为最小; (Ⅱ)同位素质量高的优先,如D>H; (Ⅲ)二个基团中第一个原子相同时,依次比较第二、第三个原子; (Ⅳ)重键 分别可看作 (Ⅴ)Z优先于 E,R优先于S. 5.旋光异构体 (1)D,L构型 主要应用于糖类及有关化合物,以甘油醛为标准,规定右旋构型为D,左旋构型为L.凡分子中离羰基最远的手性碳原子的构型与D-(+)-甘油醛相同的糖称D型;反之属L型. 氨基酸习惯上也用D、L标记.除甘氨酸无旋光性外,α-氨基酸碳原子的构型都是L型. 其余化合物可以通过化学转变的方法,与标准物质相联系确定. (2)R,S构型 含一个手性碳原子化合物Cabcd命名时,先将手性碳原子上所连四个原子或基团按“次序规则”由大到小排列(比如a>b>c>d),然后将最小的d放在远离观察者方向,其余三个基团指向观察者,则a→b→c顺时针为R,逆时针为S;如d指向观察者,则顺时针为S,逆时针为R.在实际使用中,最常用的表示式是Fischer投影式, (R)-2-氯丁烷.因为Cl>C2H5>CH3>H,最小基团H在C原子上下(表示向后),处于远离观察者的方向,故命名法规定Cl→C2H5→CH3顺时针为R.2023-07-02 02:14:032
尾浦由记和中国歌手合作过吗
没有。 1992年10月,梶浦由记作为乐队See-Saw的键盘手而在FUNHOUSE出道,这是由她的高中好友西冈由记子担当贝司手,石川知亚纪主唱的三人组合。 08年5月,梶浦由记和Revo这两位现在处于音乐界顶峰的“天才”和“鬼才”在5月15日在东京千代田举行了一场堪称顶级的演唱会“Dream Port 2008”,这场演唱会对于同时喜爱两人的粉丝来说可能是梦幻般的场景吧!【主要专辑】个人专辑《Fiction》 2003SEE-SAW《I have a dream》 1993《SEE-SAW》 1994《Dream Field》 2002《Early Best》 2003千叶纱子《Melody》 2003《Everything》 2004Fictionjunction YUUKA《Destination》 2005《Circus》 20072023-07-02 02:06:201
周杰伦单曲《夜曲》歌词
歌曲:夜曲 歌手:周杰伦 专辑:十月的萧邦 一群嗜血的蚂蚁被腐肉所吸引我面无表情看孤独的风景失去你爱开始分明失去你还有什么事好关心那鸽子不再象征和平我终于被提醒捆着手我现在是奴隶我用漂亮的押韵形容被掠夺一空的爱情我应该藏这里夜色不干净还给你整夜的回忆占满天的星送你的白色玫瑰在纯黑的花季凋零午夜在树枝上诡异的很安静倾听我黑色的大衣像我的你衣栉比鳞的鬼走过的走过的生命啊四周弥漫雾气啊我在空旷的墓地老去后还爱你为你弹奏肖邦的夜曲纪念我死去的爱情跟夜风一样的声音心碎的很好听手在键盘敲钢琴我给的思念太小心你埋葬的地方就有你为你弹奏肖邦的夜曲纪念我死去的爱情而我为你隐姓埋名在月光下弹琴对你心跳的感应还是如此温热亲近怀念你那鲜红的唇印那些断翅的蜻蜓散落在这森林而我的眼睛没有丝毫同情失去你泪水混浊无情失去你我连笑容都有阴影我站在满心期待的屋顶嘲笑我的伤心像一口没有水的枯井我用尽我的自信要我后悔莫急等待爱情为你弹奏肖邦的夜曲纪念我死去的爱情跟夜风一样的声音心碎的很好听手在键盘敲钢琴我给的思念太小心你埋葬的地方就有你为你弹奏肖邦的夜曲纪念我死去的爱情而我为你隐姓埋名在月光下弹琴对你心跳的感应还是如此温热亲近怀念你那鲜红的唇印一群嗜血的蚂蚁被腐肉所吸引我面无表情看孤独的风景失去你爱开始分明失去你还有什么事好关心那鸽子不再象征和平我终于被提醒捆着手我现在是奴隶我用漂亮的押韵形容被掠夺一空的爱情2023-07-02 02:06:222
夜曲歌词,周杰伦的
夜曲 - 周杰伦一群嗜血的蚂蚁 被腐肉所吸引我面无表情 看孤独的风景失去你 爱恨开始分明失去你 还有什么事好关心当鸽子不再象征和平我终于被提醒广场上喂食的是秃鹰我用漂亮的押韵形容被掠夺一空的爱情啊 乌云开始遮蔽 夜色不干净公园里 葬礼的回音 在漫天飞行送你的 白色玫瑰在纯黑的环境凋零乌鸦在树枝上诡异的很安静静静听 我黑色的大衣想温暖你 日渐冰冷的回忆走过的 走过的 生命啊 四周弥漫雾气我在空旷的墓地老去后还爱你为你弹奏萧邦的夜曲纪念我死去的爱情跟夜风一样的声音心碎的很好听手在键盘敲很轻我给的思念很小心你埋葬的地方叫幽冥为你弹奏萧邦的夜曲纪念我死去的爱情而我为你隐姓埋名在月光下弹琴对你心跳的感应还是如此温热亲近怀念你那鲜红的唇印那些断翅的蜻蜓 散落在这森林而我的眼睛 没有丝毫同情失去你 泪水混浊不清失去你 我连笑容都有阴影风在长满青苔的屋顶嘲笑我的伤心像一口没有水的枯井我用凄美的字型描绘后悔莫及的那爱情为你弹奏萧邦的夜曲纪念我死去的爱情跟夜风一样的声音心碎的很好听手在键盘敲很轻我给的思念很小心你埋葬的地方叫幽冥为你弹奏萧邦的夜曲纪念我死去的爱情而我为你隐姓埋名 在月光下弹琴对你心跳的感应 还是如此温热亲近怀念你那鲜红的唇印一群嗜血的蚂蚁 被腐肉所吸引我面无表情 看孤独的风景失去你 爱恨开始分明失去你 还有什么事好关心当鸽子不再象征和平我终于被提醒广场上喂食的是秃鹰我用漂亮的押韵形容被掠夺一空的爱情,望采纳。2023-07-02 02:06:303
英国帝王大学世界排名第几
第七。英国帝王大学一般指帝国理工学院,1907年建立于英国伦敦,是世界最具创新力大学之一,在泰晤士高等教育发布的全球大学排行榜单上排名第七。世界指自然界和人类社会一切事物的总和。2023-07-02 02:06:341
曾是“亚洲飞鱼”,却因私接代言被开除,消失的宁泽涛怎样了
现如今,宁泽涛退役已久,但他的每一次亮相依然吸引粉丝关注的目光。宁泽涛有着完美的身材,超高的颜值,有很多的粉丝希望他能进军娱乐圈,可宁泽涛却表示,娱乐圈并不适合他。现在的宁泽涛除了出席一些商业活动,他正在慢慢地成为一名高尔夫选手。翻开宁泽涛的社交账号,里面一片云淡风轻,各种代言、美照、励志鸡汤,甚至还有一张似是而非的爱情官宣,从而可以看出,他的心态和生活都在慢慢回到正轨。宁泽涛经历1993年3月6日,宁泽涛出生于河南郑州市,前中国人民解放军海军游泳队运动员。他从小就在河南省体育场学习游泳,一个偶然的机会被教练发现,这孩子在游泳方面非常有天赋。便与其父母商议,可以让他走向专业游泳队运动员之路,将来不太确定能拿世界冠军。宁泽涛的父母看儿子确实喜欢,专业的教练都这样说了,拿冠军也是一种荣耀。遂将儿子送去专习游泳,2004年,11岁的宁泽涛成为河南省体工二大队运动员。三年后,又被选入海军游泳队,师从国家级教练、海军游泳队队长叶瑾。他各方面都很均衡,便主攻混合泳项目,后因膝伤原因转向专攻短距离自由式。宁泽涛年龄合适,身高是一米九一,属于世界短距离自由式的中等身材。宁泽涛很有游泳天赋随着宁泽涛表现得越来越优异,省队的教学条件已经无法满足他,为了让他受到更好的训练,在2007年,父母将宁泽涛送进了海军游泳队,国家级教练、海军游泳队队长叶瑾少将担任他的老师。在接触了几天后,叶瑾就将宁泽涛身上的优缺点摸得一清二楚。在叶瑾看来,宁泽涛在游泳方面的确是不可多得的将才,一些较难的科技动作,别人往往要花费几天的时间,而他一点就通。但是,宁泽涛的蝶泳与仰泳却是十分的差。后来在叶瑾的建议下,宁泽涛开始主攻自由式。叶瑾的训练模式一直是以大运动量训练为主,100米自由式运动员一天的训练量在6000米左右,而宁泽涛当时身体比较瘦弱,为了增强他的体能,叶瑾就将他的训练量定为9000米,有时候甚至高达15000米。面对这样高强度的训练,宁泽涛从未喊苦叫累,每天严格完成训练量。从“新星”到“巨星”的蜕变直到2009年在参加济南全运会之前,由于宁泽涛各方面的成绩都比较平衡,因此他一直进行的是混合泳项目。但是在潼南全运会比赛后,宁泽涛的膝盖受伤。考虑到膝盖很难恢复到最初的状态,在叶瑾教练的建议下,宁泽涛把训练项目改为短距离自由式项目。这就意味着,他一切都得从头再来。毕竟这两个项目训练的内容等都不一样,显然,这对宁泽涛的运动生涯也是很有影响的。2013年,20岁的宁泽涛出现在世界赛场。宁泽涛先是夺得全国游泳冠军赛100米自由式决赛冠军,打破了中国纪录。50米自由式决赛中,再夺金牌。同年,宁泽涛在第12届全运会中夺得100米和50米自由式比赛金牌,打破亚洲记录!2014年,亚运会男子100米自由式决赛,宁泽涛赢得金牌,不仅刷新了亚运会纪录,而且成为了首位游进48秒的亚洲人!宁泽涛的职业生涯似乎到达了巅峰,他快速地完成了“新星”到“巨星”的蜕变。然而,争议之声也跟随荣耀也从四面八方涌来。因私接代言被开除然而在2016年里约奥运会之前,他却因为个人代言伊利牛奶,与游泳队签约赞助商蒙牛是竞品,因此遭到了队内处理。2016年6月,正当宁泽涛紧张备战里约奥运会时,他因为与游泳中心的代言纠纷受到排挤,被要求搬出运动员公寓,甚至连饭卡也消磁了。宁泽涛在备战关键阶段失去了系统训练,差点没能去成里约奥运。而最终在奥运会上,宁泽涛没能取得理想的成绩。奥运会后,他被国家队开除。据媒体报导,在各种打击和重压之下,2017年宁泽涛体重急速下降,并出现重度焦虑的状况。最终他被医生确诊为轻度抑郁症,住了一个多月的医院。一位老朋友形容了宁泽涛当时的状态,“只一个字,‘忍",就这样生熬过来。”由于因为私自代言等违规违纪原因,宁泽涛在2017年被调整离开国家队,对于宁泽涛来说这是一个职业生涯重挫。2019年3月,在个人训练坚持了2年后,宁泽涛选择了退役。退役后的宁泽涛何去何从?从巅峰到低谷,就是一瞬间。从此之后,宁泽涛慢慢在泳池里销声匿迹,再也没有令人的惊喜成绩传出来。26岁的巅峰年龄宣布退役,宁泽涛的冠军生涯绚烂而短暂。一时间众多品牌的宠儿,都期待他成为享誉世界代表中国精神的体育明星,在里约奥运会后一蹶不振,逐渐边缘化。从2015年喀山世界游泳锦标赛,宁泽涛以47秒84夺得男子100米自由式冠军,一鸣惊人,到2019年自己26岁生日这天,宣布退役。伴随着他荣耀与争议的短短几年,让他尝尽人情冷暖,追捧与唾弃。现在的宁泽涛微博认证依旧为“资深游泳运动员”,参加品牌合作,参加相关的体育赛事解说活动等成了日常。无论是否再能回到泳池,已经成名的宁泽涛未来也可以继续以名人的身份享受名人的待遇。2016年,在宁泽涛的纪录片《转折点》当中,有这样一段镜头,让我印象深刻。父亲望着宁泽涛说:“如果你不快乐,可以选择转身。”当时的宁泽涛伸着腰笑着说:“我觉得我挺快乐的。”可在被问到能不能参加2020东京奥运会时,他的回答却显得有些模棱两可,未来的不确定性让他感到有些苦涩。如今,宁泽涛选择退役,或许对他而言,游泳已快乐不再。结语:不容否认,宁泽涛确实是一名“流量明星”。无论其成绩是好是坏,事业巅峰或低谷,始终有一批忠实的粉丝支持着这位帅气的“邻家男孩”。然而,竞技体育的残酷,个人发展的选择,也让宁泽涛同样面对了重重质疑,选择退役或是成绩的压力,又或者是个人的原因。退役未必会是争论的中止,却也会是宁泽涛人生一段全新的开始。唯有祝福这位曾经的“亚洲飞鱼”退役后的生活一切顺利,能真正找到适合自己的方向。2023-07-02 02:06:341
周杰伦夜曲简谱
《夜曲》简谱夜曲 - 周杰伦一群嗜血的蚂蚁 被腐肉所吸引我面无表情 看孤独的风景失去你 爱恨开始分明失去你 还有什么事好关心当鸽子不再象征和平我终于被提醒广场上喂食的是秃鹰我用漂亮的押韵形容被掠夺一空的爱情啊 乌云开始遮蔽 夜色不干净公园里 葬礼的回音 在漫天飞行送你的 白色玫瑰在纯黑的环境凋零乌鸦在树枝上诡异的很安静静静听 我黑色的大衣想温暖你 日渐冰冷的回忆走过的 走过的 生命啊 四周弥漫雾气我在空旷的墓地老去后还爱你为你弹奏萧邦的夜曲纪念我死去的爱情跟夜风一样的声音心碎的很好听手在键盘敲很轻我给的思念很小心你埋葬的地方叫幽冥为你弹奏萧邦的夜曲纪念我死去的爱情而我为你隐姓埋名在月光下弹琴对你心跳的感应还是如此温热亲近怀念你那鲜红的唇印那些断翅的蜻蜓 散落在这森林而我的眼睛 没有丝毫同情失去你 泪水混浊不清失去你 我连笑容都有阴影风在长满青苔的屋顶嘲笑我的伤心像一口没有水的枯井我用凄美的字型描绘后悔莫及的那爱情为你弹奏萧邦的夜曲纪念我死去的爱情跟夜风一样的声音心碎的很好听手在键盘敲很轻我给的思念很小心你埋葬的地方叫幽冥为你弹奏萧邦的夜曲纪念我死去的爱情而我为你隐姓埋名 在月光下弹琴对你心跳的感应 还是如此温热亲近怀念你那鲜红的唇印一群嗜血的蚂蚁 被腐肉所吸引我面无表情 看孤独的风景失去你 爱恨开始分明失去你 还有什么事好关心当鸽子不再象征和平我终于被提醒广场上喂食的是秃鹰我用漂亮的押韵形容被掠夺一空的爱情扩展资料《夜曲》是歌手周杰伦演唱的歌曲。由方文山作词、周杰伦作曲、林迈可编曲,收录在周杰伦2005年11月发行的专辑《十一月的肖邦》中。2005年该曲获得雪碧榜港台金曲、9+2音乐先锋榜年度先锋金曲;2006年获得全球华语音乐榜中榜年度最佳歌曲等多个奖项。《夜曲》是《十一月的肖邦》中最早完成的作品,也可说是整张专辑的精神所在,词由方文山创作,在歌曲创作中周杰伦用古典的扎实底子,结合了流行元素。2023-07-02 02:06:392
梅西跟小贝踢球的球技叫什么
贝氏弧线“黄金右脚”贝克汉姆的任意球绝杀,球坛无人能出其右。英国的研究专家曾经把小贝的任意球作为他们的探索课题,他们称之为贝克汉姆弧,也就是贝氏弧线。具有在空中飞行的弧度大、速度快和落点准确等特。贝氏弧线往往能在空中划出一道优美的弧线,而这道弧线也将成为绿荫场上最具杀伤力的致命武器,征服了球迷与对手。依靠这一本领,贝克汉姆屡屡在一些重要比赛中踢进关键入球。梅西走廊梅西本来是右边锋,但是是左脚球员。所以他不同于其他左脚球员,下底传中不是他走的路线。在右边路内切到禁区前沿用步频横向甩掉对手,找到空挡左脚打门这一路线称梅西走廊梅西走廊是以前的叫法,是指梅西习惯性从右前场横向带球至禁区前沿随时起脚射门,突破成功率很高,也经常得分,就像此条路线空无一人,梅西可以肆意发挥,所以落得梅西走廊称号。但现在不同了,经过几年的磨练成熟,梅西已不仅仅只喜欢那条路线,而是前场任何位置都可以发动不同的进攻,所以梅西走廊已经成了往事,现在走廊太多了,直向斜向横向都有。2023-07-02 02:06:407
普拉达prada杀手包是什么意思?有什么典故,经常听见有人说杀手包。
prada杀手包_名字来源于碟中谍4这部电影,里面的一个女杀手有几个镜头手挽prada2274这个包,随州上映这个包包马上就火了,是普拉达比较经典的一个包包。卖的很火,窝买过一个高彷的,挺好看。2023-07-02 02:06:412
求尾浦由记《瞳の欠片》全平假名歌词
瞳の欠片贵方(あなた)だけに会(あ)いたくて今(いま)でもずっと 雨(あめ)の日(ひ)には思(おも)い出(だ)す 愿(ねが)い一(ひと)つだけ 贵方(あなた)の胸(むね)に忘(わす)れた 私(わたし)の欠片(かけら) まだそこにある 闭(と)じた本(ほん)の中眠(なかねむ)ってる 思(おも)い出(で)という名(な)のパンドラの宝石(ほうせき) 吐息(といき)忍(しの)ばせた踌躇(ためら)いで いつまでも见(み)ていた here in the rain 昨日散(きのうち)った花(はな)びらを惜(お)しんで泣(な)いた 贵方(あなた)のこと少(すこ)しずつ忘(わす)れて行(ゆ)くようで 私(わたし)は贵方(あなた)の欠片(かけら) 贵方(あなた)の胸(むね)へ帰(かえ)りたいだけ 欠(か)け落(お)ちた私(わたし)の瞳(ひとみ)は 三日月(みかつき)の形(かたち)に壊(こわ)れた水晶(くおつ) 光満(ひかりみ)たすのは贵方(あなた)だけ いつまでも待(ま)ってる here in the rain 贵方(あなた)にただ会(あ)いたくて。。。 闭(と)じた本(ほん)の中眠(なかねむ)ってる 思(おも)い出(で)という名(な)のパンドラの宝石(ほうせき) 吐息(といき)忍(しの)ばせた踌躇(ためら)いで いつまでも见(み)ていた 欠(か)け落(お)ちた私(わたし)の瞳(ひとみ)は 三日月(みかつき)の形(かたち)に壊(こわ)れた水晶(くおつ) 梦(むね)を満(み)たすのは贵方(あなた)だけ いつまでも待(ま)ってる here in the rain 欠片(かけら)を探(さが)して2023-07-02 02:06:142
肯德基网上订餐是网上付款还是货到付款
网上付款。肯德基网上订餐步骤如下:1、进入到软件商城下载肯德基官网App,下载完成后,打开APP。2、点击上方“立即登录”,进入到肯德基官网App“个人中心”,如图所示:3、输入正确的手机号,通过手机号发送的“验证码”登录肯德基官网App,无需设置密码。未注册肯德基的用户,初次登录时将完成注册。4、添加配送地址,如果超过配送范围,系统将提示并且不能外送,如图所示:5、点击下方“首页”,进入到首页,点击“外送”,进入到订单界面,如图所示:6、将所需要购买的商品加入到购物车,如图所示:7、选好后,进入到支付界面,提交订单并完成之后即完成肯德基网上订餐,只需在家等待肯德基快递员送餐上门即可。2023-07-02 02:06:106
prada杀手包是什么材质的?
rada典款杀手包选用Saffiano Lux真皮材质,使得杀手包不仅好看还很耐用,这也是这么多人选择杀手包的原因之一。Saffiano是摩洛哥产的一种皮革,是揉合了羊皮和麻的一种皮,Lux表示顶级品质。杀手包有以下四种尺寸:1.Prada 杀手包 mini包包宽约26厘米;高约17厘米;深约10厘米;手提直径约11厘米;肩带长约94~103厘米;2.Prada杀手包 小号宽约29.5厘米,高约20米,深约13.5厘米;肩带长约97厘米,宽约1厘米(可调节);3.Prada杀手包 中号宽约37厘米;高约26厘米;深约15厘米;手提长约36厘米,高约12厘米;4.Prada杀手包 大号宽约39厘米;高约42厘米;深约18厘米;双提手高约13厘米。2023-07-02 02:06:085
kalafina 未来 歌词翻译,急急急急急!!!!!
为实现梦想一个人在找寻星星那同样的星光你只是在凝望每一个夜幕降临的时候应该能跑动起来不再孤独的一颗颗心渐渐明亮的天空是谁一直在辜负曾经信赖着的明天依然握着小小的祈盼不会放弃力不从心哭成泪人的你我只想紧紧地拥抱着就在你身边哦 一直那么寂寞的心境会丢掉拥有的宝贵哦多少相信些温情的未来吧好想温暖你悲伤的心「未来」作词∶梶浦由记作曲∶梶浦由记编曲∶梶浦由记歌∶Kalafina街道静悄悄的你描画的每一天里数不过来的梦想的灯光消失的时候又一个夜晚开始闪耀好想守护着你带着不再孤独的心前行未来2023-07-02 02:06:072
狄仁杰的故事
历史上狄仁杰是真实存在的,高居宰相之位。勤政惠民,为了拯救无辜,敢于拂逆君主之意,始终保持体恤百姓、不畏权势的本色,始终是居庙堂之上,以民为忧,后人称之为"唐室砥柱"。在掌管刑法的大理丞期间,到任一年,判决了大量的积压案件,涉及到1.7万余人,无一人再上诉鸣冤,一时名声大振,成为朝野推崇备至的断案如神、摘奸除恶的大法官。非常受百姓爱戴。狡兔死走狗烹,飞鸟尽良弓藏。历史上的狄仁杰自己知识储备有限,尚未不敢造次。既然邀请我来回答这个问题,作为资深《神探狄仁杰》系列的粉丝,我就说一个电视片段吧。在第二部第一个故事狄仁杰破获了蛇灵一案,他深知武则天的性格,知道功高震主的女皇以后肯定对他有所忌惮,所以就先行一步,自己辞官隐退享受田园之乐。我在想这不仅是狄仁杰为官智慧,恐怕这也是大多数知道急流勇退人的智慧吧。 狄仁杰,字怀英,并州太原(今山西太原)人,出生于一个官宦之家。他的祖父叫狄孝绪,当过尚书左垂。父亲狄知逊,做过夔州长史。在这样的家庭里,狄仁杰受到的教育是严格而良好的,因此,他一长大成人,就通过明经科考试及弟,授汁州参军。参军原本是参谋军事,至唐,已演变成参谋性质的职官,官阶不是很高。狄仁杰初人仕途,并不顺利,当上参军不久,就被人污告。但诚如老子所言,祸福相依。隋唐时,全国分为十几个道,对这些道,中央常派官员巡视,这巡视的官员称之为黜置使。当时被派为河南道的黜置使是任工部尚书的阎立本。他接手狄仁杰一案后,便将狄仁杰召来讯问。2023-07-02 02:06:0514
肯德基网上订餐电话肯德基网上订餐电话客服
1、肯德基网上订餐能取消吗2、肯德基网上订餐 能取消吗?3、肯德基订餐电话4、肯德基电话订餐号码有哪些?5、肯德基网上订餐没有我的城市怎么办6、肯德基送餐电话肯德基网上订餐能取消吗可以取消的。1、请填写常用的电子邮箱或手机登录,阅读并同意《用户协议》后,填写送餐信息(包括顾客姓名、送餐联系电话、送餐地址等)并选择送餐时间后进入菜单点餐。2、从肯德基网上订餐官网左侧菜单点击类别(如主食,冷饮等),然后选择您喜爱的餐点,输入份数,点击“订购”,该餐点就被加入右侧的“我的订单”。 “我的订单”中将罗列您的点餐内容和金额,可点击取消或增减某项餐点,也可点击进入“下一步”。3、请再次检查您的订单,如订餐内容和金额符合优惠项目的享用条件,您可在自动列出的优惠项目中直接点选,未选视为自动放弃。然后再检查送餐信息是否有误,或添加其他送餐要求,如增加一个临时的送餐联系人和电话等。肯德基网上订餐 能取消吗?可以,用订餐的手机号给4008823823打电话跟他们说一声,让他们把订单取消就可以了,但是别等到人都送到家了再说不要,他们挣钱也挺不容易的!都打工的理解下吧肯德基订餐电话点击了解更多加盟项目肯德基的人工客服电话:4008823823。人工客服可以查询你的出餐进度等。拨打肯德基人工客服,可以了解一些店内的促销活动,或者反应门店服务和运营问题,寻求客服人员的帮助。对于加盟肯德基项目感兴趣的投资者,也可以向人工客服咨询有关项目的详细情况,比如加盟条件,加盟费用,加盟政策等。想要了解肯德基人工客服电话,有两种简便的方式:一、登陆肯德基官方网站,咨询在线客服,了解人工客服电话,拨打即可。二、在微信搜索肯德基小程序,点击程序,首页右上方有问号标识,点击进去即可看到在线客服,咨询客服获取人工客服电话即可。点击了解更多加盟项目肯德基电话订餐号码有哪些?肯德基外送服务叫做肯德基宅急送,全国统一外送电话是:4008-823-823。官方网站:;。订餐时间:上午10:00-下午10:00 最低消费:无最低消费 服 务 费:收取外送费6元,不收小费。“肯德基(Kentucky Fried Chicken肯塔基州炸鸡),通常简称为KFC,总部设在美国肯塔基州的路易斯维尔市,是世界上最大的鸡肉餐饮连锁店,由哈兰·山德士上校于1952年创建。肯德基属于百胜餐饮集团。百胜集团是世界上最大的餐饮集团,在全球100多个国家和地区拥有超过3.3万家连锁店和84万名员工。目前在中国大陆拥有4200家肯德基连锁店。主要出售炸鸡、汉堡、薯条、汽水等西式快餐食品。2012年2月,肯德基30年来首次获准在伊朗开分店。肯德基网上订餐没有我的城市怎么办不一定非得到网上订餐肯德基网上订餐电话,您可以打全国统一订餐电话肯德基网上订餐电话:4008820820,或者问一下肯德基网上订餐电话他们餐厅肯德基网上订餐电话的电话,也可以订餐的。肯德基送餐电话肯德基有专门的送餐上门业务,直接拨打肯德基的400电话或者网上订餐手机app订餐都可以实现外送业务,也叫肯德基宅急送,当然也是有送餐范围的4008517517 麦当劳 4008823823 肯德基2023-07-02 02:06:001
周杰伦的《夜曲》讲的是一个什么故事?
《夜曲》里讲述了一个爱人离去的故事,主线是周杰伦扮演的男子思念死去女友的故事,MV的故事也是周杰伦自己构思的,MV中将为失去的女主角弹奏她生前最爱的肖邦的《夜曲》。开头一段的几个钢琴音符便带着伤感,Rap一段随着钢琴声逐渐显现。《夜曲》由吉他声及简单节奏作开场,引导人们走进心碎的场景。歌曲描述了主角为怀念逝去的恋人,仍然选择用弹奏肖邦夜曲的方式,纪念爱情那带着痛彻意味,着实让人感受到一丝凄美的气氛。扩展资料:《夜曲》创作背景2004年12月周杰伦在美国结束演唱会后,前往纽约郊区的墓地为《夜曲》取景。没想到前一晚美国刮起大风雪,工作人员深怕沿途会被积雪困住,周杰伦却不顾众人劝阻,执意前往。还好出发时天气转好,但一行人还是花了5个小时才到达拍摄地点,还得在零下6度扮演思念死去女友的深情男子,拚了命也要达到完美效果。因剧情需要,周杰伦必须在墓碑前下跪,但这块墓碑是道具,以免周董一不小心,带了个“洋妞”回来。参考资料来源:百度百科-《夜曲》2023-07-02 02:05:576