无创DNA检测数据18染色体高于13和21是男宝还是女宝
无法判断。原因是21、18、13这三条染色体上的基因数目少,出现三体变异后胎儿存活下来的可能性大,也就是能够生下来。其它染色体上基因数目多,如果数目变异,对胎儿的影响是致命的,基本上在发育早期就流产了。所以在医学上21、18、13这三条染色体异常的病例多,无创DNA检测积累的数据也多,因而检测准确率高,反之,其它染色体的准确率低,作为一项医学技术,准确率低的话当然不能反映到报告上。研究报告:脱氧核糖核酸是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。DNA 分子巨大,由核苷酸组成。核苷酸的含氮碱基为腺嘌呤、鸟嘌呤、胞嘧啶及胸腺嘧啶;戊糖为脱氧核糖。1953 年美国的沃森(James Dewey Watson)、英国的克里克与韦尔金斯描述了 DNA 的结构:由一对多核苷酸链围绕一个共同的中心轴盘绕构成。糖 -磷酸链在螺旋形结构的外面,碱基朝向里面。两条多核苷酸链通过碱基间的氢键相连,形成相当稳定的组合。
我在一个搜搜问问上看到:原核生物的DNA序列表现为碱基ACGU的
那个写错了。DNA序列就是ATGC,RNA序列是AUGC。RNA中T被U替代。
列举我国科学家在古生物遗体(化石)DNA研究方面的五项重要成果。。。。。
一、1980年中国湖南医学院的科研小组发表的从马王堆汉代古墓女古尸的肋软骨中获取古代DNA被认为是首次提取的古DNA,但未进行测序。二、复旦大学现代人类学教育部国家重点实验室于2003年5月建立了专门的古代人骨DNA实验室,已经收集了全国大约46个地区不同历史时期的古代人骨标本(数百年至1万年),建立了古代人骨(牙齿、肢骨残段等)样品库,拟建立古代人骨DNA数据信息库。目前已经对我国新疆哈密五堡(3200~2900BP)、新疆且末加瓦艾日克(2750~2100BP)、甘肃玉门火烧沟(3600BP)、青海大通上孙家寨(3300BP、1800BP)、宁夏中卫―中宁(2200~1800BP)、陕西扶风周原(3100~2800BP)、秦始皇兵马俑劳工墓(2200BP)、山西襄汾陶寺(4500~4000BP)、山东临淄(2800~1800BP)、山东滕州(2200~1800BP),以及长江三峡巫山大溪遗址(6000~5000BP)和湖北恩施悬棺墓(1000BP)等考古遗址出土的大约180个个体的古代人骨标本进行了mtDNA的提取和序列分析。Y-染色体的提取、扩增和序列分析等技术体系以及性别鉴定等技术体系也在进一步的建立和完善中。三、迄今为止,我们已对全国各民族以及各民族主要支系的120个群体都进行了DNA采样,通过对12000多个人的检测发现,涵盖我国各省、市、自治区的近一万个男性样本Y染色体上,几乎都有一个突变位点M168G,而这个突变位点大约在7.9万年前产生于非洲,是一部分非洲人特有的遗传标记。这都证实,中国人起源于非洲。四、闫鹏荣是复旦大学生命科学院2005届毕业生,他就对三峡的悬棺作了研究。然而因为长江流域空气潮湿、气候多变,古DNA中所能“说”出的有效信息几乎被破坏殆尽,闫鹏荣经过2个多月才从16个样本中抽取了2条集中了遗传信息的DNA序列。古DNA的提取概率非常小,这两个小小的“密码”已是对他多日辛劳最大的“犒赏”。在它们的刺激下,近半年的时间里,闫鹏荣对剩余的古人遗骨里的DNA序列进行抽取,并最终获得了7个作破解“悬棺”之谜的密码。终于,他发现,古代悬棺人的遗传序列上的信息与侗台人与南岛人所具有的特质非常相近,而后者则是由广东、福建一袋的古百越人迁徙融合形成的。五、由中国深圳华大基因研究院和丹麦哥本哈根大学联合创建的中丹基因组联合中心近日完成了世界首例古人类全基因组的深度序列测定和解读工作。该论文中的古人类样本来源于一个被称为Saqqaq的人类群体,约在4750年前至2500年前居住于地球北极附近的格陵兰岛,其后灭绝。数年前,科学家从格陵兰岛永冻层中发现了一名约生活在4000年前的Saqqaq古人的头发样本,随即开展了各项研究工作。2009年,中丹两国科研工作者成功从该头发样本中提取出细胞核DNA碎片并进行了测定,经过艰苦的组装和序列分析工作,证明来自格陵兰岛的Saqqaq古人的遗传信息比公认的美洲原住民(主要是印第安人和因纽特人,同属黄种人)更加接近于现代东亚和西伯利亚人群。该研究以强有力的数据证明,在现代美洲原住民迁徙到美洲之前,还有更早一批的黄种人群体经西伯利亚迁徙到美洲,为这一人类演化历史中的重大问题提供了根本证据。非常有趣的是,科学家通过对其基因组序列的仔细分析,推断出这一4000年前古人类应该具有在亚洲人中常见的A型血、褐色眼睛、浓密的黑发和较干的耳蜡,同时很有可能是一名秃顶男性。不知道行不行,我就是这么写的
保证DNA复制准确无误的关键步骤是什么?
DNA生物合成具有保真性。要使DNA准确复制必须要有严格的碱基配对,DNA聚合酶在复制中的正确选择,对复制过程中出现的错误及时校正(我们生化中讲的)如果谈及DNA复制的过程分为DNA复制的引发,DNA链的延伸,DNA复制的终止DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程 (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。 (2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。 (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。 冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。 端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶I催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。 在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后 ,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。 端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。 至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)编辑本段DNA复制所需的蛋白质和酶 酶和蛋白质 作用 拓扑异构酶 帮助解开复制叉前后的超螺旋结构 DNA解旋酶 揭开螺旋 Rep蛋白 帮助揭开双螺旋结构 引物合成酶 合成RNA引物 单链结合蛋白 稳定单连区 DNA聚合酶Ⅰ 消除引物,填满裂缝 DNA聚合酶Ⅲ 合成DNA DNA连接酶 连接DNA末端 编辑本段DNA链的延伸 DNA新生链的合成由DNA聚合酶Ⅲ所催化,然而,DNA必须由螺旋酶在复制叉处边移动边解开双链。这样就产生了一种拓扑学上的问题:由于DNA的解链,在DNA双链区势必产生正超螺旋,在环状DNA中更为明显,当达到一定程度后就会造成复制叉难再继续前进,从而终 DNA复制止DNA复制。但是,在细胞内DNA复制不会因出现拓扑学问题而停止。有两种机制可以防止这种现象发生:[1]DNA在生物细胞中本身就是超螺旋,当DNA解链而产生正超螺旋时,可以被原来存在的负超螺旋所中和;[2]DNA拓扑异构酶Ⅰ要以打开一条链,使正超螺旋状态转变成松弛状态,而DNA拓扑异构酶Ⅱ(旋转酶)可以在DNA解链前方不停地继续将负超螺旋引入双链DNA。这两种机制保证了无论是环状DNA还是开环DNA的复制顺利的解链,再由DNA聚合酶Ⅲ合成新的DNA链。前已述及DNA生长链的延伸主要由DNA聚合酶催化,该酶是由7种蛋白质(多肽)组成的聚合体,称为全酶。全酶中所有亚基对完成DNA复制都是必需的。α亚基具有聚合功能和5"→3"外切酶活性,ε亚基具有3"→5"外切酶活性。另外,全酶中还有ATP分子它是DNA聚合酶Ⅲ催化第一个脱氧核糖核苷酸连接在RNA引物上所必需的,其他亚基的功能尚不清楚。 在DNA复制叉处要能由两套DNA聚合酶Ⅲ在同一时间分别进行复制DNA前导链和滞后链。如果滞后链模板环绕DNA聚合酶Ⅲ全酶,并通过DNA聚合酶Ⅲ,然后再折向与未解链的双链DNA在同一方向上,则滞后链的合成可以和前导链的合成在同一方向上进行。 这样,当DNA聚合酶Ⅲ沿着滞后链模板移动时,由特异的引物酶催化合成的RNA引物即可以由DNA聚合酶Ⅲ所延伸。当合成的DNA链到达前一次合成的冈崎片段的位置时,滞后链模板及刚合成的冈崎片断便从DNA聚合酶Ⅲ上释放出来。这时,由于复制叉继续向前运动,便产生了又一段单链的滞后链模板,它重新环绕DNA聚合酶Ⅲ全酶,并通过DNA聚合酶Ⅲ开始合成新的滞后链冈崎片段。通过这样的机制,前导链的合成不会超过滞后链太多(最后只有一个冈崎片段的长度)。而且,这样引发体在DNA链上和DNA聚合酶Ⅲ以同一速度移动。 按上述DNA复制的机制,在复制叉附近,形成了以两套DNA聚合酶Ⅲ全酶分子、引发体和螺旋构成的类似核糖体大小的复合体,称为DNA复制体(replisome)。复制体在DNA前导链模板和滞后链模板上移动时便合成了连续的DNA前导链和由许多冈崎片段组成的滞后链。在DNA合成延伸过程中主要是DNA聚合酶Ⅲ的作用。当冈崎片段形成后,DNA聚合酶Ⅰ通过其5"→3"外切酶活性切除冈崎片段上的RNA引物,同时,利用后一个冈崎片段作为引物由5"→3"合成DNA。最后两个冈崎片段由DNA连接酶将其接起来,形成完整的DNA滞后链。编辑本段终止 过去认为,DNA一旦复制开始,就会将该DNA分子全部复制完毕, DNA复制才终止其DNA复制。但最近的实验表明,在DNA上也存在着复制终止位点,DNA复制将在复制终止位点处终止,并不一定等全部DNA合成完毕。但目前对复制终止位点的结构和功能了解甚少在DNA复制终止阶段令人困惑的一个问题是,线性DNA分子两端是如何完成其复制的?已知DNA复制都要有RNA引物参与。当RNA引物被切除后,中间所遗留的间隙由DNA聚合Ⅰ所填充。但是,在线性分子的两端以5"→3"为模板的滞后链的合成,其末端的RNA引物被切除后是无法被DNA聚合酶所填充的。 在研究T7DNA复制时,这个问题部分地得到了解决。T7DNA两端的DNA序列区有160bp长的序列完全相同。而且,在T7DNA复制时,产生的子代DNA分子不是一个单位T7DNA长度,而是许多单位长度的T7DNA首尾连接在一起。T7DNA两个子代DNA分子都会有一个3"端单链尾巴,两个子代DNA的3"端尾巴以互补结合形成两个单位T7DNA的线性连接。然后由DNA聚合酶Ⅰ填充和DNA连接酶连接后,继续复制便形成四个单位长度的T7DNA分子。这样复制下去,便可形成多个单位长度的T7DNA分子。这样的T7DNA分子可以被特异的内切酶切开,用DNA聚合酶填充与亲代DNA完全一样的双链T7DNA分子。 在研究痘病毒复制时,发现了线性DNA分子完成末端复制的第二种方式。痘病毒DNA在两端都形成发夹环状结构。 DNA复制DNA复制时,在线性分子中间的一个复制起点开始,双向进行,将发夹环状结构变成双链环状DNA。然后,在发夹的中央将不同DNA链切开,使DNA分子变性,双链分开。这样,在每个分子两端形成一个单链尾端要以自我互补,形成完整的发夹结构,与亲代DNA分子一样。在真核生物染色体线性DNA分子复制时,尚不清楚末端的复制过程是怎样进行的。也可能像痘病毒那样形成发夹结构而进行复制。但最近的实验表明,真核生物染色体末端DNA复制是由一种特殊的酶将一个新的末端DNA序列加在刚刚完成复制的DNA末端。这种机制首先在四膜虫中发现。该生物细胞的线性DNA分子末端有30-70拷贝的5"TTGGGG3"序列,该细胞中存在一种酶可以将TTGGGG序列加在事先已存在的单键DNA末端的TTGGGG序列上。这样有较长的末端单链DNA,可以被引物酶重新引发或其他的酶蛋白引发而合成RNA引物,并由DNA聚合酶将其变成双链DNA。这样就可以避免其DNA随着复制的不断进行而逐渐变短。 在环状DNA的复制的末端终止阶段则不存在上述问题。环状DNA复制到最后,由DNA拓扑异构酶Ⅱ切开双链DNA,将两个DNA分子分开成为两个完整的与亲代DNA分子一样的子代DNA。 DNA复制的特点 1.半保留复制:DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制。DNA以半保留方式进行复制,是在1958年由M. Meselson 和 F. Stahl 所完成的实验所证明。 2.有一定的复制起始点:DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子)。在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。 3.需要引物(primer):DNA聚合酶必须以一段具有3"端自由羟基(3"-OH)的RNA作为引物,才能开始聚合子代DNA链。RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。 4.双向复制:DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制。 5.半不连续复制:由于DNA聚合酶只能以5"→3"方向聚合子代DNA链,因此两条亲代DNA链作为模板聚合子代DNA链时的方式是不同的。以3"→5"方向的亲代DNA链作模板的子代链在聚合时基本上是连续进行的,这一条链被称为领头链(leading strand)。而以5"→3"方向的亲代DNA链为模板的子代链在聚合时则是不连续的,这条链被称为随从链(lagging strand)。DNA在复制时,由随从链所形成的一些子代DNA短链称为冈崎片段(Okazaki fragment)。冈崎片段的大小,在原核生物中约为1000~2000个核苷酸,而在真核生物中约为100个核苷酸。
何谓端粒DNA?端粒酶的特性及生物学特性是什么?
端粒(Telomere)是真核细胞染色体末端的特殊结构.人端粒是由6个碱基重复序列(TTAGGG)和结合蛋白组成。端粒有重要的生物学功能,可稳定染色体的功能,防止染色体DNA降解、末端融合,保护染色体结构基因,调节正常细胞生长。正常细胞由于线性DNA复制5"末端消失,随体细胞不断增殖,端粒逐渐缩短,当细胞端粒 缩至一定程度,细胞停止分裂,处于静止状态.故有人称端粒为正常细胞的“分裂钟” (Mistosis clock) ,端粒长短和稳定性决定了细胞寿命,并与细胞衰老和癌变密切相关。端粒酶(Telomerase)是使端粒延伸的反转录DNA台成酶。是个由RNA和蛋白质组成的核糖核酸-蛋白复合物。其RNA组分为模板,蛋白组分具有催化活性,以端粒3"末端为引物,合成端粒重复序列。端粒酶的活性在真核细胞中可检测到,其功能是合成染色体末端的端粒,使因每次细胞分裂而逐渐缩短的端粒长度得以补偿,进而稳定端粒长度。主要特征是用它自身携带的RNA作模板,通过逆转录合成DNA。端粒酶在细胞中的主要生物学功能是通过其逆转录酶活性复制和延长端粒DNA来稳定染色体端粒DNA的长度.近年有关端粒酶与肿瘤关系的研究进展表明,在肿瘤细胞中端粒酶还参与了对肿瘤细胞的凋亡和基因组稳定的调控过程.与端粒酶的多重生物学活性相对应,肿瘤细胞中也存在复杂的端粒酶调控网络.通过蛋白质-蛋白质相互作用在翻译后水平对端粒酶活性及功能进行调控,则是目前研究端粒酶调控机制的热点之一.
何谓端粒DNA?端粒酶的特性及生物学特性是什么?
端粒(Telomere)是真核细胞染色体末端的特殊结构.人端粒是由6个碱基重复序列(TTAGGG)和结合蛋白组成.端粒有重要的生物学功能,可稳定染色体的功能,防止染色体DNA降解、末端融合,保护染色体结构基因,调节正常细胞生长.正常细胞由于线性DNA复制5"末端消失,随体细胞不断增殖,端粒逐渐缩短,当细胞端粒 缩至一定程度,细胞停止分裂,处于静止状态.故有人称端粒为正常细胞的“分裂钟” (Mistosis clock) ,端粒长短和稳定性决定了细胞寿命,并与细胞衰老和癌变密切相关.端粒酶(Telomerase)是使端粒延伸的反转录DNA台成酶.是个由RNA和蛋白质组成的核糖核酸-蛋白复合物.其RNA组分为模板,蛋白组分具有催化活性,以端粒3"末端为引物,合成端粒重复序列.端粒酶的活性在真核细胞中可检测到,其功能是合成染色体末端的端粒,使因每次细胞分裂而逐渐缩短的端粒长度得以补偿,进而稳定端粒长度.主要特征是用它自身携带的RNA作模板,通过逆转录合成DNA. 端粒酶在细胞中的主要生物学功能是通过其逆转录酶活性复制和延长端粒DNA来稳定染色体端粒DNA的长度.近年有关端粒酶与肿瘤关系的研究进展表明,在肿瘤细胞中端粒酶还参与了对肿瘤细胞的凋亡和基因组稳定的调控过程.与端粒酶的多重生物学活性相对应,肿瘤细胞中也存在复杂的端粒酶调控网络.通过蛋白质-蛋白质相互作用在翻译后水平对端粒酶活性及功能进行调控,则是目前研究端粒酶调控机制的热点之一.
广告学中AIDNA和AISNS是什么意思,每个字母分别代表什么意思?
同学,你可能弄错了,不是AIDNA和AISNS,应该是AIDMA和AISAS,这两个都是广告里面很有名的理论,大学的时候上过这个课(我是广告专业的),不过怕自己说的不全面,所以还是直接引用百度百科里面的东西,你按正确的字母组合去搜索,你可以找到更多的内容!AIDMA是消费者行为学领域很成熟的理论模型之一,由美国广告学家E.S.刘易斯在1898年提出。该理论认为,消费者从接触到信息到最后达成购买,会经历这5个阶段: A:Attention(引起注意)——花哨的名片、提包上绣着广告词等被经常采用的引起注意的方法 I:Interest (引起兴趣)——一般使用的方法是精制的彩色目录、有关商品的新闻简报加以剪贴。 D:Desire(唤起欲望)——推销茶叶的要随时准备茶具,给顾客沏上一杯香气扑鼻的浓茶,顾客一品茶香体会茶的美味,就会产生购买欲。推销房子的,要带顾客参观房子。餐馆的入口处要陈列色香味具全的精制样品,让顾客倍感商品的魅力,就能唤起他的购买欲。 M:Memory(留下记忆)—— 一位成功的推销员说:“每次我在宣传自己公司的产品时,总是拿着别公司的产品目录,一一加以详细说明比较。因为如果总是说自己的产品有多好多好,顾客对你不相信。反而想多了解一下其他公司的产品,而如果你先提出其他公司的产品,顾客反而会认定你自己的产品。” A:Action(购买行动)——从引起注意到付诸购买的整个销售过程,推销员必须始终信心十足。过分自信也会引起顾客的反感,以为你在说大话、吹牛皮。从而不信任你的话。AISAS模式是由电通公司针对互联网与无线应用时代消费者生活形态的变化,而提出的一种全新的消费者行为分析模型。 目前营销方式正从传统的AIDMA营销法则(Attention 注意Interest 兴趣 Desire 欲望 Memory 记忆 Action 行动)逐渐向含有网络特质的AISAS发展。 1、Attention——引起注意 2、Interest——引起兴趣 3、Search——进行搜索 4、Action——购买行动 5、Share——人人分享AISAS模式的转变。在全新的营销法则中,两个具备网络特质的“s”——search(搜索),share(分享)的出现,指出了互联网时代下搜索(Search)和分享(Share)的重要性,而不是一味地向用户进行单向的理念灌输,充分体现了互联网对于人们生活方式和消费行为的影响与改变。
女孩的x性染色体上的基因能通过DNA损伤变成y染色体上的基因吗?
完全不能!X和Y染色体并不完全同源,上面有同源区段,也有不同源的部分(也就是说有些基因只存在于X,有些基因只存在于Y)单纯破坏X染色体的基因显然变不出Y。一定还要拼接不少区段才能形成Y。
为什么用DNA鉴定家禽性别
有的家禽在年幼的时候外貌没有区别,由于么某种目的会需要筛选家禽的性别,如肉禽场只需要家禽的肉,他就会筛选出雄的,因为雌的生长较雄的慢。又如蛋场需要蛋,就会筛选出雌的进行培养。而由于其幼年又不能通过外貌识别就只能通过其他手段,如DNA的测定。雌雄的染色体不同,雌性为ZW型,雄性为ZZ型,因而能识别出。
DNA音乐网站
一听音乐网 f130免费音乐试听 365音乐网 世纪音乐网 就去听听音乐网 玩音乐 亦歌 想要听歌 凡人音乐网 36900音乐网 老歌年代 Mp3音乐网 QQ530音乐网 星星音乐谷 音乐听厅 可可西音乐 中国音乐网 腾讯中国音乐联播网 新浪乐库 久久一听 音乐宝贝 星吧音乐网 久久音乐网 我爱去听 无忧音乐网 一起来音乐 一路聆听音乐网 九酷音乐网 七音音乐网 56流行音乐网 骑士音乐网 叮当音乐网 好听音乐网 音乐视听2000 YYMP3音乐网 QQ163 音乐网 音乐快车 九天音乐 CnMp3音乐网 中华好歌网 中国音乐在线 MTV音乐网 5nd音乐网 爱听音乐网 轻音乐世界 今声缘音乐 无线音乐网 酷猪音乐-英文歌曲 去听去听音乐网 我爱音乐网 音乐列表 视听在线 蓝雨听吧 九天听吧 在线听歌网 91F音乐网 都来听音乐 查歌网址大全 http://www.chaage.cn/s/695.html
乙肝DNA检测的数值的高低与肝功有直接关系吗?
乙肝病毒DNA定量不能说明病情轻重。乙肝病毒DNA定量数值只能说明游离在血液中病毒的含量,病毒多少、含量高低与病情严重程度没有直接关系。乙肝病情严重程度必须通过检测肝功系列指标确定,这些指标包括:转氨酶、胆碱酯酶、胆红素、白蛋白、凝血酶原活动度、转肽酶、蛋白电泳等等,凝血酶原活动度、白蛋白、胆碱酯酶数值越低,说明病情越严重。病毒定量数值高低与病情无直接关系。相反,绝大多数无症状乙肝病毒携带者,尤其是少年儿童患者,乙肝病毒DNA检测都为阳性,乙肝病毒处于高复制状态,而他们的病情十分轻微,肝穿结果显示,他们的肝组织仅为轻度的非特异性炎症改变;而大多数肝硬化或肝癌患者的乙肝病毒DNA检测多为阴性,而病情却十分严重。乙肝病毒本身不引起肝细胞病变,感染的肝细胞仍然是长寿的,半衰期6~12个月或更长。乙肝病情轻重取决于很多因素,例如患者的免疫状态、遗传因素、病毒的变异等,病毒数量多少不是病情演变的决定因素。
DNA计算机开山之作“推销员问题”的解决是怎么一回事啊,有木有人知道啊,求具体的操作过程?
与由芯片和电路组成的传统计算机不同计算机的原材料是人工制作的片断传统计算机是将数据转化成和后再进行处理而计算机则是将数据转化成碱基序列传统计算机依靠电信号来控制而计算机则通过控制分子间的生化反应来完成运算。 由以色列魏茨曼研究所研制的这种计算机只有几个纳米大它能察觉到细胞中信使核糖核酸的异常。信使的作用是充当生成蛋白质的中间媒介传递遗传信息。在试管实验中该计算机对与肺癌和前列腺癌相关的异常信使非常敏感。在发现异常的信使后它便释放出由控制生成的抗癌药这种药物能抑制与肿瘤相关的基因表达。计算机的研制尚处起步阶段要将其应用到临床可能还需要等待数十年。但是美国威斯康星大学的计算机专家劳埃德·史密斯说“这种新型计算机是第一种使用做原料并释放药物的计算机首次实现了输入和输出的生物化。这就意味着它能够与活的生物系统相融合。” 目前这种计算机只能在特殊的盐溶液中发挥作用。研究人员指出要用它来真正诊治癌症还必须解决许多难题其中最重要的就是使其在生物环境中持续工作。研究人员预测未来的计算机要比目前这种样机复杂得多。它应该能够识别与癌症相关的多种分子而不仅是信使。另外它还能释放多种药物而不只限于药品。在这种计算机真正用于临床之前还必须进行组织培养液、低等生物、哺乳动物和人体试验 上海交通大学生命科学研究中心和中科院上海生命科学院营养科学研究所最近于试管中完成了DNA计算机的雏形研制在实验上把自动机与表面DNA计算结合到了一起。这在中国乃属首次相关论文已发表在中国《科学通报》49卷第1期的英文版上。 据介绍这一DNA计算机采用双色荧光标记对输入与输出分子进行同时检测用测序仪对自动运行过程进行实时监测用磁珠表面反应法固化反应提高可控性操作技术等以至最终在一定程度上完成模拟电子计算机处理0.1信号的功能将来通过计算芯片技术把电子计算机的计算功能进行本质上的提升在理论上和潜在的应用上都有重大意义。 近年来利用遗传物质DNA分子中蕴含的计算能力开发具有强大功能的DNA计算机成为计算机科学家和生物学家的梦想。1994年埃德曼用DNA分子解决了电子计算机原则上不能解决的“邮递员问题”揭开了DNA计算机研究的新纪元。2001年由以色列魏茨曼研究所首先完成的基于DNA分子的自动机模型被评选为当年的国际十大新闻。 上海交通大学生命科学研究中心主任贺林教授认为目前的DNA计算机尚处在襁褓阶段还不具商业运用价值但是其强大的并行运算能力和以生物分子为计算物质的特征是传统电子计算机所不具备的。 贺林教授说在不久的将来DNA计算机可被用来开发新一代的基因分型技术处理基因组的信息或用注入到人体内的DNA计算机进行基因治疗。如果DNA代表生命科学计算机代表信息科学DNA计算机这个典型的交叉课题或许是后基因组时代生命学科与信息学科大融合、大碰撞的一个缩影。编辑王秀 埃胡德教授以及以色列魏兹曼学院的研究人员在数年前就建造了最小的生物分子计算机现在在实验室的实验中他们已经能够使它分析生物信息发现和治疗前列腺癌和肺癌。埃胡德说我们已经给它增加了输入/输出系统它能够诊断出疾病并在试管中制造出相应的药物。 这种计算机的尺寸非常地小一滴水中就可能包含有1成亿个计算机。它的输入/输出模块以及软件都是由DNA分子构成的。 这一技术能够给癌症等疾病在未来的诊治带来革命性的变化无需再进行切片检查DNA计算机能够在人体内的组织中诊断疾病。埃胡德说我们的医疗计算机可能被看作一种药物由血液带到全身的各处检查每个细胞是否已经发生了病变。 它能够使医生在肿瘤形成前治疗癌症如果疾病已经扩散到身体的其它部分它会向“顽固的”细胞释放药物。不同的输入模块能够诊治不同的疾病。 现在生物计算机还只能在盐溶液中工作要把它应用到实际的疾病诊断中还有很多障碍需要突破。既要确保计算机能够在人体内的生物环境下继续正常工作又不能对人体自身的免疫系统造成混乱即要做到绝对安全这显然是非常必要的夏皮罗说。 它们也应该比现在的原型要复杂不仅仅是辨认跟癌症有关的RNA还要分配各种药物也不仅仅是DNA疗法。它们需要接受在细胞环境、组织、单个器官和动物体内的实验最终才能用在人身上。 试管中参与生化反应的分子很多相当于大批的DNA计算机在同时工作尽管生化反应有时需要很长的时间但极其大量一个摩尔的DNA溶液含有10的23次方个分子每个分子都是一台计算机的DNA计算机同时运算运算速度能达到每秒10亿次的高速。而且DNA计算机的能耗非常低耗能只有电子计算机的一百亿分之一而它的存储密度却大约是人们通常使用的磁盘存储器的10000亿倍这些都是DNA计算机的优点。” 夏院士对记者说“但DNA计算机也存在两大缺陷由于生化反应本身存在一定的随机性所以这种运算的结果也就不完全精确。另外参与运算的DNA分子之间不能像传统计算机一样进行通讯只能‘各自为战"这对于DNA计算机今后处理一些大型计算也是一种缺陷。” “最主要的是DNA计算机面对的这些障碍现在看来都是‘难以逾越的"所以除了针对一些特定问题DNA计算机在实际应用上还不如纳米计算机更有希望。”夏院士最后强调说。 新浪科技讯 据美国《新科学家》网站美国东部时间8月18日北京时间8月19日消息 世界第一台可运行游戏程序的DNA计算机现已面世。该系统命名为“MAYA”是目前第一个互动式DNA计算处理系统。该系统是以生化酶为计算基础来运算简单游戏。 DNA计算机是美国南加州大学莱昂纳德-阿德尔博士于1994年提出的奇妙构思DNA计算机通过控制DNA分子间的生化反应来完成运算。DNA分子之间的反应可取代CPU进行计算处理 。目前的DNA计算技术都必须将DNA溶于试管液体中。 该DNA计算系统是由美国哥伦比亚大学米兰-斯托贾诺维克Milan Stojanovic和新墨西哥大学达克-斯蒂芬维克Darko Stefanovic研制开发的。以色列魏茨曼科学研究所科比-贝尼桑Kobi Benenson称“用复杂的DNA分子反应作为逻辑通道进行数据处理并实现具体的游戏程序是DNA计算处理技术上的一个里程碑。” 通过生化酶不同的反应可实现比井字游戏更为复杂的计算处理。但是斯托贾诺维克和斯蒂芬维克表示“尽管DNA计算机可顺利运行而无需人为性干预。但是DNA计算机远不及硅芯片计算机因为在人机交互处理中人为操作与DNA计算机的交互不能像硅芯片计算机那样很好地结合在一起。”目前很少有人能战胜MAYA斯托贾诺维克已经输给MAYA100多次。他指出“我们应该改动游戏程序让电脑输几次使玩家感受到胜利的喜悦。” 伦敦大学计算机科学家彼得-本特利Peter Bentley说“这是一项非常有趣的研究成果。但是该系统只是一个新奇的事物目前仅限于井字游戏尚不能拓展至更广阔的 新华网华盛顿3月18日电记者毛磊美国科学家利用简单的DNA计算机在实验中为一个有24个变量、100万种可能结果的数学难题找到了答案。这是迄今利用非电子化计算手段解出的最复杂数学问题表明DNA计算机研制又迈出了重要一步。 美国南加利福尼亚大学教授阿德勒曼将这一研究成果发表在新一期美国《科学》杂志上。 DNA脱氧核糖核酸是生物遗传的物质基础它通过4种核苷酸的排列组合存储生物遗传信息。将运算信息排列于DNA上并通过特定DNA片段之间的相互作用来得出运算结果是DNA计算机工作的主要原理。 阿德勒曼教授是DNA计算机研究领域的先驱。他于1994年在实验中演示DNA计算机可以解决著名的“推销员问题”首次论证了这种计算技术的可行性。“推销员问题”用数学语言来说是要求在7个城市间寻找最短的路线这一问题相对简单心算就可以给出答案。 但这次阿德勒曼教授用DNA计算机演示新问题难度就大多了靠人脑的计算能力基本无法处理。这一逻辑问题名叫“NP完全3-SAT问题”听起来不知所云但可以形象化地表述如下 假设你走进一个有100万辆汽车的车行想买一辆称心的车。你向销售员提出了一大堆条件如“想买一辆4座和自动档的”“敞蓬和天蓝色的”宝马车等等加起来多达24项。在整个车行中能满足你所有条件的车只有一辆。从理论上说销售员必须一辆辆费劲地找。传统的电子计算机采用的就是这种串行计算的办法来求解。 阿德勒曼等设计的DNA计算机则对这一问题进行了并行处理。他们首先利用DNA片段编码了100万种可能的答案然后将其逐一通过不同容器每个容器都放入了代表24个限制条件之一的DNA。每通过一个容器满足特定限制条件的DNA分子经反应后被留下并进入下一个容器继续接受其它限制条件的检验不满足的则被排除出去从解决这个问题的过程中可以看出理论上DNA计算机的运算策略和速度将优于传统的电子计算机。阿德勒曼教授说虽然他们的新实验进一步提高了DNA计算机模型的运算能力但总的来说DNA计算机错误率还是太高要真正超越电子计算机还需要在DNA大分子操纵技术等方面有大的突破。 人们正在探索将光电子学和生物工程这两个最尖端的技术引入计算机领域研制超小型、超高速、超大容量的新型计算机并对此充满信心。人们对光子计算机的设想是1根据光学空间的多维特性为计算机设计新的逻辑结构和运算原理。2充分利用光子元件体积小传送信息速度快的特点用超高速大容量的光子元件替代目前计算机中使用的硅化学元件用光导纤维或光波代替普通金属导线。 仿生计算机的设计思路与光子计算机有异曲同工之妙1通过对生物的脑和神经系统中信息传递、信息处理等原理的进一步研究设计全新的仿生模式计算机并与人工智能的研究相互借鉴、共同发展。2模拟生物细胞中的蛋白质和酶等物质的产生过程制造出仿生集成芯片来替代目前计算机中使用的半导体元件。 50年前年轻的美国科学家詹姆斯·沃森和英国科学家弗朗西斯·克里克正式提出了DNA脱氧核糖核酸的双螺旋结构模型。DNA结构这一分子生物学中最基本的谜团揭开后释放出了惊人的能量。这50年来因为DNA的研究而涌现出来的基因克隆、基因组测序、聚合酶链式反应等技术直接促进了现代生物技术产业的兴起。可以说DNA双螺旋结构的发现为现代基因工程奠定了基础。 事实上DNA的影响力远不止于生物领域它直接启发了区别于传统电子计算机计算模式的DNA计算机的出现。1994年DNA计算机诞生于南加利福尼亚大学莱昂那多·阿德莱曼Leonard Adleman教授的试管中据说这一设想是受到沃森所著的《基因分子生物学》教科书的启发。虽然在9年之后的今天DNA计算机还只是科学之树的“嫩枝”科学界对其态度也见仁见智。但在“寻找硅的替代物”已成为一场如火如荼的运动的今天DNA计算依然是值得探索的方向。 DNA启发计算。与传统的硅电子计算机“看得见、摸得着”并有着越来越精致的外型不同的是目前的DNA计算机还都只是躺在试管里的液体。之所以会构造出如此古怪的计算机其原因在于科学家普遍认为目前计算机的缩微化已接近极限。摩尔定律告诉我们芯片制造商大约每18个月就会把挤在指甲盖那么大的硅片里的晶体管数量增加一倍而事实的确如此。物理学定律则认为这种成倍增长的速度不会永远持续下去。最终晶体管会变得非常小小到只有几个分子那么大。在这样小的距离里起作用的将是古怪的量子定律电子会从一个地方跳到另外一个地方而不穿过这两个地方之间的空间就像破漏的消防水管中的水这时的电子会越过导线和绝缘层从而产生致命的短路。因此人们需要掌握能制造出体积更微小的计算机的技术目前谈得较多的DNA计算机、量子计算机、光子计算机、分子计算机就是这一领域主要的探索方向。 就现在的情况下还难以预测下一代计算机将会是什么样的或许未来的计算机芯片是一滴溶液。可千万别小看这一滴溶液阿德莱曼当年就是用一滴溶液解决了著名的“推销员问题”即哈米尔顿Hamilton的路径问题要求在7个城市间寻找最短路线虽然这一问题相对简单人类的心算就可以解决但这是对DNA计算技术可行性的首次论证。去年阿德莱曼又利用简单的DNA计算机为一个有着24个变量、100万种可能结果的数学难题这一逻辑问题名为“NP完全3-SAT问题”找到了答案而这样的计算就连传统计算机都不易做到。其实DNA计算机的最大优点在于其惊人的存贮容量和运算速度。一立方厘米的DNA上存储的信息比一万亿张光盘存储的还多十几小时的DNA计算就能相当于所有电脑自问世以来的总运算量。 更重要的是DNA计算机的能耗非常低只有电子计算机的一百亿分之一。虽然目前单个DNA计算机的运算速度比传统计算机慢得多但由于它能够同时执行大量的运算如一根试管可容纳一万亿个DNA计算机这些计算机可以同时并发运算如此看来“稚嫩”的DNA计算机至少非常适合于解决那些需要穷尽各种计算结果的“组合问题”。 何时突破“试管”一些科学家预计十到二十年后DNA计算机将进入实用阶段。当然也有不少科学家对此提出了质疑。毕竟九年的时间对于看清楚可能会对未来产生重大影响的技术的前途来说实在太短。不说别的可自动运行的DNA计算机也才诞生了不足两年早先的DNA计算机需要研究人员的一点“手工”推动如改变温度或添加化学物。 这台世界上首次在输入、输出系统及软硬件均由生物分子制成的自动编程运算式DNA计算机诞生在以色列的魏茨曼学院该学院的埃胡德·沙皮罗教授在发表这项成果的同时表示“目前这种计算机的功能尚显单一在现实生活中不能马上应用而且太小了人们每次无法仅使用其中的一台。”另外参与运算的DNA分子之间并不能像传统计算机一样进行通讯只能“各自为战”。DNA计算机的弊端还不仅如此。当年阿德莱曼的“试管计算机”在几秒内得出了所有可能的哈米尔顿路径后却不得不再花费数周去拣出那些正确的答案。阿德莱曼在演示了其DNA计算机是如何解决“NP完全3-SAT问题”后也表示虽然他们的新实验进一步提高了DNA计算机模型的运算能力但总的来说DNA计算机错误率还是太高要真正超越电子计算机还需要在DNA大分子操纵技术等方面有大的突破。尽管如此种种的不足并没有阻碍DNA计算机的进一步发展尤其是其商业化的脚步。 2002年年初奥林巴斯公司与东京大学联合开发出了全球第一台能够真正投入商业应用的DNA计算机用于基因的诊断。该计算机由分子计算组件和电子计算部件两部分组成前者用来计算分子的DNA组合以实现化学反应搜索并筛选出正确的DNA结果而后者则对这些结果进行分析并且能将原来人工分析DNA需要的3天时间缩短为6个小时。除了在医疗领域外如新材料开发领域也在探讨DNA计算机的应用力图通过有效的配置分子达到生产出新材料的目的。这些足以说明DNA计算机正试图走出只能解决数学问题的有限用途真正开始深入产业。 更令人期待的是一旦微小的计算机成为现实这些“理想”如巨型计算机装在口袋里嵌入衣服里的计算机会告诉洗衣机应当用什么水温洗涤衣服笔芯中的墨水即将用完时嵌在笔中的计算机能提醒更换笔芯等等都能成真。 四进制与生物计算机。如果计算机采用了四进制会有什么好处其中最大的好处是能立即节省一半的运算单元并能提高系统的整体运算速度。如果某台电脑需要二十万个运算单元在采用了四进制后只需十万个运算单元就能发挥相同的效果。相对于电子计算机生物电脑的运算元件绝对不可能是集成电路或电子管这些与生物特性完全不相干的东西就像DNA计算机其本身依靠DNA中的A、T、G、C四个独立碱基构成先天性的形成了一个四进制组合这与目前半导体开合动作所形成的二进制一样。 事实上目前最可能成为生物计算机运算单元的也就是DNA或RNA核糖核酸。当然生物电脑仍存在很难突破的瓶颈。仅以运算元件来说DNA或RNA分子的控制毕竟不如集成电路容易况且是控制数以十万、百万计的DNA或RNA分子更别提如何辨别这些分子。不过正如当年的核融合技术在真正实现以前也曾遭遇过种种困难最终在海森堡、奥本海默、费曼等物理学家的努力下还是取得了成功一样相信随着人类科技的飞速发展待生物科技成熟后具有人工智能的、能为人类造福的全新计算机技术会在不远的将来诞生。
生物关于DNA的复制
http://202.120.43.108/courses/fzswx/w4/060313_13/content.htmDNA的复制不仅与细胞的分裂密切相关,而且它还是一个有许多酶和大分子参与的十分精细的调控过程。 DNA的复制是一个边解旋边复制的过程。DNA复制有固定的起始部位,称为复制起点,复制起点处,一般A、T含量较高,因为A、T之间只有两个氢键结合,G、C之间有三个氢键结合,所以解开A-T碱基对所需要的能量要比G-C少。一般来讲,原核生物DNA只有一个复制起点,而真核生物由于DNA分子比较长,往往有许多复制起点。 DNA复制起始时,首先利用细胞提供的能量,在解旋酶的作用下解旋,当解开大约十几个核苷酸后,便以解开的每一条DNA链为模板,利用周围环境中游离的脱氧核糖核苷酸,按照碱基配对原则,在DNA聚合酶和其他大分子蛋白质的作用下,各自合成与母链互补的一段DNA。随着解旋过程的进行,在DNA聚合酶的作用下,新合成的子链在不断地延伸,于是每条新链与其互补的母链有盘绕成新的DNA双螺旋结构,从而各形成一个新的DNA分子。复制结束后,由一个DNA分子形成了两个完全相同的新的DNA分子,这两个DNA分子,都含有一条模板链和一条新合成的与模板完全互补的链。 DNA复制的终止 过去认为,DNA一旦复制开始,就会将该DNA分子全部复制完毕,才终止其DNA复制。但最近的实验表明,在DNA上也存在着复制终止位点,DNA复制将在复制终止位点处终止,并不一定等全部DNA合成完毕。但目前对复制终止位点的结构和功能了解甚少在NDA复制终止阶段令人困惑的一个问题是,线性DNA分子两端是如何完成其复制的?已知DNA复制都要有RNA引物参与。当RNA引物被切除后,中间所遗留的间隙由DNA聚合Ⅰ所填充。但是,在线性分子的两端以5"→3"为模板的滞后链的合成,其末端的RNA引物被切除后是无法被DNA聚合酶所填充的。 在研究T7DNA复制时,这个问题部分地得到了解决。T7DNA两端的DNA序列区有160bp长的序列完全相同。而且,在T7DNA复制时,产生的子代DNA分子不是一个单位T7DNA长度,而是许多单位长度的T7DNA首尾连接在一起。T7DNA两个子代DNA分子都会有一个3"端单链尾巴,两个子代DNA的3"端尾巴以互补结合形成两个单位T7DNA的线性连接。然后由DNA聚合酶Ⅰ填充和DNA连接酶连接后,继续复制便形成四个单位长度的T7DNA分子。这样复制下去,便可形成多个单位长度的T7DNA分子。这样的T7DNA分子可以被特异的内切酶切开,用DNA聚合酶填充与亲代DNA完全一样的双链T7DNA分子。 在研究痘病毒复制时,发现了线性DNA分子完成末端复制的第二种方式。痘病毒DNA在两端都形成发夹环状结构。DNA复制时,在线性分子中间的一个复制起点开始,双向进行,将发夹环状结构变成双链环状DNA。然后,在发夹的中央将不同DNA链切开,使DNA分子变性,双链分开。这样,在每个分子两端形成一个单链尾端要以自我互补,形成完整的发夹结构,与亲代DNA分子一样。在真核生物染色体线性DNA分子复制时,尚不清楚末端的复制过程是怎样进行的。也可能像痘病毒那样形成发夹结构而进行复制。但最近的实验表明,真核生物染色体末端DNA复制是由一种特殊的酶将一个新的末端DNA序列加在刚刚完成复制的DNA末端。这种机制首先在四膜虫中发现。该生物细胞的线性DNA分子末端有30-70拷贝的5"TTGGGG3"序列,该细胞中存在一种酶可以将TTGGGG序列加在事先已存在的单键DNA末端的TTGGGG序列上。这样有较长的末端单链DNA,可以被引物酶重新引发或其他的酶蛋白引发而合成RNA引物,并由DNA聚合酶将其变成双链DNA。这样就可以避免其DNA随着复制的不断进行而逐渐变短。 在环状DNA的复制的末端终止阶段则不存在上述问题。环状DNA复制到最后,由DNA拓扑异构酶Ⅱ切开双链DNA,将两个DNA分子分开成为两个完整的与亲代DNA分子一样的子代DNA。 高中生物范畴下的DNA复制 DNA的复制是一个边解旋边复制的过程。复制开始时,DNA分子首先利用细胞提供的能量,在解旋酶的作用下,把两条螺旋的双链解开,这个过程叫解旋。然后,以解开的每一段母链为模板,以周围环境中的四种脱氧核苷酸为原料,按照碱基配对互补配对原则,在DNA聚合酶的作用下,各自合成与母链互补的一段子链。随着解旋过程的进行,新合成的子链也不断地延伸,同时,每条子链与其母链盘绕成双螺旋结构,从而各形成一个新的DNA分子。这样,复制结束后,一个DNA分子,通过细胞分裂分配到两个子细胞中去!
s细菌加热后,加小鼠,小鼠不会死亡.这是为什么,它的蛋白质虽然变性,但是还有dna,还可以再造出
DNA能够表达造出相应蛋白质的前提是,细胞整个合成代谢系统都是正常的。既然加热,这些系统都已被破坏(本质是,所有相关蛋白质变性,失去生物活性),所以DNA也就无法合成蛋白质了。酶的化学本质大部分都是蛋白质,但有少数属于核酶,其化学本质是RNA。比如,大肠杆菌RNaseP,四膜虫自身剪切内含子等等。你的想法很好,我的回答完毕。谢谢
端粒的发现最早是起源于对四膜虫的rDNA的研究吗?
端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5"到3"方向的链富含GT。在酵母和人中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。端粒DNA主要功能有:第一,保护染色体不被核酸酶降解;第二,防止染色体相互融合;第三,为端粒酶提供底物,解决DNA复制的末端隐缩,保证染色体的完全复制。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。同时,端粒又是基因调控的特殊位点,常可抑制位于端粒附近基因的转录活性(称为端粒的位置效应,TPE)。在大多真核生物中,端粒的延长是由端粒酶催化的,另外,重组机制也介导端粒的延长。
苏云金芽孢杆菌质粒dna怎么提取
以Birabolm和Doly的质粒提取方法为基础,用醋酸铵取代醋酸钠,沉淀染色体DNA和RNA,用异丙醇取代乙醇沉淀质粒DNA,降低了质粒DNA标本中蛋白质和RNA的含量,减少了标本体积。并发现在质粒DNA标本中加入冷异丙醇或冷乙醇后,在-70℃、-20℃、-10℃、4℃和室温下作用,对质粒DNA的回收量无明显影响,在质粒DNA标本中加入冷异丙醇后,在4℃作用0、10、20和30分钟,对质粒DNA的回收量无明显影响。用该方法提取的质粒DNA可直接用于限制性内切酶消化。用该方法提取大肠埃希氏菌、志贺氏菌、耶尔森氏菌的质粒DNA均获成功,适用于提取分子量为140Md的大质粒和分子量为3.23Md的小质粒。参考资料:http://www.cnki.com.cn/Article/CJFDTotal-WSWT199101013.htm
看完了桂正和的DNA2,结局好像是悲剧似的,听说动画版有变动,动画版的结局是这样的?
其实呢 DNA2结局的好坏完全采掘于观看者的内心 看了那么多人都说是悲剧...其实呢...也许是圆满结局 至于最后一发子弹落在地上而有弹头 本人认为这就是大团员结局了 如果没有弹头 那就是悲剧结局... 为什么这么说呢? 故事围绕的都是DNA 也就是说呢...加林回到未来后也会回来...因为任务没有完成...最后上UFO时没看见她在笑吗?呵呵 其实这女孩真鬼哦....可惜啊 动画上面是这样 说 的 漫画上面可不是这样的 最后加林问 你舍的亚美吗 好象是这样说 偶忘了 纯太沉默.... 那个长的和北斗神拳上的人物一样的人出来了...... 其实本来加林说不定会留下来的 但是纯太最后还是选择了亚。。。
桂正和老师dna2漫画有几本
基本介绍 《DNA2》是日本漫画家桂正和创作的科幻漫画以及改编的动画作品,1993年至1994年连载于《周刊少年Jump》。全42话,单行本全5卷。 日文名 Du30fbNu30fbA^2 ~何処かで失くしたあいつのアイツ~ 监督 坂田纯一 制作·发行 Powhouse 出品年份 1994 官方网站 http://www.madhouse.co.jp/works/w_t... 总共集数 15 百科上边是这样说的,应该没有其他的吧下边是一个网站,里边的漫画巨多,不过关于d的也只有5卷,看看吧http://www.veryhman.info/lookfor/?t=dna2
求桂正和漫画《DNA2》《电影少女》以及北条司的漫画《SHOW》下载地址~~~
下载地址不敢说,在线看不就好了,现在网上一大把在线漫画网站的.DNA: http://www.tuku.cc/Comic/1029/电影少女: http://www.tuku.cc/Comic/4578/如果你男朋友喜欢桂正和的作品的话,推荐I"s,那是桂正和颠峰时期的作品,无论画功,剧情编排都比上面两个成熟很多.桂正和其他漫画作品: http://www.tuku.cc/search.asp?k=%B9%F0%D5%FD%BA%CD
桂正和老师dna2漫画有几本
基本介绍《DNA2》是日本漫画家桂正和创作的科幻漫画以及改编的动画作品,1993年至1994年连载于《周刊少年Jump》。全42话,单行本全5卷。日文名Du30fbNu30fbA^2~何処かで失くしたあいつのアイツ~监督坂田纯一制作·发行Powhouse出品年份1994官方网站http://www.madhouse.co.jp/works/w_t...总共集数15百科上边是这样说的,应该没有其他的吧下边是一个网站,里边的漫画巨多,不过关于d的也只有5卷,看看吧http://www.veryhman.info/lookfor/?t=dna2
如何评价桂正和的漫画《DNA2》?
我觉得还是很有内涵的一部漫画的。故事中的男人名叫陶生泰。他有一种奇怪的敏感体形:当他接触到一个女孩或与一个女人有关系的东西时,他会呕吐。结果,他与周围的女孩完全隔绝,生活得如此之大,桃生甚至连姑娘们的手都没有。沮丧和悲伤的逆流流入了一条河,桃生觉得自己的生命是无用的。相貌平平,性格平庸,没有特长,也有自己奇特的绝缘体质。没有一个女孩会对桃子生活有好感,除了他的青梅竹马亚米之外,虽然雅米一直在与桃子生活争吵,但她却真正在乎桃子的生活,所谓情人的眼中出了西施,平凡而无用的桃子在阿美眼里,是淡淡的生活所无法承受的。2060年,由于人口激增和资源供应不足,政府不得不实施计划生育。一对夫妇只能生一个孩子,更多的孩子将被判处死刑。可是,在法律这么严的时候,有人敢犯罪,一个叫陶盛春的超级花花公子,让一百名妇女怀孕了,替他生了孩子。但当警方介入调查时,发现这个名叫"桃生纯"的超级花花公子也已不在人世。因为超级花花公子的后代继承了他的基因,所以对异性有致命的吸引力。为了阻止"桃生基因"的传播,政府秘密利用时间机器将DNA控制器桂花林传送给葵华林纯太学生,希望通过DCM(基因枪)将葵华林纯正的超级花花公子基因削弱到普通人的水平。然而,事与愿违的是,葵加林在错误的DCM下将超凡的魅力射到桃生纯洁的身体上,原本诚实的朋友没有桃子的命运进化,唤醒桃生纯洁的一举一动都暴露出对女人的致命吸引力,连向日葵也几乎无法控制自己。这样,原本只是想取笑桃子的轮子也陷入了桃子生活的魅力之中,在纯粹的魅力中,真正的花花公子龙二也失去了自己的吸引力。伦子,龙二的男朋友,所以讨厌纯真的生活,各种困难都很难。这时,龙二刚来找茬,向日葵不小心撞到了龙2的身上,结果意外触发了龙二的转化能力,龙二利用这个能力变成桃子,找到了莲子和桃子青梅竹马亚美…?后来,龙二世创造性地想出了一种抓住他人DNA的方法,把他的身体变成了一种不人道的程度。必须抱怨的是,他身后的龙二是弗里扎的复制品,而觉醒的道生几乎和山明写的"超级赛亚"一样。总之,伦子还是打败了伦子,伦子也像传统动画中的恶棍一样成功地洗白了。隆子发现伦子迷恋自己,回到了更长的一边。后来的情节是桃生和向日葵,阿美和秦梅是阿美的好朋友桂正和是最了解女孩造型的漫画家。
核酸检测的原理是什么?DNA和RNA怎么区分?什么是假阴性
如今,疾病越来越复杂多样,而疾病的检测以及甄别对于治疗来说就显得至关重要了,就拿这次新冠肺炎的爆发来说,其中“核酸检测”这种医学检测手段就进入了大众的视野。那么,核酸检测技术的原理是什么?为什么核酸检测会有的一定几率出错?什么是假阴性?核酸。核酸作为一个比较大的概念,分为脱氧核糖核酸,以及核糖核酸,其中脱氧核糖核酸是我们日常生活中所说的基因,即DNA,一般以细胞为单位的生命体的遗传信息都是以脱氧核糖核酸的形式被储存在DNA里的,但是病毒的遗传方式有所不同,比如有一部分病毒是以脱氧核糖核酸为遗传物质的(乙肝病毒)。但是普遍的DNA病毒致病性不同,一般常见的致病性病毒的遗传物质是一种叫做RNA的物质,即核糖核酸。总之,核酸就是在细胞核里面的一类生物聚合物,是遗传物质的最小单位核苷酸或者碱基所组成的序列,参与着遗传物质保存、繁殖等生化合成和细胞代谢,决定着细胞或机体的性状表现。自1953年DNA双螺旋结构的发现,正式开启了分子生物学时代,使人类对病原体的研究从形态学层次深入到了分子层次,而核酸检测技术就是基于分子水平的一项检测技术。核酸检测技术简单来说,由于每一个生物的核酸是不一样的,因此可以通过分析致病微生物核酸内部的基因学序列,来确定生物体上是否携带有病毒。核酸检测技术是基于核酸双链互补配对原则的核酸杂交技术,首先合成一段与特定病原体DNA或者RNA互补的单链核酸序列作为探针,并用生物素、放射性同位素、酶等进行标记,然后与待测病原体的核酸进行杂交。如果探针能与待测病原体的核酸互补配对,便能观察到标记物的信号,以此来证实待测病原体的种类。当探针与病原体核酸互补结合后,探针上的标记物便会显色,研究人员就通过观察病原体样本是否显色来确定病原体的种类,但是有时候会因为患者体内的病原体核酸含量过低,检测时会有一定的难度。直到20 世纪八九十年代,PCR 技术的出现才大大提高了核酸检测技术的应用性和准确性。核酸检测技术不必预先对病原体进行分离培养便可直接检测,方便快捷,而且特异度和灵敏度均较高,对感染性疾病的早期诊断有至关重要的意义。对于核酸检测的价格各个地方略有不同,一般做一次核酸检测可能需要200到300元左右,一般24小时内就可以得出结果。虽然核酸检测技术已经相当成熟,但自新冠肺炎疫情发生以来,关于核酸检测的假阴性率过高的这个话题,一直都是各方关注的焦点。比如在北京大学国际医院一名急诊护士在6月18日确诊感染新冠肺炎,但6月17日她曾参加的核酸检测结果却为阴性,这个结果也让众人对核酸检测技术提出了质疑。假阴性、假阳性假阳性是指本来的阴性样品结果检测为了阳性,即错检;假阴性是指本来的阳性样品检测为阴性,即漏检。实际上,从技术角度上来说,核酸检测过程中出现的“假阴性”是不可避免的,比如有项研究就发现,新冠患者在感染期间至少会有20%的漏诊概率,即会出现假阴性结果。虽然核酸检测技术会有假阴性的问题出现,但我们对于核酸假阴性也不能掉以轻心。
DNA的细胞化学试验中三氯乙酸的作用是什么
三氯乙酸是一些大分子的沉淀剂,如蛋白质、DNA等. 在Feulgen反应中设置对照组,用热的三氯乙酸处理固定后的样品,将样品中的DNA抽提去,因此能作为Feulgen反应的阴性对照. 具体的请参详《组织化学与免疫组织化学》邱曙东
DNA的细胞化学试验中三氯乙酸的作用是什么
三氯乙酸是一些大分子的沉淀剂,如蛋白质、DNA等。在Feulgen反应中设置对照组,用热的三氯乙酸处理固定后的样品,将样品中的DNA抽提去,因此能作为Feulgen反应的阴性对照。具体的请参详《组织化学与免疫组织化学》邱曙东
三氯乙酸破坏dna的机制
脱保护。三氯乙酸对DNA有沉淀作用,能去除CPG所链核苷上的DMT保护基团,称为脱保护,三氯乙酸,又名三氯醋酸,无色结晶,有刺激性气味,易潮解,溶于水、乙醇、乙醚。
DNA指纹图谱的产生的方法
2.1 主要试剂及器材产生 DNA 指纹图谱的主要试剂及器材如下:限制性内切酶 HinfⅠ、HaeⅢ等;电泳级琼脂糖;尼龙膜;λDNA/EcoRⅠ+HindⅢ;H4 型(24×20cm)水平电泳槽装置;Model 250 型电泳仪;标记试剂盒 Prime-a-Gene® Labeling system;(α-32P)dCTP;X 光胶片;LS5801型液闪仪;FYY-1 型多功能生化反应仪。2.2 有关试剂的配制(1) ACD 抗凝剂柠檬酸 0.48g柠檬酸钠 1.32g葡萄糖 1.47g加水至 100ml(2) T10E10 缓冲液Tris-HCl 10mmol/dm3EDTA 10mmol/dm3pH 值:8.0(3)TE 缓冲液Tris-HCl 10mmol/dm3EDTA 1mmol/dm3pH 值:8.0(4)20%SDS(100ml)SDS 20g溶于 100ml 蒸馏水中,30℃以上贮存。(5)USSTE 裂解液Urea 8mmol/dm3NaCl 0.3mol/dm3SDS 2%Tris-HCl 150mmol/dm3EDTA 1mmol/dm3pH 值:7.5(6)Tris 饱和酚新蒸苯酚加入 8-羟基喹啉至终浓度为 0.1%,用 1mol/dm3 Tris-HCl 和0.5mol/dm3Tris-HCl 溶液饱和至 pH 值 8.0,去掉上层水相,加适量(约 1/10 体积)的 0.1mol/dm3 Tris-HCl(pH 值8.0)覆盖在酚相上,保持4℃,放在棕色瓶中保存。(7)50×TAE 缓冲液(1 000ml)Tris 242g冰醋酸 57.1ml0.5mol/dm3 EDTA(pH 值 8.0) 100ml(8)10× BPB 贮存液聚蔗糖 20%EDTA 0.2mol/dm3溴酚蓝 0.25 %二甲基腈蓝 0.25%本贮存液可在室温存放。(9)40mmol/dm3 亚精胺亚精胺 0.58g将亚精胺溶于 10ml 蒸馏水中,4℃下存放。(10)溴化乙锭(EtBr)贮存液 (10mg/ml)EtBr 1g将EtBr 溶于 100ml 蒸馏水中,在棕色瓶存放,温度保持在 4℃。(11)变性液NaCl 1.5mol/dm3NaOH 0.5mol/dm3(12)20×SSC(1 000ml)NaCl 175.3g柠檬酸钠 88.2g用 10mol/dm3 NaOH 调 pH 值至 7.0,高压灭菌。(13)杂交液NaPO4 0.5mol/dm3SDS 7 %EDTA 1mmol/dm3(14)标记反应终止液聚葡萄糖蓝 0.9%溴甲酚紫 0.03%EDTA 20mmol/dm34℃下存放。(15)SephadexG-50 的水化SephadexG-50 10g将 SephadexG-50 溶于约 300ml TE(pH 值 8.0)中,高压灭菌,4℃下存放。(16)闪烁液(500ml)无水乙醇 10mlPPO 2gPoPoP 50mg二甲苯 490ml室温棕色瓶存放。2.3 操作步骤2.3.1 基因组DNA 的提取(1)10ml 全血与 40mlT10E10 缓冲液混匀,4 000r/min 离心10 分钟。(2)弃上清液,在沉淀中加入 40mlT10E10 缓冲液混匀,4 000r/min 离心 10 分钟。(3)弃上清液,在沉淀中加入 40mlTE 缓冲液混匀,4 000r/min 离心 10 分钟。(4)弃上清液,在沉淀中加入10mlUSSTE 裂解液,混匀呈浊液,置摇床过夜,温度保持在37℃。(5)加入 10ml 苯酚,缓慢上下混匀至少 20 分钟,4 500r/min 离心 20 分钟。(6)用移液枪小心地将上层水相转移到另一离心管中,吸头的尖端剪去一小段,以免在吸取过程中损伤大分子DNA。(7)向水相中加入等体积的酚、氯仿、异戊醇(体积比为24:23:1),缓慢上下混匀15分钟,4 500r/min 离心20 分钟。(8)如前述吸出水相,向水相中加入等体积的氯仿、异戊醇(23:1),上下缓慢混合10分钟,4 500r/min 离心 20 分钟。(9)吸出水相,向水相中加入2 倍体积的预冷(—20℃)无水乙醇,盖紧管盖,上下颠倒即可看见白色絮状DNA。(10)小心将絮状DNA 吸(吸头尖端剪去一小段,端部必须光滑)至1 .5ml 离心管中,加入 1ml 70%的乙醇,来回颠倒数次离心管,10 000r/min 离心 2~5 分钟。(11)小心地倒掉管中乙醇,将管倒置在干净的吸水纸上,以让乙醇流尽。(12)将离心管正立,置45℃烘箱中烤20 分钟左右,以便让乙醇完全挥发掉,如有条件,可置于真空干燥器中抽气10 分钟。(13)取出离心管,视沉淀块的大小加入 100~200μl TE 缓冲液,置55℃水浴中过夜,以溶解 DNA。(14)将溶解后的 DNA 置于 4℃或—20℃下贮存。2.3.2 基因组DNA 的酶切(1)每样酶切反应为:10μg DNA1.5ml(15u) 限制性内切酶6μl 10 倍 buffer6μl 40mmol/dm3 亚精胺加双蒸水至体积为60μl,用吸头混匀。(2)37℃水浴,保持6~8 小时。(3)取出酶切样品置于4℃下。2.3.3 基因组DNA 酶切情况检查(1)从每个酶切样品中取出3μl 消化液,加入3μl 2 倍BPB 混匀后点样。(2)用 0.8%琼脂糖凝胶(内含 0.5μg/ml EtBr)和 1 倍TAE 缓冲液进行电泳,电压为60V。(3)1 小时后,在紫外灯下检查酶切是否完全及各样品的DNA 浓度是否一致,以确保每个样品进行电泳时上样量一致。(4)如果发现某个样品酶切不完全,则另外加入5μl 左右的酶,在37℃条件下水浴保温6 小时。(5)已完全酶切的样品,加入1/10 体积(6μl)的电泳上样缓冲液(10 倍BPB),混匀后置4℃(短期)或—20℃(长期)保存。2.3.4 大板凝胶的制备和电泳(1)称取3.75g 琼脂糖,将其倒入一个500ml 容积的普通试剂瓶(透明度要高)中。用蒸馏水将50 倍TAE 贮存液稀释成1 倍TAE, 量取375ml 1 倍TAE 加入瓶中, 配制的凝胶浓度为 1.0% 。(2)盖上瓶盖,但不能旋得太紧。将瓶放入微波炉中加热,待琼脂糖完全熔化后,溶液是透明的。(3)取出瓶子放在55℃的水浴箱中,约30 分钟后就能冷却至55℃。(4)洗净并擦干制胶板(24cm ×22cm),用 2cm 左右宽的透明胶布将制胶板的两个开口端封牢,放置在水平台面上用水平仪调平。将样品梳( 6mm × 3mm )插入制胶板离最近开口端 2cm 位置。将冷却至55℃的凝胶摇匀,缓慢地倒入制胶板中央,如果有气泡出现,应用吸头将气泡吸掉,60 分钟后,制胶板中的凝胶将完全凝固。(5)将 50ml 50 倍 TAE 贮存液倒入电泳槽中,再加入 2 450ml 蒸馏水与其混匀,电泳槽也应置于水平台面上。(6)将制胶板两端的透明胶布剥离,然后将制胶板放在电泳槽的中部,小心地拔出加样梳,以免加样孔破裂。(7)从 4℃冰箱中取出 DNA 样品,另取两个离心管,各加入 12μl(1μg/8μl)的分子量标志物λDNA/EcoRⅠ+Hind Ⅲ 及 1/10 体积的(1.2μl)10 倍 BPB,混匀。将 DNA 样品及分子量标记物一起置于55℃水浴箱保温10 分钟,取出后立即置于冰水混和物中,2~3 分钟后点样,这样可防止粘性末端之间的粘接。(8)加样时每个样品用一个吸头,以免交叉污染。吸出样品后应迅速插入加样孔中下部,轻轻推出样品,在两端加样孔中各点入分子量标志物。(9)盖上电泳槽盖,插上导线,在加样后5 分钟接通电流,以留出时间使加样孔内的样品通过扩散而均匀分布,将电压调至30V,电泳60 小时。2.3.5 Southern 转移(1)电泳结束后,将制胶板连同凝胶一起放在一个方形塑料盘中,倒入约350ml(浸没凝胶)的 0.2mol/dm3HCl 处理 25 分钟,并每过约5 分钟摇动一次。(2)倒掉稀盐酸溶液,加入蒸馏水简单地洗涤一下凝胶,然后倒掉蒸馏水,加入约350ml的变性液浸泡30 分钟,间断性地摇动。(3)倒掉变性液,加入350ml 0.5 倍变性液浸泡 25 分钟,间断性地摇动。(4)将制胶板连同凝胶一起取出,将一块约28cm×19.5cm 的玻璃板盖在凝胶上,极其小心地将制胶板倒翻过来,这时玻璃板在下,凝胶在上,轻轻地滑出制胶板,将玻璃板连同其上的凝胶放在水平的桌面上。(5)将一张20cm×19cm 的尼龙膜(注明样品排列方向及电泳方向)在0.5 倍变性液中浸湿,然后对齐凝胶小片段区域的顶端将尼龙膜铺在凝胶的表面,用一根玻璃棒从膜的表面推过以赶走膜与凝胶之间的气泡,用墙纸刀切除掉凝胶的无用部分(未被尼龙膜覆盖住的部分)。操作时应戴上手套或用镊子。(6)将3 张稍大于膜的滤纸(20cm×20cm)依次在 0.5 倍变性液中浸湿,放置在膜上,每放一张滤纸后都应用玻璃棒轻轻赶走气泡。(7)将一打(约4~5cm 厚)已裁至滤纸大小的干吸水纸放在滤纸层上,再将一块玻璃板放在吸水纸上,然后抓紧上下两块玻璃板迅速翻转放在水平桌面上,抽去凝胶上面的玻璃板。(8)在凝胶的四周露出的滤纸及吸水纸上放上保鲜膜,以防止凝胶上下的滤纸直接接触。然后将 5 张稍大于凝胶的滤纸(20cm ×20cm)依次在 0.5 倍变性液中浸湿,放置在膜上,每放一张滤纸后都应用玻璃棒轻轻赶走气泡。(9)用一层保鲜膜将整个转移装置围盖住,以防水分蒸发,将一块玻璃板压在顶部。(10)持续转移3~4 小时后,去掉上面的滤纸和凝胶,取下尼龙膜放在2 倍SSC 中浸泡20 分钟,间断性摇动,然后取出放在一张干净的滤纸上,置60℃烘箱中烘30 分钟,使DNA固定于尼龙膜上。(11)将烤干的膜夹在两张干燥滤纸之间,置于室温下保存待用。2.3.6 探针的标记(1)将80ng 探针DNA(体积<30μl)倒进一个新的0.5ml 离心管中,在沸水中煮5~10分钟,取出,插入碎冰中。(2)然后依次在试管中加入下列成分:10μl 5 倍标记缓冲液(含随机引物),2μl BSA(10mg/ml),2μl dATP、dGTP、dTTP 等量混合物(浓度为各 20μmol/dm3);30μl 灭菌蒸馏水,50μl(α-32P)dCTP(10μCi/μl,3 000Ci/mmol)(至浓度为 333nmol/dm3);lμl Klenow酶(3u/μl);最后体积为 50μl。(3)将全部试剂混匀后置37℃保温壶中保温6 小时。(4)加入等体积(50μl)的标记反应终止液终止反应。2.3.7 未掺入核苷酸前体的除去(1)取一0.5ml 离心管,在管底部打一小孔,用玻璃棉塞住小孔,外套一个1.5ml 离心管。(2)向0.5ml 的管中加满TE 饱和的Sephadex G-50。(3)3 000r/min 离心 5 秒钟,重新加满Sephadex G-50 后再离心,直到 Sephadex G-50加满0.5ml 小管的3/4。(4)将标记反应液加入 0.5ml 管中,3 000r/min 离心数秒钟。(5)将1.5ml 管中的液体(蓝色)移入另一1.5ml 离心管中。(6)向0.5ml 管中加入 40μl TE,3 000r/min 离心数秒钟。(7)重复(5)、(6)步骤2~3 次,直到凝胶中的紫色即将到达0.5ml 管底部。(8)将回收的探针置于4℃下待用。2.3.8 探针放射性强度的测定(1)取两个液闪瓶,各加2ml 闪烁液。(2)在其中一个液闪瓶内加入2μl 原标记反应液。(3)在另一个液闪瓶内加人2μl 去除了未掺入核苷酸的回收液。(4)将2 个液闪瓶置于液闪仪中,测定其cpm。2.3.9 Southern 杂交(1)将 25ml 杂交液放入方形塑料盒中,于 55℃下预热。(2)将待杂交的膜和杂交液一起放入水浴摇床中。(3)在55℃下预杂交1.5 小时左右。(4)将放射性探针放在沸水中5 分钟,取出后迅速插入冰水中。(5)在杂交液中按5×105cpm/ml 的浓度加入变性的探针。(6)在55℃下杂交约15 小时。(7)将杂交液中的膜取出,放入1 倍SSC 溶液中于55℃下漂洗10 分钟。(8)倒去1 倍SSC 溶液,在55℃下用1 倍SSC 溶液及0.1 %SDS 洗脱液漂洗40 分钟。(9)倒去洗脱液,55℃下用新的1 倍SSC 溶液及0.l%SDS 洗脱液漂洗30 分钟。(10)将膜放入1 倍SSC 溶液中,于室温下漂洗10 分钟。(11)取出膜,平摊在洁净、干燥的滤纸上。(12)当膜上无水珠、膜仍湿润时,用保鲜膜将膜包好准备压片。2.3.10 放射自显影(1)在暗室或微弱安全光条件下,打开X 光曝光暗盒。(2)放入一张增感屏,光滑面朝上。(3)将膜放在增感屏上(膜与膜之间不能重叠)。(4)置X 光胶片于膜上。(5)将另一张增感屏光滑面朝下放在X 光胶片上。(6)盖紧X 光暗盒,置—70℃冰箱内曝光1~7 天。2.3.11 X 光胶片的冲洗(1)显影:将X 光胶片从暗盒中取出,放入显影液中,间断性摇动数分钟。(2)停显影:将X 光胶片放入1.5%的冰醋酸溶液中漂洗数秒钟。(3)定影:将X 光胶片转入定影液中定影数分钟。(4)冲洗:将定影完毕的X 光胶片放在流水中冲洗20 分钟,然后晾干。2.3.12 放射性探针的除去(1)将300~500ml 蒸馏水煮沸。(2)往蒸馏水中加SDS,至最终浓度0.l%。(3)将放射自显影后的膜浸入其中。(4)待冷却至室温时将膜取出、烘干,即可用于另一种探针的杂交。
E. coliDNA连接酶和T4 DNA连接酶有什么区别呢?
1、作用不同E.coliDNA 连接酶是生物体内重要的酶,其所催化的反应在DNA 的复制和修复过程中起着重要的作用。T4-DNA连接酶即T4 DNA连接酶,可以催化粘端或平端双链DNA或RNA的5"-P末端和3"-OH末端之间以磷酸二酯键结合,该催化反应需ATP作为辅助因子。2、连接条件不同用DNA连接酶连接具有互补粘性末端的DNA片段;用T4DNA连接酶直接将平末端的DNA片段连接起来,或是用末端脱氧核苷酸转移酶给具平末端的DNA片段加上poly(dA)-poly(dT)尾巴之后,再用DNA连接酶将它们连接起来;先在DNA片段末端加上化学合成的衔接物或接头,使之形成粘性末端之后,再用DNA连接酶将它们连接起来。这三种方法虽然互有差异,但共同的一点都是利用DNA连接酶所具有的连接和封闭单链DNA的功能。扩展资料:粘性末端DNA片段的连接DNA连接酶最突出的特点是,它能够催化外源DNA和载体分子之间发生连接作用,形成重组的DNA分子。平末端DNA片段的连接常用的平末端DNA片段连接法,主要有同聚物加尾法、衔接物连接法及接头连接法。同聚物加尾法这种方法的核心部分是,利用末端脱氧核苷酸转移酶转移核苷酸的特殊功能。末端脱氧核苷酸转移酶是从动物组织中分离出来的一种异常的DNA聚合酶,它能够将核苷酸(通过脱氧核苷三磷酸前体)加到DNA分子单链延伸末端的3′-OH基团上。由核酸外切酶处理过的DNA,以及dATP和末端脱氧核苷酸转移酶组成的反应混合物中,DNA分子的3′-OH末端将会出现单纯由腺嘌呤核苷酸组成的DNA单链延伸。这样的延伸片段,称之为poly(dA)尾巴。反过来,如果在反应混合物中加入的是dTTP,那么DNA分子的3′-OH末端将会形成poly(dT)尾巴。因此任何两条DNA分子,只要分别获得poly(dA)和poly(dT)尾巴,就会彼此连接起来。这种连接DNA分子的方法叫做同聚物尾巴连接法(homopolymertail-joining),简称同聚物加尾法。衔接物连接法所谓衔接物(linker),是指用化学方法合成的一段由10~12个核苷酸组成、具有一个或数个限制酶识别位点的平末端的双链寡核苷酸短片段。衔接物的5′-末端和待克隆的DNA片段的5′-末端,用多核苷酸激酶处理使之磷酸化,然后再通过T4DNA连接酶的作用使两者连接起来。接着用适当的限制酶消化具衔接物的DNA分子和克隆载体分子,这样的结果使二者都产生出了彼此互补的粘性末端。于是我们便可以按照常规的粘性末端连接法,将待克隆的DNA片段同载体分子连接起来。DNA接头连接法DNA接头,是一类人工合成的一头具某种限制酶粘性末端另一头为平末端的特殊的双链寡核苷酸短片段。当它的平末端与平末端的外源DNA片段连接之后,便会使后者成为具粘性末端的新的DNA分子,而易于连接重组。实际使用时对DNA接头末端的化学结构进行必要的修饰与改造,可避免处在同一反应体系中的各个DNA接头分子的粘性末端之间发生彼此间的配对连接。参考资料来源:百度百科-DNA连接酶参考资料来源:百度百科-T4DNA连接酶参考资料来源:百度百科-T4-DNA连接酶
DNA连接酶和E. coliDNA连接酶有什么区别?
1、作用不同E.coliDNA 连接酶是生物体内重要的酶,其所催化的反应在DNA 的复制和修复过程中起着重要的作用。T4-DNA连接酶即T4 DNA连接酶,可以催化粘端或平端双链DNA或RNA的5"-P末端和3"-OH末端之间以磷酸二酯键结合,该催化反应需ATP作为辅助因子。2、连接条件不同用DNA连接酶连接具有互补粘性末端的DNA片段;用T4DNA连接酶直接将平末端的DNA片段连接起来,或是用末端脱氧核苷酸转移酶给具平末端的DNA片段加上poly(dA)-poly(dT)尾巴之后,再用DNA连接酶将它们连接起来;先在DNA片段末端加上化学合成的衔接物或接头,使之形成粘性末端之后,再用DNA连接酶将它们连接起来。这三种方法虽然互有差异,但共同的一点都是利用DNA连接酶所具有的连接和封闭单链DNA的功能。扩展资料:粘性末端DNA片段的连接DNA连接酶最突出的特点是,它能够催化外源DNA和载体分子之间发生连接作用,形成重组的DNA分子。平末端DNA片段的连接常用的平末端DNA片段连接法,主要有同聚物加尾法、衔接物连接法及接头连接法。同聚物加尾法这种方法的核心部分是,利用末端脱氧核苷酸转移酶转移核苷酸的特殊功能。末端脱氧核苷酸转移酶是从动物组织中分离出来的一种异常的DNA聚合酶,它能够将核苷酸(通过脱氧核苷三磷酸前体)加到DNA分子单链延伸末端的3′-OH基团上。由核酸外切酶处理过的DNA,以及dATP和末端脱氧核苷酸转移酶组成的反应混合物中,DNA分子的3′-OH末端将会出现单纯由腺嘌呤核苷酸组成的DNA单链延伸。这样的延伸片段,称之为poly(dA)尾巴。反过来,如果在反应混合物中加入的是dTTP,那么DNA分子的3′-OH末端将会形成poly(dT)尾巴。因此任何两条DNA分子,只要分别获得poly(dA)和poly(dT)尾巴,就会彼此连接起来。这种连接DNA分子的方法叫做同聚物尾巴连接法(homopolymertail-joining),简称同聚物加尾法。衔接物连接法所谓衔接物(linker),是指用化学方法合成的一段由10~12个核苷酸组成、具有一个或数个限制酶识别位点的平末端的双链寡核苷酸短片段。衔接物的5′-末端和待克隆的DNA片段的5′-末端,用多核苷酸激酶处理使之磷酸化,然后再通过T4DNA连接酶的作用使两者连接起来。接着用适当的限制酶消化具衔接物的DNA分子和克隆载体分子,这样的结果使二者都产生出了彼此互补的粘性末端。于是我们便可以按照常规的粘性末端连接法,将待克隆的DNA片段同载体分子连接起来。DNA接头连接法DNA接头,是一类人工合成的一头具某种限制酶粘性末端另一头为平末端的特殊的双链寡核苷酸短片段。当它的平末端与平末端的外源DNA片段连接之后,便会使后者成为具粘性末端的新的DNA分子,而易于连接重组。实际使用时对DNA接头末端的化学结构进行必要的修饰与改造,可避免处在同一反应体系中的各个DNA接头分子的粘性末端之间发生彼此间的配对连接。参考资料来源:百度百科-DNA连接酶参考资料来源:百度百科-T4DNA连接酶参考资料来源:百度百科-T4-DNA连接酶
pcr扩增dna属于人工合成吗
DNA的生物合成有两种——(1)生物体内DNA 的自我复制,(2)某些有逆转录酶的病毒,如HIV寄生在宿主细胞后通过逆转录获得DNA.DNA 的人工合成也有两种——(1)以DNA复制为原理的多聚酶链式反应,PCR技术,实现体外的DNA扩增(注意是扩增,而不是从无到有,首先是有一个DNA分子提供模版的);(2)用DNA合成仪,从无到有的生成一些小分子的DNA(这要求已知DNA的碱基排列顺序,然后将顺序输入到合成仪中,再在仪器内添加相关合成条件,如原料,酶等) 你具体问得是那种生物合成和那种人工合成的区别呢?我估计你是想问DNA复制和PCR扩增的区别,先给你分析这两个吧~(1)原理一样,都需要模版,都遵循碱基互补配对原则;(2)各步骤具体条件有一定差异.解旋:体内DNA复制,需解旋酶和ATP,有模版DNA;PCR没有使用解旋酶,而是通过高温(90~95℃)使氢键打开DNA模版链解旋,也没有加入 ATP;子链的生成:体内需RNA引物,DNA聚合酶,四种游离的脱氧核糖核苷酸(dAMP、dGMP、dCMP、dTMP),ATP等;PVR也需引物,不过有RNA也有用DNA的,将解旋时的高温将至55~60℃使引物和模版结合,再加热至70~75℃,耐高温(热稳定)的DNA聚合酶(Taq酶)从引物起始进行互补链的合成,四种游离的脱氧核糖核苷酸作原料(dATP、dGTP、dCTP、dTTP,注意,这些原料具有高能磷酸键可以供能).
下列哪一个是DNA的基本单位?ATP dUTP dTTP dGTP dAMP
你好!DNA的基本组成单位是dNMP一分子碱基一分子脱氧核糖一分子磷酸你说的dNTP是DNA复制(生物合成)时的原料~~没审清楚题吧呵呵仅代表个人观点,不喜勿喷,谢谢。
合成DNA为什么用dATP不用dAMP?除了能量的原因还有其他的原因吗?为什么不是dADP?
dATP既是合成脱氧核苷酸的原料,有因为有两个高能磷酸键因而可以在合成的同时供能,而dAMP效率不及dATP
DNA体外复制用什么原料
如果你指的是PCR技术的话,反应需要的物质:需要模板(要扩增的DNA)、引物(RNA,前后引物)、底物(dNTP,即dATP,dTTP,dGTP,dCTP)、DNA聚合酶(耐热,常用的是Taq酶)、合适的缓冲液。反应体系为:变性温度在90度以上,退火温度在52度左右,延伸温度在72度左右。聚合酶链式反应,简称PCR。又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术。 由美国科学家PE(Perkin Elmer珀金-埃尔默)公司遗传部的Dr. Mullis发明,由于PCR技术在理论和应用上的跨时代意义,因此Mullis获得了1993年化学诺贝尔奖。 是一种体外快速扩增DNA的方法,用于放大特定的DNA片段,数小时内可使目的基因片段扩增到数百万个拷贝的分子生物学技术。
体内合成DNA不需要的物质是( )。
【答案】:D本试题考核DNA主要碱基组成。DNA碱基组成为A、G、C和T,自然合成时所需要的几种三磷酸脱氧核苷酸应为dATP、dGTP、dCTP和dTTP,而不需要dUTP。试题问“体内合成DNA不需要”的自然是dUTP,故正确选择是答案D。试题反应模式或历届考试经验表明,很多考生会发生“选择E答案”的错误。这种错误可能源于考生对“脱氧胸腺嘧啶核苷酸dT-MP是由脱氧尿嘧啶核苷酸dUMP经甲基化生成”概念过分强烈。须知,这里问的是“合成DNA的原料”,而非“核苷酸合成的原料”,应注意区别。
下列哪一个是DNA的基本单位?ATP dUTP dTTP dGTP dAMP
dAMP。DNA的基本单位:dAMP、dGMP、dCMP、dTMP(四种)
生物 必修2 DNA分子的结构 里面的计算怎么算,做那题目做的头晕,说能教教,别只给我公式,公式自
根据碱基互补配对原则 A=T G=C A+G=T+C 如果在一条双链DNA分子中,A占30% ,则可推出T占30%,G和C共占1-30%-30%=40%,所以G=C=20%。这是碱基互补配对中最简单基础的一种类型
DNA复制过程中需要的ATP的来源?
1生命活动直接能源只有ATP吗? 应该说细胞中生命活动的直接能源主要是ATP,但ATP并不是所有生命活动的唯一能源。在糖异生过程中草酰乙酸在磷酸丙酮酸羧化激酶的作用下生成磷酸烯醇式丙酮酸,是利用GTP(三磷酸鸟苷)水解供能。如2分子乳酸经糖异生转变为1分子葡萄糖需消耗4分子ATP和2分子GTP。绿色植物光合作用的光反应产生NADPH和ATP,NADPH既是还原C3的还原剂又可作为还原过程中的能源被利用。DNA复制时,dATP、dGTP、dCTP、dTTP既作为DNA半保留复制的原料,也作为复制时的部分能源来利用的。在蛋白质合成中,肽键的形成和延伸过程要利用GTP作为能源。 《生物学教学》2009年第2期
下列可以作为DNA复制的底物的是:( ). A.ATP B.dTTP C.dGDP D.dAMP
D dAMP是脱氧核糖核苷酸中的腺苷酸 DNA复制的时候需要4种脱氧核糖核苷酸
染色体复制N次得到几条DNA链
。。。|| 2条DNA / || || 4条DNA / / || || || || 8条DNA所以是2^(n+1)
dna复制的原料为什么是dATP,dGTP.dCTP.dTTP,而不是四种脱氧核苷酸。怎样把多出的两个磷酸去掉
首先,DNA聚合,即复制,是DNA聚合酶催化进行的一个化学反应。因此,DNA聚合酶的特殊结构决定其底物。也就是说DNA聚合底物是dNTP而不是dNMP是DNA聚合酶的特异性决定的。当然,DNA聚合是需能的反应,而dNTP的高能磷酸键正好可以为聚合提供能量。至于怎样脱掉两个磷酸,实际上就是在形成磷酸二酯键的时候水解掉一分子的焦磷酸就可以了。
高手来!高中生物染色体DNA如何复制
1、那个线状和叉状都是模式图,其细胞中的染色体螺旋化后你根本看不清。你既可以把它们上下分,也可以左右分,也可以一条线一条单体。只要你知道,这里面有染色单体就成了。2、有丝分裂和减数分裂中,着丝点断裂方式相同。减分分裂是特殊的有丝分裂。3、一对同源染色体中有两个DNA,中条DNA单链,每条链都被15N标记了。由于DNA是半保留复制,这四条单链会进入四个DNA(四条染色单体)分子中,所以,每条染色单体中都有一条DNA链被标记。最终,四条染色单体各进入一个精子中。所以含15N的是百分之一百。4、如果有丝分裂,这样的体细胞产生四个细胞,要经过两次有丝分裂。最后含15N是0到百分之一百中间的任意一个值都有可能。不是你说的答案。
dna合成原料是什么
在体内依靠酶系统合成dna用的原料是dntp,需要为酶提供能量,体外机器合成原料就是dnmp。原料不是脱氧核苷一磷酸(dNMP)脱氧腺苷三磷酸是 dATP脱氧鸟苷三磷酸是 dGTP脱氧胞苷三磷酸是 dCTP脱氧胸苷三磷酸是 dTTP扩展资料DNA的双螺旋结构由dNTP组成,非常类似于聚合物中的单体单元。如果你解开DNA并想象它是一个阶梯,磷酸基团与脱氧核糖糖基团交替组成梯子的两侧,(只有“糖磷酸骨架”这个词),碱基会形成梯子的梯级。DNA的一个重要特征是两个碱基通过氢键连接形成一个梯级。这种结合将两条DNA链保持在一起。嘧啶类不能配对,嘌呤也不能配对。碱基配对只能在TA或GC之间进行。这是由Erwin Chargaff发现的。在他的实验中,他从细胞核中提取DNA并记录存在的四种核苷酸的量。他发现T的百分比总是等于A的百分比。在G和C之间发现了相同的关系。他还发现A或T的百分比加上G或C的百分比加到100%。这些发现极大地帮助了沃森,克里克,富兰克林和威尔金斯。参考资料来源:百度百科-dNTP
ATP与GTP混合物和CTP与TTP的混合物和天然DNA哪个对紫外吸收值最低?
atp因为ATP:腺嘌呤核苷三磷酸(简称三磷酸腺苷)是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸基团组成。又称腺苷三磷酸,简称ATP。DATP:脱氧腺苷三磷酸,3"-脱氧腺苷,又称去氧腺苷三磷酸(Deoxyadenosine triphosphate,dATP)是一种去氧核苷酸三磷酸(dNTP),结构与腺苷三磷酸(ATP)相似,但少了一个位于五碳糖2号碳上的-OH基,取而代之的是单独的氢原子。若移去接在五碳糖3号碳上的氧原子,则会产生ddATP。此外,dATP是DNA聚合酶在DNA复制过程中,用来合成DNA长链的原料之一。
高中生物。ATP的组成元素有哪些?和DNA有差异么?
和DNA无差异ATP的元素组成为:C、H、O、N、P,分子简式A-P~P~P,式中的A表示腺苷,T表示三个(英文的triple的开头字母T),P代表磷酸基团,“-”表示普通的磷酸键,“~”代表一种特殊的化学键,称为高能磷酸键。它有2个高能磷酸键,1个普通磷酸键。合成ATP的能量,对于动物、人、真菌和大多数细菌来说,均来自于细胞进行呼吸作用释放的能量;对于绿色植物来说,除了呼吸作用之外,在进行光合作用时,ADP合成ATP还利用了光能。ATP在ATP水解酶的作用下离A(腺苷)最远的“~”(高能磷酸键)断裂,ATP水解成ADP+Pi(游离磷酸基团)+能量。ATP分子水解时,实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时释放的能量多达30.54kJ/mol,所以说ATP是细胞内的一种高能磷酸化合物。[2]ATP是一种高能磷酸化合物,在细胞中,它能与ADP的相互转化实现贮能和放能,从而保证了细胞各项生命活动的能量供应。生成ATP的途径主要有两条:一条是植物体内含有叶绿体的细胞,在光合作用的光反应阶段生成ATP;另一条是所有活细胞都能通过细胞呼吸生成ATP。[3]C10H16N5O13P3DNA脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是脱氧核糖核酸染色体的主要化学成分,同时也是组成基因的材料。有时也被称为“遗传微粒”,原因是在繁殖过程中,父代会把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。DNA的结构: DNA的结构一般可划分为一级结构、二级结构、三级结构、四级结构四个水平。DNA[2]是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP 脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP 脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP 脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP 脱氧鸟苷)。[3]而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白质的合成。读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。在细胞内,DNA能与蛋白质结合形成染色体,整组染色体则统称为染色体组。对于人类而言,正常的体细中含有46条染色体。染色体在细胞分裂之前会先在分裂间期完成复制,细胞分裂间期又可划分为:G1期-DNA合成前期、S期-DNA合成期、G2-DNA合成后期。对于真核生物,如动物、植物及真菌而言,染色体主要存在于细胞核内;而对于原核生物,如细菌而言,则主要存在于细胞质中的拟核内。染色体上的染色质蛋白,如组织蛋白,能够将DNA进行组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录
dna组成脱氧核糖 磷酸 碱基 蛋白质
DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP 脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP 脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP 脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP 脱氧鸟苷)所以ACD错误,所以正确答案为B
DNA的作用及其作用的实现方法?
DNA分子是脱氧核糖核苷酸的聚合物。每个脱氧核糖核苷酸都是由一个脱氧核糖分子、一个磷酸分子和一个含氮有机碱组成。DNA分子内的碱基通常有四种:即腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶。在真核细胞生物中曾发现少量稀有碱基,如5-甲基胞嘧啶。如前所述,很多个脱氧核糖核苷酸通过磷酸二酯键连接起来,便形成一条脱氧核糖核苷酸链,该链的一端有一个游离的3′—OH,而另一端则有一个游离的5′—PO4。因此,说DNA分子具有对称性,或说DNA分子有极性(Polarity)。1953年,Watson与Crick根据DNA的化学分析和X射线衍射资料,提出了令世人公认的DNA双螺旋结构模型,这个模型充分揭示了DNA分子的结构特点:1.DNA分子是由两条核苷酸链,以右手螺旋方式绕着同一个中心轴,形成的双螺旋结构。两条链的走向相反(反向平行),其中一条链的磷酸二酯键是3′→5′走向,另一条链则为5′→3′走向。2.DNA分子中的两条核苷酸链是互补的,称为姊妹链。螺旋线的螺距为3.4nm,在这一螺距内共有10对碱基。碱基环的平面与螺旋的中心轴垂直,相邻碱基对的距离为0.34nm,像梯子的横档一样整齐排列。3.DNA分子中碱基排列完全是随机的,但碱基配对却非常专一。一个嘌呤必定和一个嘧啶配成一对,而且只能在腺嘌呤和胸腺嘧啶之间(A—T;T—A)、鸟嘌呤和胞嘧啶之间(G—C;C—G)进行。这样,一条链上的碱基排列顺序,可由另一条链上的碱基排列顺序来决定。核苷酸链中的4种碱基,如以全排列的方式排列,应有4n(n为核苷酸数,亦即碱基数)种排列顺序。一个DNA分子中所含碱基常常不下几十万或几百万对,4种碱基以无穷尽的方式排列,规定了DNA分子的无限多样性。在这复杂多样的DNA分子中蕴藏着生物界无数的遗传信息。4.碱基之间的化学键是氢键。连接A—T的氢键有两个;而连接G—C的氢键则有三个。氢键是非共价的低能键,其强度取决于它们的数目。在遗传信息的传递过程中,DNA分子首先进行自我复制,经过减数分裂,将遗传信息传予子代细胞。(二) DNA的自我复制DNA的复制是遗传信息传递的基础,也是细胞分裂的基础。DNA的复制过程非常复杂,目前尚未完全清楚,但一般认为其过程大至如下:首先由DNA指导的RNA聚合酶,识别复制的起始点,然后在解旋蛋白(untwisting protein)的作用下,解开DNA的超螺旋结构。继而,由解链蛋白(unwinding protein)与DNA多核苷酸链结合,解开DNA的双链。尔后,以DNA为模板,在RNA聚合酶的作用下,先合成小段RNA(一般含50~100个核苷酸)作为引物(primer)。DNA的复制从引物的3′—OH端开始,即按5′→3′方向,以DNA的一条链为模板,合成新的DNA片段,称为冈崎片段(一般含400~2000个核苷酸)。在哺乳动物,一条模板链上可有多个合成DNA的起点。因此,同时可合成多个冈崎片段。而在另一条链上,则沿着5′→3′方向连续合成新链(也有人认为两条链都是不连续复制的)。DNA聚合酶只能沿着5′→3′的方向发挥作用。因此,在DNA的一条模板链(3′→5′)上,新链的合成是按着5′→3′方向连续进行;而在另一条模板链(5′→3′)上,新链的合成是随着DNA分子双螺旋的核苷酸链不断被打开,以“倒退”的方式合成不连续的DNA片段(即冈崎片段)。DNA聚合酶有三种(Ⅰ、Ⅱ、Ⅲ)。在合成DNA的过程中,起重要作用的是DNA聚合酶Ⅲ。合成DNA时,还需要四种脱氧核苷三磷酸为原料,在Mg2+参与下完成,如下式:上式中 dATP、 dCTP、 dGTP、 dTTP,分别为脱氧腺苷三磷酸、脱氧胞苷三磷酸、脱氧鸟苷三磷酸和脱氧胸苷三磷酸。dAMP、dCMP、dGMP、dTMP,分别为脱氧腺苷一磷酸、脱氧胞苷一磷酸、脱氧鸟苷一磷酸和脱氧胸苷一磷酸。ppi为焦磷酸。在DNA片段合成后,由核酸酶将引物切除,然后由DNA聚合酶合成一定的核苷酸序列填补由原引物所占位置。最后由DNA连接酶(DNA ligase)通过酯化相邻核苷酸的5′—P和3′—OH末端,形成磷酸二酯键,将核苷酸片段连接起来,形成新的多核苷酸长链。复制后形成的两个DNA分子中,各有一条链是原有的,另一条链是新合成的,故称半保留复制。子代DNA分子中的碱基排列顺序与亲代DNA分子完全一样。(三) DNA是遗传物质遗传物质必须具有相对的稳定性;能够精确的自我复制,使亲代与子代间保持遗传的连续性;能够指导蛋白质合成,控制新陈代谢过程和性状发育;在特定条件下产生可遗传的变异。大量的科学实验证明,DNA是具备上述条件的遗传物质。1.DNA是遗传物质的间接证据(1)DNA通常只能在细胞核的染色体上找到,生殖细胞中DNA的含量是体细胞内DNA含量的一半。DNA含量的这种变化情况,与生殖细胞和体细胞内染色体数量的变化有对应平行关系,蛋白质等物质不具备此种量变特点。(2)同一种生物,不论年龄大小,不论是身体的哪一种组织,在一定条件下,每个细胞核里的DNA含量,基本上是相同的。而其他物质,包括RNA和蛋白质,在细胞生长的各个阶段,含量变化都比较大。(3)DNA不仅在量上恒定,在质上也恒定,其他物质不具备此种特点。例如,某些鱼类,它们染色体的蛋白质一般都是组蛋白。而在成熟的精子中,组蛋白完全匿迹,而代之以精蛋白。可见蛋白质在量上是不恒定的,不符合遗传物质对稳定性的要求。(4)各类生物中,凡能改变DNA结构的化学或物理学因素,都可导致突变。紫外线诱导生物发生突变的有效波长,与DNA对紫外线吸收光谱的波长一致,都是260 nm左右。2.DNA是遗传物质的直接证据 以微生物为例,证明遗传物质是DNA(有时是RNA)。(1)转(transformation):所谓转化是指一种生物,由于接受了另一种生物的遗传物质(DNA或RNA)而表现出后者的遗传性状或发生遗传性状改变的现象。F.Criffitn(1928)用肺炎双球菌的两个品系SⅢ和RⅡ为实验材料,首先发现了细菌的转化。 SⅢ型的特点是菌落光滑,细胞有荚膜,具有毒性,能致小鼠死亡;RⅡ型的菌落粗糙,无荚膜,无毒性,不能致小鼠死亡。上述性状都是稳定遗传的。F.Criffitn的实验过程见图3-9。O.T.Avery(1994)等人,把SⅢ型肺炎球菌细胞中的DNA、蛋白质及荚膜物质提取出来,分别加入到培养有RⅡ型细菌的培养基中,发现只有DNA能使少量RⅡ型细菌转化为SⅢ,并能稳定的遗传下去。但从SⅢ型细菌中提取的蛋白质,荚膜物质,或将分离后得到的DNA,用DNA酶处理后,都没有上述转化作用。这便有力的说明了遗传物质是DNA,而不是蛋白质或其他物质。(2)噬菌体的浸染与繁殖:噬菌体是侵袭细菌的病毒。当T2噬菌体浸染大肠杆菌时,首先将其尾部与细菌的细胞壁粘接,随后将其体内的染色体注入细菌体内,其蛋白外衣则留在细菌体外。感染后不久、细菌体内的DNA便停止活动。经数分钟的潜伏后,便以注入细菌体内的噬菌体DNA为模板,合成DNA与蛋白质,形成新的噬菌体,最后导致细菌细胞壁破裂,释放出100~200个新噬菌体.该F1代噬菌体又去浸染邻近的细菌,产生F2代噬菌体。上述事实说明,只有DNA才是亲代和子代之间具有连续性的遗传物质,它携带着亲代的全部基因,控制着子代的发育。(3)病毒的重建:有些种类的病毒只含RNA,不含DNA。在这种情况下RNA也具有遗传物质的功能。烟草花叶病毒的重建试验提供了充分证据。烟草花叶病毒(TMV),由许多相同的蛋白质亚单位组成,亚单位螺旋形排列成圆筒状,筒壁内嵌入一个螺旋形的RNA分子。用化学分部分离法将蛋白质和RNA分离,用分离得到的RNA浸染正常的烟草植株,结果产生病毒后代,蛋白质则不能。如用RNA酶处理分离得到的RNA,则其浸染能力就完全被破坏。不难说明复制和形成新的病毒所必须的基因在RNA上。因此,RNA对于这些病毒而言,便是遗传物质。
生物方面的问题:DNA、RNA、基因、碱基、五碳糖、磷酸、嘌呤、嘧啶之间的关系
DNA[2]是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP 脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP 脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP 脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP 脱氧鸟苷)。[3]而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白质的合成。读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。
合成DNA的原料是什么?
在体内依靠酶系统合成dna用的原料是dntp,需要为酶提供能量,体外机器合成原料就是dnmp。原料不是脱氧核苷一磷酸(dNMP)脱氧腺苷三磷酸是dATP脱氧鸟苷三磷酸是dGTP脱氧胞苷三磷酸是dCTP脱氧胸苷三磷酸是dTTP扩展资料DNA的双螺旋结构由dNTP组成,非常类似于聚合物中的单体单元。如果你解开DNA并想象它是一个阶梯,磷酸基团与脱氧核糖糖基团交替组成梯子的两侧,(只有“糖磷酸骨架”这个词),碱基会形成梯子的梯级。DNA的一个重要特征是两个碱基通过氢键连接形成一个梯级。这种结合将两条DNA链保持在一起。嘧啶类不能配对,嘌呤也不能配对。碱基配对只能在TA或GC之间进行。这是由ErwinChargaff发现的。在他的实验中,他从细胞核中提取DNA并记录存在的四种核苷酸的量。他发现T的百分比总是等于A的百分比。在G和C之间发现了相同的关系。他还发现A或T的百分比加上G或C的百分比加到100%。这些发现极大地帮助了沃森,克里克,富兰克林和威尔金斯。参考资料来源:搜狗百科-dNTP
腺甘中的核酸是DNA 那个还是RNA
你的问题似乎有误腺苷由腺嘌呤和核糖构成RNA中的腺嘌呤核糖核酸也可以称为一磷酸腺苷,即腺苷和一个磷酸基团组合而成DNA中包括的腺嘌呤脱氧核糖核酸则是由一个腺嘌呤,一个脱氧核糖和一个磷酸基团构成希望对你有所帮助
亮氨酸拉链蛋白所识别的DNA有何特点?如何理解亮氨酸拉链转录因子的二聚体结构同识
亮氨酸拉链是聚体,有一长串的亮氨酸在链的尾部,与另外一条富含亮氨酸的多肽链形成拉链。在亮氨酸拉链的另一端(即与DNA结合的一段)是带正电的氨基酸,便于与DNA结合是一种蛋白结构基元~~
作用于DNA化学结构的药物是
【答案】:B1.烷化剂(如氮芥、环磷酰胺和噻替派等)属于作用于DNA化学结构的药物。2.干扰核酸生物合成的药物属于细胞周期特异性抗肿瘤药,分别在不同环节阻止DNA的合成,抑制细胞分裂增殖,属于抗代谢药。根据药物主要干扰的生化步骤或所抑制的靶酶的不同,可进一步分为:①二氢叶酸还原酶抑制剂(抗叶酸剂),如氨甲蝶呤(MTX)等;②胸苷酸合成酶抑制剂,影响尿嘧啶核苷的甲基化(抗嘧啶剂),如氟尿嘧啶(5-FU),替加氟(FT207)及优福定(UFT)等;③嘌呤核苷酸互变抑制剂(抗嘌呤剂),如巯嘌呤(6-MP),6-硫鸟嘌呤(6-TG)等;④核苷酸还原酶抑制剂,羟基脲(HU);⑤DNA多聚酶抑制剂,如阿糖胞苷(AraC)等。3.拓扑异构酶抑制药直接抑制拓扑异构酶,阻止DNA复制及抑制RNA合成。包括拓扑异构酶Ⅰ抑制药和拓扑异构酶Ⅱ抑制药,拓扑异构酶Ⅰ抑制药的代表药有依立替康、拓扑替康、羟喜树碱;拓扑异构酶Ⅱ抑制药的代表药有依托泊苷、替尼泊苷。4.长春新碱(VCR)、长春碱(VLB)、紫杉醇及秋水仙碱等属于干扰有丝分裂、影响微管蛋白装配的药物,干扰有丝分裂中纺锤体的形成,使细胞停止于分裂中期。
DNA复制时,游离的脱氧核糖核苷酸从哪来的?
游离的脱氧核糖核苷酸可以由氨基酸,二氧化碳,谷氨酰胺等先合成碱基,再与磷酸,核糖连接形成核糖核苷酸,核糖核苷酸再发生脱氧还原反应,得到脱氧核糖核苷酸。(其中磷酸和核糖可以由食物直接吸收利用)
DNA复制的原料的游离的脱氧核糖核苷酸从哪里来
人体内的核酸从两条途径合成。一条途径是在肝脏内,以小分子简单化合物为原料,从合成碱基(嘌呤、嘧啶)等开始来制造核酸,称之为从头合成。弗兰克博士通过20年的临床实践,发现人体发育成熟后(约20岁左右),从头合成核酸的能力随年龄增长逐渐下降。另一条途径是在脑、骨髓等部位,以含核酸的食物经消化吸收来的半成品(如单核苷酸、核苷或碱基)为原料而合成的核酸,称之为补救合成。所以,来源有两个,消化吸收原料重新加工和体内自己合成。
一个染色体就是一条DNA分子链吗?
其实,在间期,染色体发生了很多生化反应。间期可以划分为三个时期即DNA合成前期(G1期)、DNA合成期(S期)与DNA合成后期(G2期)。1.G1期此期长短因细胞而异。体内大部分细胞在完成上一次分裂后,分化并执行各自功能,此G1期的早期阶段特称G0期。在G1期的晚期阶段,细胞开始为下一次分裂合成DNA所需的前体物质、能量和酶类等做准备。2.S期是细胞周期的关键时刻,DNA经过复制而含量增加一倍,使体细胞成为4倍体,每条染色质丝都转变为由着丝点相连接的两条染色质丝。与此同时,还合成组蛋白,进行中心粒复制。S期一般需几个小时。3.G2期为分裂期做最后准备。中心粒已复制完毕,形成两个中心体,还合成RNA和微管蛋白等。G2期比较恒定,需用1~1.5小时。有丝分裂在复制的过程中,肯定要消耗能了。核苷酸是在细胞质基质中合成的,嘌呤核苷酸的合成有两条途径。第一,由简单的化合物合成嘌呤环的途径,称从头合成(denovosynthesis)途径。第二,利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成(或重新利用)(salvagepathway)途径。肝细胞及多数细胞以从头合成为主,而脑组织和骨髓则以补救合成为主。嘧啶核苷酸的合成过程主要在肝细胞的胞液中进行。除了二氢乳清酸脱氢酶位于线粒体内膜上外,其余均位于胞液中。
在一个突变过程中,一对额外的核苷酸插入dna 内,会得什么样的结果
在一个突变过程中,一对额外的核苷酸插入dna 内,会得什么样的结果 如果插入的那一片段是不表达的,那么对生物来说没有影响。如果是要表达的,那么在插入之后会直接影响到以该段DNA为模板的mRNA的碱基序列,致使其密码子发生改变。若是插入的位置形成终止密码子,则合成的蛋白质的氨基酸数量减少,若不是终止密码子,则合成的蛋白质自插入位置的氨基酸都发生变化(种类变化,数量变化)。蛋白质变化后,会影响到生物体的性状,根据突变后的蛋白质的性质,生物体可能致畸、形成遗传病,甚至死亡, 在一个突变过程中,一个额外的核苷酸对插入一个功能基因的DNA序列中, 会有什么样的生物学影响效应 一个额外的核苷酸插入到功能基因DNA序列中,这叫移码突变。一般来说,这种突变会造成突变点之后的DNA序列所包含的翻译时对应的氨基酸资讯与突变前有较大的改变,最终导致形成错误蛋白。并因此影响后续的生理过程。 DNA转录过程中,此段有几种核苷酸 5种碱基 ACGTU 8种核苷酸 腺嘌呤脱氧核糖核苷酸、鸟嘌呤脱氧核糖核苷酸,胞嘧啶脱氧核糖核苷酸、胸腺嘧啶脱氧核糖核苷酸、腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸。尿嘧啶核糖核苷酸 不同之处:碱基是指的核苷酸的一部分 引物的组成------核苷酸与DNA的核苷酸是不是一样 核苷酸根据核糖成分有脱氧核糖和核糖2种。DNA中的成分只是脱氧核糖核苷酸 什么是嘌呤核苷酸合成过程中黄嘌 体核心苷酸的合成有两条途径:①利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成核苷酸的过程,称为从头合成途径(denovo synthesis),是体内的主要合成途径。②利用体内游离碱基或核苷,经简单反应过程生成核苷酸的过程,称重新利用(或补救合成)途径(salvage pathway)。在部分组织如脑、骨髓中只能通过此途径合成核苷酸。嘌呤核苷酸的主要补救合成途径是嘌呤碱与5"-PRPP(5"-磷酸核糖焦磷酸)在磷酸核糖转移酶作用下形成嘌呤核苷酸。 DNA复制时需要游离的核苷酸,为什么会有游离的核苷酸? 细胞中游离的核苷酸有2个来源: 1. 由原有的DNA降解后,碱基被回收重新利用合成的 2. 通过磷酸戊糖途径从头合成 DNA中复制过程中游离的脱氧核苷酸怎么来的? 【1】DNA中复制过程中游离的脱氧核苷酸是生物体自身所提供的。 【2】生物体自身是可以合成核苷酸及脱氧核苷酸的. 【3】核苷酸可以由一些简单的化合物合成:氨基酸、二氧化碳、谷氨酰胺、一碳单位等. 然后,核苷酸发生脱氧还原,又可以得到脱氧核苷酸以供DNA的复制。 【4】有关DNA复制的知识: (1)定义:是指以亲代DNA分子为模板来合成子代DNA的过程。DNA的复制实质上 是遗传资讯的复制。 (2)原料:4种脱氧核苷酸,解旋酶,能量 (3)原理:碱基互补配对,半保留复制 (4)稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。 (5)结构:双螺旋,两条连链反向平行。 【5】脱氧核苷酸的有关知识: (1)脱氧核糖核苷酸,简称脱氧核苷酸,是脱氧核糖核酸(简称DNA)的基本单位。绝大部分存在于细胞核和染色质中,并与组蛋白结合在一起。一般由C、H、O、N、P五种元素组成。 (2)每个脱氧核苷酸由三部分组成: 一个脱氧核糖、一个含氮碱基和一个磷酸 。 基因表达过程中需要的核苷酸种类有几种? 转录需要RNA的四种核苷酸,翻译还是RNA,同样的四种。不知你的问题是需要还是参与了。在转录中的模板链是DNA,当然有DNA的四种核苷酸参与了。 DNA复制过程中用到的四种核苷酸的具体名称是什么? 鸟嘌呤脱氧核糖核苷酸,胞嘧啶脱氧核糖核苷酸,胸腺啶脱氧核糖核苷酸,腺嘌呤脱氧核糖核苷酸
DNA合成的前身物质是什么
腺嘌呤脱氧核糖核苷酸A 鸟嘌呤脱氧核糖核苷酸G 胞嘧啶脱氧核糖核苷酸C 胸腺嘧啶脱氧核糖核苷酸T 如果从头合成的话需要氨基酸、磷酸戊糖、二氧化碳和氨气等小分子.补救合成途径是由碱基和核苷直接合成核苷酸.生物体内一般采取第一种,第一种受阻才有第二种开始.
DNA合成的前身物质是什么
腺嘌呤脱氧核糖核苷酸A鸟嘌呤脱氧核糖核苷酸G胞嘧啶脱氧核糖核苷酸C胸腺嘧啶脱氧核糖核苷酸T如果从头合成的话需要氨基酸、磷酸戊糖、二氧化碳和氨气等小分子。补救合成途径是由碱基和核苷直接合成核苷酸。生物体内一般采取第一种,第一种受阻才有第二种开始。
画含有6个脱氧核苷酸组成的DNA双螺旋平面结构
脱氧核苷酸系用脱氧核糖核酸(DNA)为原料,经生物酶催化水解反应生成脱腺苷酸(dAMP),脱氧鸟苷酸(dGMP)、脱氧胞苷酸(dCMP)和胸苷酸(TMP)等四种脱氧核苷酸,然后经层析分离获得高纯度四种单一脱氧核苷酸产脱氧核苷酸 品。该产品可应用于医药、试剂、精细化工等领域。一个脱氧核苷酸分子由三个分子组成:一分子含氮碱基、一分子脱氧核糖、一分子磷酸。脱氧核苷酸是基因的基本结构和功能单位,决定生物的多样性的就是脱氧核苷酸中四种碱基(腺嘌呤 (adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。)的排列顺序不同。其中 胸腺嘧啶为脱氧核糖核酸所独有 脱氧核糖核酸(deoxyribonucleic acid,简称DNA)。DNA绝大部分存在于细胞核和染色质中,并与组蛋白结合在一起。DNA是遗传物质的基础。一般由C、H、O、N、P五种元素组成。脱氧核苷酸是脱氧核糖核酸的基本单位。
cDNA探针的具体内容
在静止状态下,可被复制多代,但不被表达,故无毒性。一旦因某种因素刺激而被活化,则该病毒大量复制,如其带有癌基因,还可能诱发细胞癌变,后来发现逆转录酶不仅普遍存在于RNA病毒中,而且哺乳动物的胚胎细胞和正在分裂的淋巴细胞也含有逆转录酶。逆转录酶的作用是以dNTP为底物,RNA为模板,tRNA(主要是色氨酸tRNA)为引物,在tRNA3"-OH末端上,5"-3"方向,合成与RNA互补的DNA单链,称为互补DNA(cDNA),单链cDNA与模板RNA形成RNA-DNA杂交体。随后在逆转录酶的RNase H活性作用下,将RNA链水解成小片段。cDNA单链的3"末端回折形成一个小引物末端,逆转录酶又以第一条cDNA链为模板再合成第二第cDNA链,至此,完成逆转录全过程,合成双链cDNA。逆转录现在已成为一项重要的分子生物学技术,广泛用于基因的克隆和表达。从逆转录病毒中提取的逆转录酶已商品化,最常用的有AMV逆转录酶。利用真核mRNA3"末端存在一段聚腺苷酸尾,可以合成一段寡聚胸苷酸(oligo(dT))用作引物,在逆转录酶催化下合成互补于mRNA的cDNA链,然后再用RNase H将mRNA消化掉,再加入大肠杆菌的DNA聚合酶I催化合成另一条DNA链,即完成了从mRNA到双链DNA的逆转录过程。所得到的双链cDNA分子经S1核酸酶切平两端后接一个有限制酶切点的接头(linker),再经特定的限制酶消化产生粘性末端,即可与含互补末端的载体进行连接。常用的克隆载体是λ噬菌体DNA,如λgt,EMBL和Charon系列等。用这类载体可以得到包含104以上的转化子的文库,再经前面介绍的筛选方法筛选特定基因克隆。用这种技术获得的DNA探针不含有内含子序列。因此尤其适用于基因表达的检测。
核酸核酸包括核糖核酸(RNA)和脱氧核糖核酸(DNA) 两种吗?
核酸(nucleicacid)是重要的生物大分子,它的构件分子是核苷酸(nucleotide)。天然存在的核酸可分为:╭脱氧核糖核酸(deoxyribonucleicacid,dna)╰核糖核酸(ribonucleicacid,rna)dna贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础。rna中参与蛋白质合成的有三类:╭转移rna(transferrna,trna)∣核糖体rna(ribosomalrna,rrna)╰信使rna(messengerrna,mrna)20世纪末,发现许多新的具有特殊功能的rna,几乎涉及细胞功能的各个方面。核苷酸可分为:╭核糖核苷酸:是rna的构件分子╰脱氧核糖核苷酸:是dna构件分子。细胞内还有各种游离的核苷酸和核苷酸衍生物,它们具有重要的生理功能。核苷酸由:╭核苷(nucleoside)╰磷酸核苷由:╭碱基(base)╰戊糖碱基(base):构成核苷酸中的碱基是含氮杂环化合物,由嘧啶(pyrimidine)和嘌呤(purine)构成。核酸:╭嘌呤碱:╭腺嘌呤∣╰鸟嘌呤╰嘧啶碱:╭胞嘧啶∣胸腺嘧啶╰尿嘧啶╭dna中含有腺嘌呤、鸟嘌呤和胞嘧啶,胸腺嘧啶主要存在于dna中。∣╰rna中含有腺嘌呤、鸟嘌呤和胞嘧啶,尿嘧啶主要存在于rna中。在某些trna分子中也有胸腺嘧啶,少数几种噬菌体的dna含尿嘧啶而不是胸腺嘧啶。这五种碱基受介质ph的影响出现酮式、烯醇式互变异构体。在dna和rna中,尤其是trna中还有一些含量甚少的碱基,称为稀有碱基(rarebases)稀有碱基种类很多,大多数是甲基化碱基。trna中含稀有碱基高达10%。戊糖:核酸中有两种戊糖dna中为d-2-脱氧核糖(d-2-deoxyribose),rna中则为d-核糖(d-ribose)。在核苷酸中,为了与碱基中的碳原子编号相区别核糖或脱氧核糖中碳原子标以c-1",c-2"等。脱氧核糖与核糖两者的差别只在于脱氧核糖中与2"位碳原子连结的不是羟基而是氢,这一差别使dna在化学上比rna稳定得多。核苷:核苷是戊糖与碱基之间以糖苷键(glycosidicbond)相连接而成。戊糖中c-1"与嘧啶碱的n-1或者与嘌吟碱的n9相连接,戊糖与碱基间的连接键是n-c键,一般称为n-糖苷键。rna中含有稀有碱基,并且还存在异构化的核苷。如在trna和rrna中含有少量假尿嘧啶核苷(用ψ表示),在它的结构中戊糖的c-1不是与尿嘧啶的n-1相连接,而是与尿嘧啶c-5相连接。核苷酸:核苷中的戊糖5"碳原子上羟基被磷酸酯化形成核苷酸。核苷酸分为核糖核苷酸与脱氧核糖核苷酸两大类。依磷酸基团的多少,有一磷酸核苷、二磷酸核苷、三磷酸核苷。核苷酸在体内除构成核酸外,尚有一些游离核苷酸参与物质代谢、能量代谢与代谢调节,如三磷酸腺苷(atp)是体内重要能量载体;三磷酸尿苷参与糖原的合成;三磷酸胞苷参与磷脂的合成;环腺苷酸(camp)和环鸟苷酸(cgmp)作为第二信使,在信号传递过程中起重要作用;核苷酸还参与某些生物活性物质的组成:如尼克酰胺腺嘌呤二核苷酸(nad+),尼克酰胺腺嘌呤二核苷酸磷酸(nadp+)和黄素腺嘌呤二核苷酸(fad)。核酸的分子结构:一、核酸的一级结构核酸是由核苷酸聚合而成的生物大分子。组成dna的脱氧核糖核苷酸主要是damp、dgmp、dcmp和dtmp,组成rna的核糖核苷酸主要是amp、gmp、cmp和ump。核酸中的核苷酸以3",5"磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5"末端与3"末端。5"末端含磷酸基团,3"末端含羟基。核酸链内的前一个核苷酸的3"羟基和下一个核苷酸的5"磷酸形成3",5"磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。
双链DNA每1000个核苷酸对重1x10^-30g,人体的DNA的总质量是多少?
一类由嘌呤碱或嘧啶碱基、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。五碳糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸(腺苷酸,AMP)、鸟嘌呤核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸, CMP)、尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌呤核苷酸(肌苷酸,IMP)等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。合成核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞的核及胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起着主要的作用。体内的能量释放及吸收主要是以产生及消耗三磷酸腺苷来体现的。此外,三磷酸尿苷、三磷酸胞苷及三磷酸鸟苷也是有些物质合成代谢中能量的来源。腺苷酸还是某些辅酶,如辅酶Ⅰ、Ⅱ及辅酶A等的组成成分。
多聚尿苷酸尾巴使RNA产物从DNA模板上脱落下来
不会的。。
dna的提取方法
一.DNA的提取方法简介为了研究DNA分子在生命代谢中的作用,常常需要从不同的生物材料中提取DNA.由于DNA分子在生物体内的分布及含量不同,要选择适当的材料提取DNA。动植物中,小牛胸腺u06f0动物肝脏u06f0鱼类精子,植物种子的胚中都含有丰富的DNA。微生物中,谷氨酸菌体含7%~10%,面包酵母含4%,啤酒酵母含6%,大肠肝菌含9%~10%。 从各种材料中提取DNA方法不同,分离提取的难易程度也不同。对于低等生物。如从病毒中提取DNA 比较容易,多数病毒DNA 分子量较小,提取时易保持其结构完整性。从细菌及高等动植物中提取DNA难度大一些。细菌DNA 分子量较大,一般达2×10 道尔顿。因此易被机械张力剪断。细菌DNA,除核DNA 外,还有质粒DNA 等。1、核酸的理化性质 RNA和核苷酸的纯品都呈白色粉末或结晶,DNA则为白色类似石棉样的纤维状物。除肌苷酸、鸟苷酸具有鲜味外,核酸和核苷酸大都呈酸味。 DNA、RNA和核苷酸都是极性化合物,一般都溶于水,不溶于乙醇、氯仿等有机溶剂,它们的钠盐比游离酸易溶于水,RNA钠盐在水中溶解度可达40g/L。DNA在水中为10g/L,呈黏性胶体溶液。在酸性溶液中,DNA、RNA易水解,在中性或弱碱性溶液中较稳定。天然状态的DNA 是以脱氧核糖核蛋白(DNP)形式存在于细胞核中。要从细胞中提取DNA 时,先把DNP抽提出来,再把P除去,再除去细胞中的糖,RNA 及无机离子等,从中分离DNA 。 DNP和RNP在盐溶液中的溶解度受盐浓度的影响而不同。DNP在低浓度盐溶液中,几乎不溶解,如在0.14 mol/L的氯化钠溶解度最低,仅为在水中溶解度的1%,随着盐浓度的增加溶解度也增加,至1mol/L氯化钠中的溶解度很大,比纯水高2倍。RNP在盐溶液中的溶解度受盐浓度的影响较小,在0.14mol/L氯化钠中溶解度较大。因此,在提取时,常用此法分离这两种核蛋白。2.细胞的破碎细菌有坚硬的细胞壁,首先要破碎经胞。方 法有三种:①机械方法:超声波处理法、研磨法、匀浆法;②化学试剂法:用SDS处理细胞; ③酶解法:加入溶菌酶或蜗牛酶,都可使细胞壁破碎。由于高等动物DNA 主要存在于细胞核与线粒体中,所以提取时有两个困难(高等植物与此类似): ①破碎细胞难;从处死动物u0660分离组织器宫到破碎细胞费时长。在此时期间DNA 可能会被DN ase降解,而动物组织:特别是肌肉组织很难破碎,即使是较易破碎的肝u0660肾等组织也往往使用组织匀浆器,易造成DNA 断裂。 ②分子量大,一般比细菌的大2—3个数量级,比病毒的大4—5个数量。对不同生物材料,要根据具体情况选择适当的分离提取方法。3.DNA提取的几种方法(1).浓盐法 利用RNP和DNP在电解溶液中溶解度不同,将二者分离,常用的方法是用1M 氯 纳提取化钠抽提,得到的DNP粘液与含有少量辛醇的 氯仿一起摇荡,使乳化,再离心除去蛋白质,此时蛋白质凝胶停留在水相及氯仿相中间,而DNA位于上层水相中,用2倍体积95%乙醇可将DNA 钠盐沉淀出来. 也可用0.15 MNaCL液反复洗涤细胞破碎液除去RNP,再以1MNaCL提取脱氧核糖蛋白,再按氯仿---异醇法除去蛋白. 两种方法比较,后种方法使核酸降解可能少一些. 以稀盐酸溶液提取DNA 时,加入适量去污剂,如SDS可有助于蛋白质与DNA 的分离。在提取过程中为抑制组织中的DNase对DNA 的降解作用,在氯化钠溶液中加入柠檬酸钠作为金属离子的烙合剂.通常用.15MNaCL,0.015M柠檬钠,并称SSC溶液,提取DNA. (2).阴离子去污剂法: 用SDS或二甲苯酸钠等去污剂使蛋白质变性,可以直接从生物材料中提取DNA .由于细胞中DNA与蛋白质之间常借静电引力或配位键结合,因为阴离子去污剂能够破坏这种价键,所以常用阴离子去污剂提取DNA.(3).苯酚抽提法: 苯酚作为蛋白变性剂,同时抑制了DNase的降解作用.用苯酚处理匀浆液时,由于蛋白与DNA 联结键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。蛋白分子溶于酚相,而DNA溶于水相。离心分层后取出水层,多次重复操作,再合并含DNA 的水相,利用核酸不溶于醇的性质,用乙醇沉淀DNA 。此时DNA是十分粘稠的物质,可用玻璃漫漫绕成一团,取出。此法的特点是使提取的DNA保持天然状态 .( 4).水抽提法: 利用核酸溶解于水的性质,将组织细胞破碎后,用低盐溶液除去RNA,然后将沉淀溶于水中,使DNA充分溶解于水中,离心后收集上清液.在上清中加入固体氯化钠调节至2.6M.加入2倍体积95%乙醇,立即用搅拌法搅出.然后分别用66% u066080%和95%乙醇以及丙铜洗涤,最后在空气中干燥,既得DNA样品.此法提取的DNA中蛋白质含量较高,故一般不用.为除蛋白可将此法加以改良,在提取过程中加入SDS.
四氢叶酸合成受阻时可迅速影响dna的合成吗
不可以。受阻会降低细胞嘌呤和嘧啶的含量,进而影响DNA的生长和分裂,但这一过程需要多个代谢通路的参与,不是一瞬间可以迅速影响到DNA的合成。
DNA聚合酶为什么不能从头开始合成DNA
DNA聚合酶,以DNA为复制模板,从将DNA由5"端点开始复制到3"端的酶。不能起始新的DNA链,必须要有引物提供3"-OH
DNA聚合酶为什么不能从头开始合成DNA
因为DNA聚合酶合成DNA时,被合成的序列前要有RNA引物。没有引物的话,DNA聚合酶就不能合成DNA。
高中生物 DNA解旋酶基因,核糖体蛋白基因是所有活细胞都具有的基因吗
是啊。DNA解旋酶主要参与DNA的复制过程,它使得DNA的双链解螺旋形成单链,完成DNA的复制。对于活细胞来讲,DNA的复制活动是频繁的,因此,DNA解旋酶基因肯定存在。而核糖体蛋白基因主要编码核糖体的蛋白,比如说核糖体结构蛋白,这些蛋白在维持核糖体的结构和功能方面是必需的。所以,这种基因也是存在的。当然了,上面的论述仅限于有细胞结构生物。
为什么核糖体有RNA?又为什么没有DNA?
由其结构决定,核糖体主要由蛋白质(40%)和RNA(60%)构成,故核糖体有RNA无DNA。存在部位可分为三种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体。生物类型可分为两种类型:真核生物核糖体和原核生物核糖体。扩展资料理化特性核糖体的主要成份为蛋白质和rRNA,二者比例在原核细胞中为1:1.5,在真核细胞中为1:1,每个亚基中,以一条或二条高度折叠的rRNA为骨架,将几十种蛋白质组织起来,紧密结合,使rRNA大部分围在内部,小部分露在表面。由于RNA的磷酸基带负电荷超过了蛋白质带的正电荷,所以显负电性,易与阳离子和碱性染料结合。定义核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle),主要由RNA(rRNA)和蛋白质构成,其唯一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。核糖体可在mRNA上移动参考资料来源:百度百科-核糖体
rdna指的是什么
rDNA,即核糖体DNA。rDNA 就是可以转录产生rRNA的基因,rDNA的活性改变在核仁周期(也就是细胞分裂过程中核仁的消失与重建)中发挥着重要作用。它不是单独存在的,有时候它可以和别的基因间隔分布,比如可以和tDNA(转运dna)间隔。
核糖体的主要成分是什么 有DNA吗
没有。核糖体主要由核糖体RNA(rRNA)及数十种不同的核糖体蛋白质组成(物种之间的确切数量略有不同)。核糖体是细胞内一种核糖核蛋白颗粒,主要由RNA(rRNA)和蛋白质构成,其功能是按照mRNA的指令将遗传密码转换成氨基酸序列并从氨基酸单体构建蛋白质聚合物。 核糖体的组成成分是( ) A.蛋白质和脂质 B.蛋白质和RNA C.糖类和蛋白质 D.蛋白质和DNA 答案:B 核糖体的结构 各种核糖体尽管大小差异很大,但它们的核心结构非常相似。大部分rRNA高度组织成各种三级结构基序。较大核糖体中额外的RNA都是以几个长的连续插入形式出现,使得它们在核心结构中形成环而不被破坏或改变。核糖体的所有催化活性均由RNA进行,其表面的蛋白质可以稳定rRNA结构。
DNA中,A,G,T,C,U的结构式是什么样的?拜托各位大神
嘌呤是双环,如腺嘌呤(见图);嘧啶是单环,如胞嘧啶。 腺嘌呤核苷酸 adenylic acid 腺嘌呤核苷的磷酸酯。已知有2′-,3′-,5′-三种异构体,腺苷酸的磷酸键是低能键。(1)5′-腺苷酸亦称腺苷5′-磷酸、腺苷一磷酸(AMP),广泛分布于生物体。早年为G.Embden和M.Zimm-ermann (1927)发现,并引起了注意。在各种生化反应中以ATP、ADP水解生成。此外,已知腺苷经过腺苷激酶磷酸化形成AMP的途径和次黄苷经腺苷酸琥珀酸生成AMP的途径。后者是生物合成的途径。在腺苷酸激酶的存在下,通过ATP磷酸化后,可逆地生成ADP,在腺苷酸脱氨酶作用下,脱氨形成次黄嘌呤核苷酸。再者已知它是磷酸化酶a、b等酶的调节因子。( 2)3′-核苷酸和2′-核苷酸已从RNA的碱水解产物中分离出来。另外,环状AMP(cAMP)是环化腺苷-3′,5′-磷酸。 胞嘧啶核苷酸 cytidylic acid,cytidine monophosphate 缩写CMP。为嘧啶核苷酸之一,RNA的构成成分。天然存在的有5′-胞苷酸(胞苷-5′-磷酸)。RNA碱解可生成2′-胞苷酸(胞苷-2′-磷酸)和3′-胞苷酸(胞苷-3′-磷酸)。
腺苷再加上一个磷酸为什么就构成RNA的基本单位?为什么不是DNA的基本单位
组成DNA或者RNA的基本单位分别为脱氧核苷酸和核苷酸。(脱氧)核苷酸即为一个(脱氧)核糖核苷与3磷酸聚合体的结合体。即为(脱氧)核糖核苷三磷酸,简称(脱氧)核苷酸。脱氧核苷酸与核苷酸的差异在5碳环骨架(核糖)上3号位处是否有羟基。有的为核苷酸,没有的为脱氧核苷酸。另外,腺苷酸(腺嘌呤核糖核苷酸,A)只是RNA基本单位中的一种,同时还有鸟苷酸(鸟嘌呤核糖核苷酸,G),尿苷酸(尿嘧啶核糖核苷酸,U),胞苷酸(胞嘧啶核糖核苷酸,C)。
关于核酸 DNA和RNA都有什么用? 为什么三个核苷酸确定一个氨基酸?
我只知道核酸是遗传物质…… 核酸(nucleic acid)是重要的生物大分子,它的构件分子是核苷酸(nucleotide). 天然存在的核酸可分为: ╭ 脱氧核糖核酸(deoxyribonucleic acid,DNA) ╰ 核糖核酸(ribonucleic acid,RNA) DNA贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础. RNA中参与蛋白质合成的有三类: ╭ 转移RNA(transfer RNA,tRNA) ∣ 核糖体RNA(ribosomal RNA,rRNA) ╰ 信使RNA(messenger RNA,mRNA) 20世纪末,发现许多新的具有特殊功能的RNA,几乎涉及细胞功能的各个方面. 核苷酸可分为: ╭ 核糖核苷酸:是RNA的构件分子 ╰ 脱氧核糖核苷酸:是DNA构件分子. 细胞内还有各种游离的核苷酸和核苷酸衍生物,它们具有重要的生理功能. 核苷酸由: ╭ 核苷(nucleoside) ╰ 磷酸 核苷由: ╭ 碱基(base) ╰ 戊糖 碱基(base): 构成核苷酸中的碱基是含氮杂环化合物,由嘧啶(pyrimidine)和嘌呤(purine)构成. 核酸: ╭ 嘌呤碱 : ╭ 腺嘌呤 ∣ ╰ 鸟嘌呤 ╰ 嘧啶碱 : ╭ 胞嘧啶 ∣ 胸腺嘧啶 ╰ 尿嘧啶 ╭ DNA中含有腺嘌呤、鸟嘌呤和胞嘧啶,胸腺嘧啶主要存在于DNA中. ∣ ╰ RNA中含有腺嘌呤、鸟嘌呤和胞嘧啶,尿嘧啶主要存在于RNA中. 在某些tRNA分子中也有胸腺嘧啶,少数几种噬菌体的DNA含尿嘧啶而不是胸腺嘧啶.这五种碱基受介质pH的影响出现酮式、烯醇式互变异构体. 在DNA和RNA中,尤其是tRNA中还有一些含量甚少的碱基,称为稀有碱基(rare bases)稀有碱基种类很多,大多数是甲基化碱基.tRNA中含稀有碱基高达10%. 戊糖: 核酸中有两种戊糖DNA中为D-2-脱氧核糖(D-2-deoxyribose),RNA中则为D-核糖(D-ribose).在核苷酸中,为了与碱基中的碳原子编号相区别核糖或脱氧核糖中碳原子标以C-1",C-2"等.脱氧核糖与核糖两者的差别只在于脱氧核糖中与2"位碳原子连结的不是羟基而是氢,这一差别使DNA在化学上比RNA稳定得多. 核苷: 核苷是戊糖与碱基之间以糖苷键(glycosidic bond)相连接而成.戊糖中C-1"与嘧啶碱的N-1或者与嘌吟碱的N9相连接,戊糖与碱基间的连接键是N-C键,一般称为N-糖苷键. RNA中含有稀有碱基,并且还存在异构化的核苷.如在tRNA和rRNA中含有少量假尿嘧啶核苷(用ψ表示),在它的结构中戊糖的C-1不是与尿嘧啶的N-1相连接,而是与尿嘧啶C-5相连接. 核苷酸: 核苷中的戊糖5"碳原子上羟基被磷酸酯化形成核苷酸.核苷酸分为核糖核苷酸与脱氧核糖核苷酸两大类.依磷酸基团的多少,有一磷酸核苷、二磷酸核苷、三磷酸核苷.核苷酸在体内除构成核酸外,尚有一些游离核苷酸参与物质代谢、能量代谢与代谢调节,如三磷酸腺苷(ATP)是体内重要能量载体;三磷酸尿苷参与糖原的合成;三磷酸胞苷参与磷脂的合成;环腺苷酸(cAMP)和环鸟苷酸(cGMP)作为第二信使,在信号传递过程中起重要作用;核苷酸还参与某些生物活性物质的组成:如尼克酰胺腺嘌呤二核苷酸(NAD+),尼克酰胺腺嘌呤二核苷酸磷酸(NADP+)和黄素腺嘌呤二核苷酸(FAD). 至于为什么三个核苷酸确定一个氨基酸,不好意思,没找到呃……
DNA复制过程中原料为什么是三磷酸腺苷而非一磷酸腺苷 DNA复制过程中原料为什么是三磷酸腺苷而非%
三磷酸腺苷(A-T~P~P~P)中含有能量和P,而DNA复制过程中既需要磷又需要能量,磷酸腺苷中三磷酸腺苷的能量是最高的,它依靠磷与磷之间的“~”断裂来释放能量(我记不清“~”是指氢键还是磷键了,应该是氢键),所以三磷酸腺苷好过一磷酸腺苷
为什么DNA合成过程中用三磷酸腺苷而不是一磷酸腺苷
因为一磷酸腺苷并不具有高能磷酸键A-p~p~p在需能时就将高能磷酸键断开,使ATP成为ADP,放出能量ATP与ADP之间能迅速转化,故在细胞内含量虽低,但却是直接能源物质
如何将分子量相同的单链DNA与单链RNA分开
用化学方法水解核酸能够得到什么产物取决于核酸分子中磷酸二酯键和N-糖苷键对酸、碱的相对稳定性。RNA中,核糖与碱基之间的N-糖苷键对碱稳定,RNA主链中的磷酸二酯键一般也对碱稳定,因此RNA通常应该不被水解。但是,RNA分子由于核糖上有2′-羟基,存在邻接基团参与效应,在碱催化下,RNA分子中的磷酰基发生转移,生成2′,3′-环状单核苷酸中间产物,环核苷酸再进一步水解成2′-核苷酸和3′-核苷酸。DNA则一般不被碱水解。碱水解RNA时,A、C、G、U、I、T的单核甘酸和几种甲基化碱基是稳定的,m1A转变为m6A,m3C转变为m3U,而m7G、m1I、tC6A、m6tC8A会被碱破坏。修饰组分2′-O-甲基核糖核苷酸由于不能形成2′,3′-环核苷酸,因此该处的磷酸二酸键不被碱水解,产物中出现NmNp和NmNmNp等寡核苷酸。大肠杆菌16SrRNA中的m62Am62Ap也有很强的抗碱性,用1mol∕LNaOH,37℃水解9小时后仍有38%残存,而通常RNA用0.3mol∕LNaOH,37℃作用18小时即可完全水解。
DNA样品的鸟苷酸比例拜托了各位 谢谢
A,鸟嘌呤与胞嘧啶配对,中间有三个氢键,,这种配对形式越多DNA越稳定,所以要在高温下生存,就决定鸟苷酸要多
只有一个磷酸基团的物质?RNA?DNA?ATP?磷脂?
楼上全正解,ATP有三个。核苷酸只有一个磷酸基团,但是一个RNA或DNA有很多个核苷酸单位。这是第一个人回答的。在RNA、DNA分子内磷酸会形成磷酸二酯键,只考虑游离的,这是第二个回答的。选RNA,否则没答案。
只有一个磷酸基团的物质?RNA?DNA?ATP?磷脂?
有些核苷酸分子中只有一个磷酸基,所以可称为一磷酸核苷(NMP),比如AMP,CMP等等RNADNA磷脂都是多聚大分子,每个分子有很多磷酸基团 ATP是又叫三磷酸腺苷(腺苷三磷酸)。结构简式A--P~P~P,有3个磷酸基