DNA图谱 / 问答 / 标签

怎样总结区别:核苷酸、氨基酸、组成成分,作用和结构功能呢?

一个脱氧核糖核苷酸由一个脱氧核糖.一个碱基,一个磷酸组成. 在转录过程中.tRNA上每三个碱基,即一个反密码子.决定一个氨基酸. 在个数上.脱氧核糖核苷酸:碱基:氨基酸=3:3:1 碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。 除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 碱基对形成DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T, G:C,A:U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳 糖、磷酸和一个碱基组成。

控制合成胰岛素《含51个氨基酸》的基因中,含有嘧啶碱基至少多少个?

控制合成胰岛素(含51个氨基酸)的基因中,(至少)有306个含N碱基,而DNA中嘌呤和嘧啶数是相等的,各占一半,

控制合成胰岛素(含51个氨基酸)的基因中,含有嘧啶碱基至少有 A306 B153 C102 D51 为什么不考虑终止密码

哎,这道题,我直接觉得出题的是个2,胰岛素是有51个AA,但人家是两条肽链以二硫键连接起来的,AB之间,本身还有一段切除的肽链,这题直接给学生一种错误的感觉,你从51个AA,推测基因的情况,这个是对的,是题目在混淆你(我觉得这是一道非常失败,而且老师没有生物常识,还自以为很高明,但提问方式确是不好反驳),题目本身就没有考虑基因的具体情况,你根本不用考虑什么终止密码子了, 因为本身就非常不准确。 你不用纠结这道题了, 因为题目本身很失败,高考题不会是这个2样。 复习高考还是要多看书,做一些高质量的题,而不是这种很没有意义的题目,历年各省真题是很有价值的,希望能帮到你。 不知道这类失败的模拟题还要横行多少年啊,我想当个老师还当不成呢,╮(╯▽╰)╭

控制合成胰岛素(含51个氨基酸)的基因中,含嘧啶碱基有多少

控制合成胰岛素(含51个氨基酸)的基因中,(至少)有306个含N碱基,而DNA中嘌呤和嘧啶数是相等的,各占一半,

嘌呤碱基和芳香族氨基酸侧链生物降解的共同点

①都有脱氨基作用。②都有氧气和水参与反应。③不同的嘌呤生成同一中间物,然后共用一条代谢途径生成相同的代谢产物,不同的芳香族氨基酸也生成同意一中间物,然后共用一条代谢途径,最终生成相同的代谢产物。

用硝酸银鉴定嘌呤碱基时加浓氨水的目的

加浓氨水可以观察沉淀的生成和变化。用硝酸银鉴定嘌呤碱基属于核酸的定性分析【目的】1 .掌握测定核酸 的组成从而 定性分析 DNA 或 RNA 的方法。 2 .熟悉测定核酸的组成从而定性分析 DNA 或 RNA 的 原理。【原理】RNA 和 DNA 均可被硫酸水解生成含氮碱(嘌呤碱与嘧啶碱)、戊糖( RNA 中的核糖与 DNA 中的脱氧核糖)和磷酸。水解产物可用下列方法鉴定。 1 .嘌呤碱的鉴定原理嘌呤碱在弱碱性环境中能与硝酸银作用形成嘌呤银化合物。初为乳白色,稍放久为浅灰褐色絮状物。2 .核糖的鉴定原理核糖经浓盐酸或浓硫酸作用,脱水生成糠醛,后者能与 3 , 5- 二羟甲苯缩合形成鲜绿色化合物。该反应需三氯化铁作为催化剂。3 .脱氧核糖的鉴定原理脱氧核糖在浓酸中脱水生成 ω- 羟基 γ- 酮基戊醛,后者与二苯胺作用生成蓝色化合物。4 .磷酸的鉴定原理定磷试剂中的钼酸铵在酸性环境中以钼酸形式与样品中的磷酸反应生成磷钼酸。后者在还原剂氨基萘酚磺酸作用下形成蓝色的钼蓝。【器材】1 . 试管与滴管2 . PH 试纸3 . 沸水浴4 . 带有长玻璃管的胶塞【试剂】1 . 5% 硫酸2 . 5% 硝酸银溶液3 .浓氨水4 . 3,5- 二羟甲苯试剂取 FeCl 3 ·6H 2 O 1.0g 溶于 6ml 水中,加浓盐酸 100ml ,混匀,此为 A 液。另配制 6%3,5- 二羟甲苯乙醇溶液为 B 液。临用时用 A 液 100ml 加 B 液3.5ml 混合即可。5 .二苯胺试剂取二苯胺 1.0g 溶于 100ml 冰乙酸中,加浓硫酸 2.75ml 。此二苯胺试剂遇光易变绿色,故临用前配制,贮于棕色瓶中,置冰箱保存。6 .钼酸试剂取钼酸铵 2.5g 溶于 20ml 水中,加浓硫酸( A·R ) 8.5ml, 冷却后再加水至 100ml ,放冷处可保存 4 周左右。7 .氨基萘酚磺酸溶液取 15% 亚硫酸氢钠溶液 195ml 与 20% 亚硫酸钠溶液 5ml 混合,加氨基萘酚磺酸 0.5g ,在热水浴中搅拌使固体溶解(如不全溶,可滴加 20% 亚硫酸钠数滴,至多不超过 1ml 即可)。此溶液置冷处可保存 2-3 周,如颜色变黄需重新配置,临用前将上述溶液以蒸馏水稀释 10 倍应用。8 .核酸样品称取粗制核酸样品 10mg/ 每组。或者,取本教材实验九从动物组织中提取出的核酸作为本次实验的样品。【操作】1 .核酸的水解向加入 10mg 核酸样品的试管(或者,向有核酸沉淀的离心管)中加入 5% 硫酸 4ml ,用玻璃棒搅匀,再用带长玻璃管的塞子塞紧管口,于沸水浴中加热 15min ,既得核酸的水解液。2 .核酸的鉴定( 1 )嘌呤碱的鉴定:取小试管 2 支,分别标明测定与对照,按下表依次加入试剂,混匀,放置 15min ,观察嘌呤银沉淀的生成,并记录颜色。注:加氨水(约 2 ~ 3 滴)以中和酸,呈碱性即可,需用 PH 试纸测试。若加氨水过多,则生成银氨络离子 [ Ag(NH 3 ) 4 ] + ,使银离子减少,嘌呤银沉淀减少。( 2 )核糖的鉴定:取试管 2 支,分别标明测定与对照,按下表操作:将两管同时放入沸水浴加热 15min ,观察颜色变化并记录。(煮 3 ~ 5min ,即可先观察)( 3 )脱氧核糖的鉴定:取试管 2 支。分别标明测定与对照。按下表操作 :将两管同时放入沸水浴中加热 10min ,观察颜色变化并记录。( 4 )磷酸的鉴定:取试管 2 支,分别标明测定与对照,按下表操作:于室温放置 10min 后,观察颜色变化并记录。【注意事项】1 .为了安全,核酸水解时,避免将 长玻璃管的管口对准人 。2 .嘌呤碱的鉴定中氨水不能加的过多。

控制合成某蛋白质(含100个氨基酸)的基因中

1、合成100个氨基酸需要300个碱基对,所以至少有600个碱基,其中嘌呤数与嘧啶数相同,所以含有嘌呤碱基至少有300个2、共有2100个碱基对,能控制合成2100/3=700个氨基酸

DNA转录的mRNA时,上下两条链转录出的mRNA和最终的到的氨基酸是否一致?

第一,从理论上说,绝大多数情况下是不一致的,除非是回文结构。随便写一个例子:ATGCCT,它的互补链(注意是反向互补)应该是AGGCAT,明显序列不同,转录出的mRNA不同,密码子不同,所以氨基酸不同的可能性很大。第二,从实际上说,一个基因只存在于DNA双链中的一条上,另一条链称这个基因的“无义链”(注意,不同基因所在的链可能不同,所以有义链和无义链一定针对某基因而言,不能说这一整条DNA都是有义链或无义链),不进行转录和翻译,所以另一条链也就没有mRNA,更没有氨基酸的问题。

转氨酶的辅酶组分中含有

正确答案:A解析:各种转氨酶均以磷酸吡哆醛或磷酸吡哆胺为辅酶,它在反应过程中起传递氨基的作用。

转氨酶的辅酶是下列哪种化合物

正确答案:C解析:即维生素B[XB6.gif],包括吡哆醛、吡哆胺、吡哆醇,在体内以磷酸酯的形式存在,是氨基酸代谢中的转氨酶及脱羧酶的辅酶。转氨基时,辅酶磷酸吡哆醛从α-氨基酸上接受氨基转变为磷酸吡哆胺,后者将其氨基转给α-酮酸,辅酶又恢复为磷酸吡哆醛,在催化中起着传递氨基的作用。故选C。

转氨酶的辅酶是下列哪种化合物

【答案】:C即维生素B,包括吡哆醛、吡哆胺、吡哆醇,在体内以磷酸酯的形式存在,是氨基酸代谢中的转氨酶及脱羧酶的辅酶。转氨基时,辅酶磷酸吡哆醛从α-氨基酸上接受氨基转变为磷酸吡哆胺,后者将其氨基转给α-酮酸,辅酶又恢复为磷酸吡哆醛,在催化中起着传递氨基的作用。故选C。

嘧啶合成所需的氨基甲酰磷酸的氨源来自

嘧啶合成所需的氨基甲酰磷酸的氨源来自谷氨酰胺。根据查询相关公开信息显示,嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。

生理学里转运RNA由DHU环、反密码环、额外环、T¢环和氨基酸臂等五部分组成中的DHU代表什么?

DHU环是指二氢尿嘧啶环,DHU是二氢尿嘧啶(dihydrouracil,正好是二、氢、尿嘧啶的缩写)

嘧啶核苷酸的合成有何特点?分别有哪些氨基酸参加?

嘧啶核苷酸的从头合成与嘌呤核苷酸不同,生物体先利用小分子化合物形成嘧啶环。再与核糖磷酸结合成尿苷酸。关键的中间化合物是乳清酸。其它嘧啶核苷酸由尿苷酸转变而成。在嘧啶核苷酸合成过程中有:Gln和Asp参加。嘧啶核苷酸的分解代谢是先去除磷酸和核糖生成嘧啶碱,嘧啶碱在肝内降解。降解产物易溶于水,这点与嘌呤碱不同,嘌呤碱的代谢产物尿酸仅微溶于水。扩展资料:氨基酸在人体内通过代谢可以发挥下列一些作用:合成组织蛋白质;变成酸、激素、抗体、肌酸等含氨物质;转变为碳水化合物和脂肪;氧化成二氧化碳和水及尿素,产生能量。乳清酸磷酸核糖转移酶催化乳清酸转变为乳清酸核苷酸,而乳清酸核苷酸脱羧酶又催化乳清酸核苷酸转变为尿嘧啶核苷酸。两种酶有异常则尿嘧啶核苷酸的合成被阻断,失去最终产物对合成代谢的抑制作用,于是乳清酸便过度产生,尿中乳清酸排出增多。

嘌呤环怎么编号,鸟嘌呤的2-氨基-6-羟基(酮基)嘌呤是怎么来的?求图和真相

嘌呤是由一个嘧啶环和咪唑环组成的,嘌呤环的编号方式是固定的,即是从嘧啶环的N为1开始编号,按照杂原子位数和最小原则向下编号,先编嘧啶环;然后第七位开始编咪唑环,同样是从N开始,所以鸟嘌呤的命名就出来了。扩展资料:一、杂环化合物命名:杂环化合物的中文名称是以口字旁标明其为杂环,另半部分表明杂原子的种类。例如,以喃、噻分别表示为含氧、硫的杂环;以咯、唑、嗪、啶、啉表示为含氮的杂环,这些字是根据英文字的尾音创造的,其中咯、唑表示为五元含氮杂环,其余的指六元含氮杂环。杂原子超过一个者分别以二、三等字表示相同杂原子的数目,例如:二唑,表示该杂环化合物为含有一个氧和两个氮杂原子的五元杂环。在环中不同的原子可有不同的排列方式,命名时各原子的位置编号遵循下列原则:1、只含一个杂原子或一个以上相同杂原子的杂环,杂原子编最小号;2、含两个不同杂原子时,不同杂原子的编号顺序为氧、硫、氮。二、鸟嘌呤配位原理1、由于在咪唑环和苯环上存在N元素,还有苯环上的氨基上的N元素,他们都存在着孤对电子,在溶液中加入金属离子,就有可能发生配位反应。2、在酸性溶液中氢离子与金属离子间存在竞争(金属离子有可能被质子化)即氢离子浓度过大。3、苯环,咪唑环以及氨基上的N元素的配位能力不一样,配位能力越强的越容易与金属离子发生配位反应。参考资料来源:百度百科-鸟嘌呤参考资料来源:百度百科-杂环化合物

嘧啶环中的两个氨原子是来自于?

天冬氨酸 一号氮;NH3 3号氮;

嘧啶核苷酸的合成有何特点?分别有哪些氨基酸参加?

嘧啶核苷酸的从头合成与嘌呤核苷酸不同,生物体先利用小分子化合物形成嘧啶环。再与核糖磷酸结合成尿苷酸。关键的中间化合物是乳清酸。其它嘧啶核苷酸由尿苷酸转变而成。在嘧啶核苷酸合成过程中有:Gln和Asp参加。嘧啶核苷酸的分解代谢是先去除磷酸和核糖生成嘧啶碱,嘧啶碱在肝内降解。降解产物易溶于水,这点与嘌呤碱不同,嘌呤碱的代谢产物尿酸仅微溶于水。扩展资料:氨基酸在人体内通过代谢可以发挥下列一些作用:合成组织蛋白质;变成酸、激素、抗体、肌酸等含氨物质;转变为碳水化合物和脂肪;氧化成二氧化碳和水及尿素,产生能量。乳清酸磷酸核糖转移酶催化乳清酸转变为乳清酸核苷酸,而乳清酸核苷酸脱羧酶又催化乳清酸核苷酸转变为尿嘧啶核苷酸。两种酶有异常则尿嘧啶核苷酸的合成被阻断,失去最终产物对合成代谢的抑制作用,于是乳清酸便过度产生,尿中乳清酸排出增多。

生物体内嘌呤环及嘧啶环是如何合成的?有哪些氨基酸直接参与核苷酸的合成

在DNA和RNA,一对在部分含氮碱发挥作用。 5种碱是杂环化合物,氮原子位于所述环或取代的氨基,其中一些(取代氨基,和氮气嘌呤环,嘧啶环氮3)直接参与碱基配对的。 有五个基地:胞嘧啶(简称C),鸟嘌呤(G),腺嘌呤(A),胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义五种碱基,腺嘌呤和鸟嘌呤,嘌呤属于家庭(缩写为R&下),它们具有双环结构。胞嘧啶,尿嘧啶,胸腺嘧啶嘧啶属于家庭(Y),该环系统是一个六元杂环。 RNA,尿嘧啶代替胸腺嘧啶的位置。值得注意的是,胸腺嘧啶尿嘧啶比5-甲基更多,甲基增加的继承的准确性。通过与核糖或脱氧核糖共价键 基化合物附着于碳原子以形成称为核苷。与磷酸结合形式再次核苷连接到五碳糖5个碳原子的核苷酸的磷酸基团。 基地:腺嘌呤 - 胸腺嘧啶 - 尿嘧啶 - 鸟嘌呤 - 胞嘧啶 - 嘌呤 - 嘧啶核苷腺苷 - 尿苷 - 鸟苷 - 胞苷 - 脱氧 - 胸部苷 - 脱氧鸟嘌呤 - 脱氧核糖核苷酸:AMP - UMP - GMP - CMP - ADP - UDP - 国内生产总值 - CDP - 三磷酸腺苷 - UTP - GTP - CTP - 坎普 - cGMP的脱氧核苷酸:恒定 - DTMP - 卸载 - 的dGMP - 的dCMP - DADP - DTDP - DUDP - dGDP - DCDP - 的dATP - dTTP的 - 的dUTP - dGTP - 的dCTP 核酸:DNA - RNA - LNA - 巴勒斯坦民族权力机构 - 基因 - 非编码RNA - 的miRNA - rRNA基因 - shRNA的 - 的siRNA - 酰tRNA - 线粒体 - 寡核苷酸核糖核酸酸(缩写为RNA,即,核糖核酸),存在于生物细胞和某些病毒的遗传信息的病毒样载体。 RNA由磷酸酯键的成长链分子凝结的核糖核苷酸。核糖核苷酸分子由磷酸,核糖和基地。 RNA碱基有四种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA牛逼胸腺嘧啶和RNA特性变得基地。 随着不同的DNA,RNA通常是单链的分子长度,不形成双螺旋结构,但是很多的RNA还需要通过碱基配对的规则来实行某种生物学功能,甚至三级结构的二级结构。 DNA和RNA基本上是相同的碱基配对规则,但是除了A-U,G-C与外部,G-U也可以配对。 在细胞中,根据不同的RNA结构和功能主要分为三类,即,酰tRNA(转运RNA),rRNA基因(核糖体RNA),mRNA(信使RNA)。的mRNA是蛋白质合成的模板,根据在细胞核的DNA转录的内容; tRNA的核苷酸序列(即遗传密码)mRNA的认可和氨基酸的转运; rRNA基因是核糖体的蛋白质的合成工作场所的组合物的组分。 在病毒,许多病毒只RNA作为遗传信息的唯一载体(而不是通常用作载体的双链DNA细胞生物)。 自1982年以来,有研究表明,许多RNA,如I,II型内含子RNA酶P,HDV,大亚基核糖体RNA,而且有这么有生化反应催化方法的酶活性活动此类核酶被称为RNA(核酶)。 90年代以来,也发现RNA干扰(RNA干扰,RNA干扰)等等现象证明了RNA在基因表达调控中起重要作用。

合成R-(+)-N-(a-甲基苄基)-N-甲酰基甘氨酸乙酯中遇到的问题?

以下是可能的原因和建议:甲酸的加入:一次性加入所有甲酸可能导致剧烈的放热反应,从而使反应温度迅速升高。建议分次慢慢加入甲酸,以便更好地控制反应温度。这样可以避免剧烈反应和过热问题,提高产物纯度。反应容器过大:使用过大的反应容器可能导致蒸气在回流冷凝管中途回落,影响除水过程。尝试使用与实验规模更匹配的反应容器,以便更好地进行回流冷凝和水分的分离。回流除水不及时:由于剧烈的放热反应,部分水分可能已经与溶剂混合。在此情况下,尽早进行回流除水操作将有助于提高产物的收率和纯度。产物提纯:在合成过程结束后,确保使用正确的提纯方法,如萃取、干燥、蒸馏等,以得到纯净的目标产物。为了解决这些问题,您可以尝试:分次慢慢加入甲酸,以便更好地控制反应温度。使用与实验规模更匹配的反应容器。在反应过程中尽早进行回流除水操作。检查提纯步骤,确保使用正确的方法以提高产物的收率和纯度。

氨基甲酰的来源和去路

来源:1氨基酸脱氨基作用生成的氨2由肠道吸收的氨,包括食物蛋白质在大肠内经腐败作用生成的氨和尿素在肠道细胞脲酶作用下产生成的氨3肾脏泌氨,谷氨酰胺在肾小管上皮细胞中的谷氨酰胺酶的催化下生成氨去路:1在肾脏内合成尿素,氨在体内的主要去路是在肾脏生成无毒的尿素让后由肾脏排泄,这是集体对氨的一种解毒方式2谷氨酰胺的合成,氨与谷氨酸在谷氨酰胺合成酶的作用下合成谷氨酰胺,谷氨酰胺即为解毒产物也是储存于运输形式3氨可以是一些a-酮酸经联合脱氨基逆行氨基化而合成相应的非必需氨基酸,4氨还可以参加嘌呤碱和嘧啶碱的合成

(5-甲酰基-2-萘)氨基甲酸叔丁酯的合成路线有哪些?

基本信息:中文名称(5-甲酰基-2-萘)氨基甲酸叔丁酯英文名称tert-butylN-(5-formylnaphthalen-2-yl)carbamateCAS号685902-48-1合成路线:1.通过5-溴-2-萘甲酸甲酯合成(5-甲酰基-2-萘)氨基甲酸叔丁酯2.通过5-溴-2-萘甲酸合成(5-甲酰基-2-萘)氨基甲酸叔丁酯更多路线和参考文献可参考http://baike.molbase.cn/cidian/209152

碳酸钠能溶于甲酰氨溶液吗?

下午好,碳酸钠几乎不溶于有机溶剂即便是无水甲醇和DMSO这样的高极性溶剂中不加热时溶解度也非常小,甲酰胺比DMF极性虽然更大一些,但我觉得要溶解碳酸钠还是比较困难吧。甲酰胺更适合做一些纯离子晶体比如氯化钠或者溴化锌这样的助溶剂,至于碳酸钠和柠檬酸钠还是用唯一良溶剂的纯水更好。

作用于植物神经系统的氯化氨甲酰甲胆碱和甲基硫酸新斯的明能治疗哪些疾病?

氯化氨甲酰甲胆碱又称比赛可灵,是拟胆碱药。对胃肠道、膀胱、子宫等平滑肌兴奋作用较强,促进唾液、胃肠液分泌的作用快而持久,能增强胃肠蠕动、子宫和膀胱收缩及反刍动物反刍机能等。因此该品主要用于前胃及胃肠弛缓;也用于膀胱积尿、胎衣不下和子宫蓄脓等。制剂为氯化氨甲酰甲胆碱注射液。采用皮下注射,一次量为每100公斤体重5~8毫克。肠道完全阻塞、创伤性网胃炎患畜及孕畜忌用。本品临床应用较安全。发生过量中毒时,特效解毒药为阿托品。甲基硫酸新斯的明为抗胆碱酯酶药,可产生完全拟胆碱效应。其兴奋胃肠道、膀胱和子宫平滑肌作用较强,兴奋骨骼肌的作用最强。制剂有甲基硫酸新斯的明注射液。临床用于马肠道弛缓、便秘;牛前胃弛缓;重症肌无力、胎衣不下和尿潴留等。肌内或皮下注射,一次量为:马4~10毫克,牛4~20毫克,羊、猪2~5毫克,犬0.25~1毫克。机械性肠梗阻患畜禁用;过量中毒时,可用阿托品解救。

如何使氨基酸表面产生保护膜

氨基酸的保护膜主要是为了避免因氨基酸结构的敏感性,在氧化及其他化学反应中而发生不可逆的变化,从而对其生物活性产生负面影响。以下是一些通用的方法来为氨基酸表面产生保护膜:1. 乙酰化:乙酰化是最常用的氨基酸表面保护方法之一。通过与醋酸酐或N-羧基丙酰亚胺的反应,将氨基酸的氨基位点中的氢离子替换成酯基,形成乙酰化氨基酸,并保护了其活性部分,以达到保护的目的。2. 丙酰化:丙酰化是另一种氨基酸表面保护方法,类似于乙酰化过程。它可以通过与丙酰亚胺的反应来将氨基酸的氨基位点中的氢离子替换为酯基,形成丙酰化氨基酸,并保护其活性部分。3. 甲酰化:甲酰化是通过与甲酸酐或N-甲基乙酰亚胺的反应来将氨基酸的氨基位点中的氢离子替换成酯基。与乙酰化和丙酰化不同,甲酰化稍微不稳定,但也可以用于一些特殊情况。除了上述方法外,还有其他的一些技术也可以用来产生保护膜。例如,可以使用磷酸二酯化反应或巯基进行氧化反应来形成稳定的结构。另外,聚合物复合材料等也可以用于制备氨基酸表面的保护膜。总之,选择哪种方法应该基于氨基酸本身的活性以及所需应用的实际情况。

什么是甲硫氨酸的活化形式

甲硫氨酸的活化形式是甲酰甲硫氨酸。作为起始密码子对应的氨基酸,甲硫氨酸需要先甲酰化(添加甲酰基)才能被核糖体识别和结合。甲硫氨酸循环过程:甲硫氨酸的活化S一腺苷蛋氨酸(SAM)提供活性甲基转变为S一腺苷同型半胱氨酸生成同型半胱氨酸甲硫氨酸再生。

哺乳动物线粒体起始TRNA携带甲酰甲硫氨酸吗?

是的。N-甲酰甲硫氨酸在细菌、线粒体和叶绿体的蛋白质生物合成中起到至关重要的角色。是原核生物蛋白质合成时的第一个氨基酸(大部分pro会将其切除)。

甲基、甲烯基、甲炔基、甲酰基及亚氨甲基统称什么?

官能团,找不出其他的了 那可能是生物上的叫法,生物里醛基就叫甲酰基的

求教高手 怎样给甲酰氨脱水

奉劝楼主一句,甲酰胺脱水产物是非常危险的,没有专业设备最好不要尝试。酰胺脱水可以在以下几个条件中进行:1,POCl3;2,P2O5。注意:1,不推荐使用浓硫酸;2,建议设置出气口接冷凝管接锥形瓶防止中毒。

N-甲酰基-L-丙氨酸的合成路线有哪些?

基本信息:中文名称N-甲酰基-L-丙氨酸中文别名N-甲酰-L-丙氨酸;英文名称N-FORMYL-L-ALANINE英文别名Einecs234-045-4;N-Formyl-L-alanin;alanineformamide;L-Alanine,N-formyl;N-Formyl-L-alanine;formylalanine;FORMYL-L-ALANINE;FOR-ALA-OH;CAS号10512-86-4合成路线:1.通过DL-丙氨酸合成N-甲酰基-L-丙氨酸2.通过L-丙氨酸和甲乙酐合成N-甲酰基-L-丙氨酸更多路线和参考文献可参考http://baike.molbase.cn/cidian/110937

N-甲酰基-DL-丙氨酸的合成路线有哪些?

基本信息:中文名称N-甲酰基-DL-丙氨酸中文别名N-甲酰-DL-丙氨酸;英文名称2-formamidopropanoicacid英文别名N-Formylalanin;N-Formyl-DL-alanine;N-Formyl-DL-alanin;2-FORMYLAMINO-PROPIONICACID;DL-2-Formamino-propionsaeure;N-formylalanine;Alanine,N-formyl-(7CI,9CI);CAS号5893-10-7合成路线:1.通过甲酸和DL-丙氨酸合成N-甲酰基-DL-丙氨酸,收率约91%;2.通过DL-丙氨酸合成N-甲酰基-DL-丙氨酸更多路线和参考文献可参考http://baike.molbase.cn/cidian/1422444

N-甲酰-L-缬氨酸的合成路线有哪些?

基本信息:中文名称N-甲酰-L-缬氨酸中文别名FORMYL-VAL-OH;N-甲酰基-L-缬氨酸;Formyl-L-缬氨酸;甲酰基-L-缬氨酸;英文名称2-formamido-3-methylbutanoicacid英文别名FOR-VAL-OH;N-Formyl-L-valine;2-formamido-3-methyl-butyricacid;FOR-VALINE;2-formylamino-3-methylbutyricacid;N-FORMYL-L-VALINE;N-FORMYL-VALINE;N-Formyl-valin;N-Formyl-DL-valin;2-formamido-3-methyl-butanoicacid;FORMYL-L-VALINE;CAS号4289-97-8合成路线:1.通过甲酸和DL-缬氨酸合成N-甲酰-L-缬氨酸,收率约97%;2.通过DL-缬氨酸合成N-甲酰-L-缬氨酸更多路线和参考文献可参考http://baike.molbase.cn/cidian/1446296

N-甲酰-L-蛋氨酸的合成路线有哪些?

基本信息:中文名称N-甲酰-L-蛋氨酸中文别名N-甲醯甲硫胺酸;N-甲酰基-L-蛋氨酸;英文名称N-formyl-L-methionine英文别名2-formamido-4-methylsulfanylbutanoicacid;N-Formyl-L-methionine;N-Formyl-L-Methionine;(S)-2-Formamido-4-(methylthio)butanoicacid;CAS号4289-98-9合成路线:1.通过N-甲酰基-DL-蛋氨酸合成N-甲酰-L-蛋氨酸2.通过L-蛋氨酸和甲乙酐合成N-甲酰-L-蛋氨酸更多路线和参考文献可参考http://baike.molbase.cn/cidian/1420216

甲酰胺基与氨甲酰基区别

治疗效果不一样,物质不一样。1、效果方面。甲酰胺基对高血压和冠心病具有一定疗效。氨甲苯酸是一种抗纤溶止血药。2、物质方面。甲酰胺基是一种化学物质。氨甲苯酸是一种化合物。

什么是甲酰甲硫氨酸

甲酰甲硫氨酸 formylmethionine 氨基甲酰化的甲硫氨酸(methionine),原核生物的蛋白质的合成,就是特异地由这个氨基酸开始的。蛋白质合成开始后,由于特异酶的作用,这种氨基酸便从肽链上立即除去,因此在从细菌细胞分离出来的蛋白质氨基末端上,是检查不出甲酰蛋氨酸的。

4-甲酰氨基乙酰氯

氯化对氯苯甲酰 2-溴苯甲酰氯 邻溴苯甲酰氯 4-溴苯甲酰氯 对溴苯甲酰氯;二氯氧化硫氧氯化铬 氯化铬酰;三氯氧化磷三氯化磷 五氯化磷 四氯化硅 氯化硅四氯化碲 三氯化铝[无水] 三氯化锑 五氯化锑 四氯化锗 氯化锗四氯化铅 三氯化钛混合物 四氯化钛 四氯化钒 四氯化锡[无水] 氯化锡一氯化碘 氧溴化磷 溴化磷酰,5-三甲基己撑二胺 3.05%] 四氢酞酐辛酰氯 十二(烷)酰氯 月桂酰氯十四(烷)酰氯 肉豆蔻酰氯十六(烷)酰氯 棕榈酰氯十八(烷)酰氯 硬脂酰氯己二酰(二)氯 苯乙酰氯 2-氯苯甲酰氯 邻氯苯甲酰氯,3;三乙(撑)四胺二(正)丁胺 1,5-三甲基-4,3-苯二磺酸溶液 烷基,4-二氯苯甲酰氯 2,3-二氨基丙烷三(正)丁胺 2-乙基己胺 3-(氨基甲基)庚烷二环己胺 三甲基环己胺 3,5-三甲基-2-环己烯-1-酮三氟化硼甲苯胺 哌嗪 对二氮己环 N-氨基乙基哌嗪 1-哌嗪乙胺;失水苹果酸酐二氯醛基丙烯酸 粘氯酸,2′-二羟基二丙胺 二异丙醇胺 3-二乙氨基丙胺 N,2′-二羟基二乙胺 二乙醇胺 2;乙(撑)二胺铜乙二胺溶液 1,如;3;三氯化硫磷灭火器药剂[腐蚀性液体] 电池液[酸性的] 甲酸 三氟乙酸 三氟醋酸三氟乙酸酐 三氟醋酸酐三氟化硼乙酸酐 三氟化硼醋(酸)酐乙基硫酸 酸式硫酸乙酯二苯胺硫酸溶液 苯酚二磺酸硫酸溶液 苯酚磺酸 邻硝基苯磺酸 间硝基苯磺酸 对硝基苯磺酸 烷基,2-二氨基乙烷: 丙基三氯硅烷 丁基三氯硅烷 戊基三氯硅烷 己基三氯硅烷 辛基三氯硅烷 壬基三氯硅烷 十二烷基三氯硅烷 十六烷基三氯硅烷 十八烷基三氯硅烷 二氯苯基三氯硅烷 氯苯基三氯硅烷 苯基三氯硅烷 苯代三氯硅烷烯丙基三氯硅烷[稳定了的] 环己基三氯硅烷 环己烯基三氯硅烷 二乙基二氯硅烷 二氯二乙基硅烷苯基二氯硅烷 二氯苯基硅烷甲基苯基二氯硅烷 乙基苯基二氯硅烷 二苯(基)二氯硅烷 二苄基二氯硅烷 三苯基氯硅烷 氯甲基三甲基硅烷 三甲基氯甲硅烷 3-甲基-2-戊烯-4-炔醇 正磷酸 磷酸亚磷酸 三氧化(二)磷 亚磷(酸)酐次磷酸 多聚磷酸 四磷酸氨基磺酸 氯铂酸 硫酸羟胺 硫酸胲硫酸氢钾 酸式硫酸钾硫酸氢钠 酸式硫酸钠硫酸氢钠溶液 酸式硫酸钠溶液硫酸氢铵 酸式硫酸铵亚硫酸氢盐及其溶液;冰醋酸乙酸溶液[含量>10%~80%] 醋酸溶液乙酸酐 醋酸酐氯乙酸 氯醋酸氯乙酸酐 氯醋酸酐二氯乙酸 二氯醋酸三氯乙酸 三氯醋酸溴乙酸 溴醋酸三溴乙酸 三溴醋酸碘乙酸 碘醋酸三碘乙酸 三碘醋酸巯基乙酸 氢硫基乙酸;氯化对溴代苯甲酰 2-硝基苯甲酰氯 邻硝基苯甲酰氯 3-硝基苯甲酰氯 间硝基苯甲酰氯 2-硝基苯磺酰氯 邻硝基苯磺酰氯 3-硝基苯磺酰氯 间硝基苯磺酰氯 4-硝基苯磺酰氯 对硝基苯磺酰氯苯甲氧基磺酰氯 氰尿酰氯 三聚氰(酰)氯,6-二甲氧基苯甲酰氯 邻苯二甲酰氯 二氯化(邻)苯二甲酰间苯二甲酰氯 二氯化(间)苯二甲酰对苯二甲酰氯 苯磺酰氯 氯化苯磺酰甲(基)磺酰氯 氯化硫酰甲烷苯(基)氧氯化膦 苯磷酰二氯 1-萘氧(基)二氯化膦 苯硫代二氯化膦 苯硫代磷酰二氯;二氯氧化硒氧氯化磷 氯化磷酰,4-二氯(代)氯化苯甲酰甲氧基苯甲酰氯 茴香酰氯 2;二氯氧化铬,N-二乙基-1,α-三氯甲(基)苯 三氯化苄,如、芳基或甲苯磺酸[含游离硫酸>5%] 溴(化)乙酰 乙酰溴溴(化)丙酰 丙酰溴溴乙酰溴 溴化溴乙酰 1-溴丙酰溴 溴化-1-溴丙酰 2-溴丙酰溴 溴化-2-溴丙酰碘(化)乙酰 乙酰碘戊酰氯 异戊酰氯 己酰氯 氯化己酰乙二酰氯 氯化乙二酰;三溴氧(化)磷三溴化磷 五溴化磷 三溴化铝[无水] 溴化铝三溴化硼 二水合三氟化硼 三氟化硼水合物五氟化锑 硫酸铅[含游离酸>3%] 五氧化(二)磷 磷酸酐硫代磷酰氯 硫代氯化磷酰;氨基环己烷 N;三聚氯化氯 3-硝基苯甲酰溴 间硝基苯甲酰溴异丙基磷酸 酸式磷酸异丙酯丁基磷酸 酸式磷酸丁酯二戊基磷酸 酸式磷酸(二)戊酯二异辛基磷酸 酸式磷酸二异辛酯 氢氧化钠 苛性钠;铬酰氯氧氯化硒 氯化亚硒酰,2-丙二胺 1;多乙撑多胺钠石灰[含氢氧化钠>4%] 碱石灰铝酸钠[固体] 氨溶液[10%<含氨≤35%] 氨水 1-氨基乙醇 乙醛合氨 2-氨基乙醇 乙醇胺,如;新戊酰氯氯乙酰氯 氯化氯乙酰二氯乙酰氯 三氯乙酰氯 二甲氨基甲酰氯 呋喃甲酰氯 氯化呋喃甲酰苯甲酰氯 氯化苯甲酰 2,3,N-二异丙基乙醇胺 N,3′-二氨基二丙胺 二丙三胺,2-二氨基丙烷 1,2-乙二胺 1,4-二巯基甲苯二苯甲基溴 溴二苯甲烷;4-巯基甲苯甲苯-3,6-二氨基-3;苯膦化二氯 α;磺酰氯氯化二硫酰 二硫酰氯;2-巯基甲苯 3-甲苯硫酚 间甲苯硫酚;4,如,5-三甲基环己烷,如,3;二氯代丁烯醛酸甲(基)磺酸 1;己(撑)二胺聚乙烯聚胺 多乙烯多胺;硫代乙醇酸三氟化硼乙酸络合物 乙酸三氟化硼丙酸 丙(酸)酐 2-氯丙酸 2-氯代丙酸 3-氯丙酸 3-氯代丙酸三氟化硼丙酸络合物 丙烯酸[抑制了的] 甲基丙烯酸[抑制了的] 异丁烯酸丙炔酸 丁酸 丁酸酐 己酸 2-丁烯酸 巴豆酸丁烯二酸酐[顺式] 马来(酸)酐,3-二氨基丙烷 1: B205型-除锈磷化处理剂 蓄电池[注有酸液] 乙酸[含量>80%] 醋酸,N-二甲基苄胺 N,6-二氨基-2-烯环己酮;琥珀酰氯癸二酰氯 氯化癸二酰丁烯二酰氯[反式] 富马酰氯三甲基乙酰氯 三甲基氯乙酰;磷酰溴,5-三甲基六亚甲基二胺 3;糠氯酸,α;草酰氯丙二酰氯 缩苹果酰氯丁二酰氯 氯化丁二酰;焦硫酰氯氯化亚砜 亚硫酰(二)氯;酞酐四氢邻苯二甲酸酐[含马来酐>0: 次氯酸钠溶液[含有效氯>5%] 漂白水次氯酸钾溶液[含有效氯>5%] 三氯氧化钒 三氯化氧钒氯化铜 氯化锌 氯化锌溶液 汞 水银镓 金属镓邻异丙基(苯)酚 间异丙基(苯)酚 对异丙基(苯)酚 辛基(苯)酚 N;二苯溴甲烷木镏油 木焦油蒽;N-(2-氨基乙基)哌嗪蓄电池[注有碱液的] 蓄电池[含氢氧化钾固体] 亚氯酸钠溶液[含有效氯>5%] 氟化铬 三氟化铬氟化氢铵 酸性氟化铵氟化氢钠 酸性氟化钠氟化氢钾 酸性氟化钾三氟化硼乙醚络合物 氯甲酸烯丙(基)酯[含有稳定剂] 氯甲酸苄酯 苯甲氧基碳酰氯硫代氯甲酸乙酯 氯硫代甲酸乙酯二氯乙醛 二氯化膦苯 苯基二氯磷,3-丙二胺 1;磷酰氯,6-二氨基己烷,N-二甲基环己胺 二甲氨基环己烷苄基二甲胺 N;氯化邻氯苯甲酰 4-氯苯甲酰氯 对氯苯甲酰氯: 亚硫酸氢铵 酸式亚硫酸铵亚硫酸氢钙 酸式亚硫酸钙亚硫酸氢钾 酸式亚硫酸钾亚硫酸氢钠 酸式亚硫酸钠亚硫酸氢锌 酸式亚硫酸锌亚硫酸氢镁 酸式亚硫酸镁 2-氨基噻唑硫酸盐 2-氨基噻唑盐酸盐 三氯化铝溶液 氯化铝溶液三氯化铁 氯化铁三氯化铁溶液 氯化铁溶液三氯化钼 五氯化钼 五氯化铌 五氯化钽 四氯化锆 三氯化钛溶液 三氯化钒 四氯化锡五水合物 三氯化碘 三溴化合铝溶液 溴化铝溶液三溴化锑 四溴化锡 一溴化碘 三溴化碘 三碘化锑 四碘化锡 除锈磷化液;二氯硫酰: 粗蒽 精蒽 塑料沥青 次氯酸盐溶液[含有效氯>5%]: 乙醇钠 乙氧基钠丁醇钠 丁氧基钠异戊醇钠 异戊氧基钠己醇钠 四甲基氢氧化铵 四乙基氢氧化铵 四丁基氢氧化铵 水合肼[含肼≤64%] 水合联氨肼水溶液[含肼≤64%] 环己胺 六氢苯胺;一试灵硝酸甲胺 邻苯二甲酸酐 苯酐,3′-亚氨基二丙胺异佛尔酮二胺 1-氨基-3-氨基甲基-3,如,4-二硫酚 3,5、芳基或甲苯磺酸[含游离硫酸≤5%] 2-氯(代)乙基膦酸 乙烯利;3-巯基甲苯 4-甲苯硫酚 对甲苯硫酚,6-己二胺 1;苯(基)三氯甲烷甲醛溶液 福尔马林溶液苯酚钠 苯氧基钠 2-甲苯硫酚 邻甲苯硫酚;2-羟基乙胺四亚乙基五胺 三缩四乙二胺;烧碱氢氧化钠溶液 液碱氢氧化钾 苛性钾氢氧化钾溶液 氢氧化锂 氢氧化锂溶液 氢氧化铷 氢氧化铷溶液 氢氧化铯 氢氧化铯溶液 氧化钠 氧化钾 铝酸钠溶液 多硫化铵溶液 硫化铵溶液 硫化钠[含结晶水≥30%] 硫化钾[含结晶水≥30%] 硫化钡 硫氢化钠[含结晶水≥25%] 氢硫化钠硫氢化钙 电池液[碱性的] 烷基醇钠类;硫代二氯(化)膦苯二甲基硫代磷酰氯 二乙基硫代磷酰氯 一级有机氯硅烷化合物,5;3;四乙(撑)五胺 2-(2-氨基乙氧基)乙醇 2,N-二乙基乙(撑)二胺 二亚乙基三胺 二乙(撑)三胺三亚乙基四胺 二缩三乙二胺.5%] 高氯酸[含酸≤50%] 过氯酸氯磺酸 氟磺酸 氟硅酸 硅氟酸氟硼酸 氟磷酸[无水] 二氟磷酸[无水] 二氟(代)磷酸六氟合磷氢酸[无水] 六氟(代)磷酸硒酸 铬酸溶液 一氯化硫 二氯化硫 四氯化硫 氧氯化硫 硫酰氯发烟硝酸 硝酸 硝化酸混合物 硝化混合酸废硝酸 废硝化混合酸 硝酸羟胺 发烟硫酸 焦硫酸硫酸 含铬硫酸 废硫酸 淤渣硫酸 三氧化硫[抑制了的] 硫酸酐亚硫酸 亚硝基硫酸 亚硝酰硫酸盐酸 氢氯酸硝基盐酸 王水氟化氢(无水) 氢氟酸 氟化氢溶液氢溴酸 溴化氢溶液溴化氢乙酸溶液 溴化氢醋酸溶液氢碘酸 碘化氢溶液溴酸 溴 溴素溴水[含溴≥3

甲酰转移酶可催化Met-tRNAMet分子中的甲硫氨酸甲酰化.

甲酰转移酶介导了翻译过程中甲硫氨酸从P位到E位,从而促进翻译的正常进行

.亚甲基和甲酰基的氨基酸来源。

代谢产生。氨基酸是分解代谢中产生的含有一个碳原子的化学基团,即甲基、亚甲基、甲炔基、甲酰基和亚氨甲基的代谢产物总称。

原核生物为什么甲酰甲硫氨酸

甲酰甲硫氨酸只用于原核生物和真核生物线粒体及叶绿体起始密码子翻译的第一个氨基酸,与MET共用同一个密码子AUG,所以说线粒体编码蛋白质基因序列都以AUG(MET)为其实密码,但是合成的时候第一个氨基酸是甲酰甲硫氨酸

甲酰蛋氨酰-trna

甲酰甲硫氨酰tRNA(fMet-tRNAfMet) 有一点要说 最后那个fMet标错了,应该以上标的形式标在tRNA后边

甲酰甲硫氨酸和甲硫氨酸的区别

甲酰甲硫氨酸和甲硫氨酸的区别是:甲酰甲硫氨酸只存在于原核生物所合成的蛋白质中,而不存在于真核生物生产出的蛋白质中。甲硫氨酸缺乏就会导致体内蛋白质合成受阻,造成机体损害,体内氧自由基造成的膜脂质过度氧化是导致机体多种损伤。

什么是甲酰甲硫氨酸

甲酰甲硫氨酸 formylmethionine 氨基甲酰化的甲硫氨酸(methionine),原核生物的蛋白质的合成,就是特异地由这个氨基酸开始的.蛋白质合成开始后,由于特异酶的作用,这种氨基酸便从肽链上立即除去,因此在从细菌细胞分离出来的蛋白质氨基末端上,是检查不出甲酰蛋氨酸的.

黄嘌呤核苷酸氨基化,氨基的来源

黄嘌呤核苷酸氨基化,氨基的来源谷氨酰胺。黄嘌呤核苷酸转变为鸟嘌呤核苷酸核苷酸时需要氨基酸,其氨基来自谷氨酰胺。蛋白质二级结构除了螺旋、折叠、转角还有什么无规则卷曲。转氨酶的作用是催化氨基酸与相应酮酸之间进行氨基转移,主要的脱氨基作用是联合脱氨基作用。

甲氨蝶呤的化学结构类似于

【答案】:A1.氮杂丝氨酸类似谷氨酰胺,可抑制UTP→CTP的生成。2.甲氨蝶呤是叶酸的类似物,能竞争性抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制嘌呤核苷酸的合成,用于肿瘤的治疗。3.6-巯基嘌呤(6MP)的化学结构与次黄嘌呤类似,能竞争性抑制次黄嘌呤一鸟嘌呤磷酸核糖转移酶(HGPRT),阻止嘌呤核苷酸的补救合成途径。4.别嘌呤与次黄嘌呤类似,只是分子中N与G互换了位置,故可抑制黄嘌呤氧化酶,从而抑制尿酸的生成,用于治疗痛风症。5.5-氟尿嘧啶(5-FU)的结构与胸腺嘧啶类似,在体内可转变成FdUMP及FUTP。FdUMP与dUMP的结构类似,是胸苷酸合酶的抑制剂,使dTMP合成受阻,干扰RNA分子的合成,从而达到抗肿瘤的目的。

氮杂丝氨酸的化学结构类似于

【答案】:C1.氮杂丝氨酸类似谷氨酰胺,可抑制UTP→CTP的生成。2.甲氨蝶呤是叶酸的类似物,能竞争性抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制嘌呤核苷酸的合成,用于肿瘤的治疗。3.6-巯基嘌呤(6MP)的化学结构与次黄嘌呤类似,能竞争性抑制次黄嘌呤一鸟嘌呤磷酸核糖转移酶(HGPRT),阻止嘌呤核苷酸的补救合成途径。4.别嘌呤与次黄嘌呤类似,只是分子中N与G互换了位置,故可抑制黄嘌呤氧化酶,从而抑制尿酸的生成,用于治疗痛风症。5.5-氟尿嘧啶(5-FU)的结构与胸腺嘧啶类似,在体内可转变成FdUMP及FUTP。FdUMP与dUMP的结构类似,是胸苷酸合酶的抑制剂,使dTMP合成受阻,干扰RNA分子的合成,从而达到抗肿瘤的目的。

次黄嘌呤→腺苷酸 由哪种物质提供氨基?

次黄嘌呤——腺苷酸是有脂肪提供氨基的!

稀有氨基酸碱基主要见于

您好,您是想问稀有氨基酸碱基主要见于哪吗?稀有氨基酸碱基主要见于RNA中。稀有氨基酸碱基又称修饰碱基,是天然形成的,只存在于RNA中,所以稀有氨基酸碱基主要见于RNA中。

羧基,氨基,烃基,羰基的集团结构是什么

羧基是-COOH氨基是-NH2羰基是R-CO-R(R可以是任意的官能团)烃基的话我目前没有听说过烃,烃又分3种:烷烃、烯烃、炔烃和芳香烃。烷烃的通式是:CnH(2n+2)如甲烷:CH4烯烃的通式是:CnH2n(n≥2)如乙烯:C2H4官能团是C=C炔烃的通式是:CnH(2n-2)(n≥2)如乙炔:C2H2官能团是C≡C芳香烃的通式是:CnH(2n-6)(n≥6)如苯:C6H6

溴素与氨水怎样反应

3Br2+2NH3=N2+6HBr

最早用来确定蛋白质C端的氨基酸的方法是什么?

应该是sanger早期用的还原法吧,肽链c端aa可以用硼氢化锂反应生成相应的α-氨基醇,水解后,α-氨基醇可用层析法鉴别。我记得是着如果你有王镜岩的生物化学那上面讲的很详细,应该在第四章

组成酶的基本组成单位是(  )A.氨基酸B.核苷酸C.葡萄糖D.A或

组成酶的基本组成单位是氨基酸或核苷酸。单纯酶分子中只有氨基酸残基组成的肽链。结合酶分子中则除了多肽链组成的蛋白质,还有非蛋白成分,如金属离子、铁卟啉或含B族维生素的小分子有机物。结合酶的蛋白质部分称为酶蛋白(apoenzyme),非蛋白质部分统称为辅助因子 (cofactor),两者一起组成全酶(holoenzyme);只有全酶才有催化活性,如果两者分开则酶活力消失。非蛋白质部分如铁卟啉或含B族维生素的化合物若与酶蛋白以共价键相连的称为辅基(prosthetic group),用透析或超滤等方法不能使它们与酶蛋白分开。反之两者以非共价键相连的称为辅酶(coenzyme),可用上述方法把两者分开。辅助因子有两大类,一类是金属离子,且常为辅基,起传递电子的作用;另一类是小分子有机化合物,主要起传递氢原子、电子或某些化学基团的作用。扩展资料根据酶所催化的反应性质的不同,将酶分成六大类:1、氧化还原酶类(oxidoreductase)促进底物进行氧化还原反应的酶类,是一类催化氧化还原反应的酶,可分为氧化酶和还原酶两类。2、转移酶类(transferases)催化底物之间进行某些基团(如乙酰基、甲基、氨基、磷酸基等)的转移或交换的酶类。例如,甲基转移酶、氨基转移酶、乙酰转移酶、转硫酶、激酶和多聚酶等。3、水解酶类(hydrolases )催化底物发生水解反应的酶类。例如,淀粉酶、蛋白酶、脂肪酶、磷酸酶、糖苷酶等。4、裂合酶类(lyases)催化从底物(非水解)移去一个基团并留下双键的反应或其逆反应的酶类。例如,脱水酶、脱羧酶、碳酸酐酶、醛缩酶、柠檬酸合酶等。许多裂合酶催化逆反应,使两底物间形成新化学键并消除一个底物的双键。合酶便属于此类。5、异构酶类(isomerases)催化各种同分异构体、几何异构体或光学异构体之间相互转化的酶类。例如,异构酶、表构酶、消旋酶等。6、合成酶类(ligase)催化两分子底物合成为一分子化合物,同时偶联有ATP的磷酸键断裂释能的酶类。例如,谷氨酰胺合成酶、DNA连接酶、氨基酸:tRNA连接酶以及依赖生物素的羧化酶等。参考资料来源:百度百科-酶

能分解为半胱氨酸和醛,具有促进骨髓内粒细胞生长和成熟的作用,可促进白细胞增生的是

【答案】:E本题考查升白细胞药的药理作用与作用机制。(1)重组人粒细胞集落刺激因子(rhG—CSF):是利用基因重组技术生产的人粒细胞集落刺激因子,粒细胞集落刺激因子是调节骨髓中粒系造血的主要细胞因子之一,选择性作用于粒系造血祖细胞,促进其增殖、分化,并可增加粒系终末分化细胞的功能。(2)重组人粒细胞巨噬细胞集落刺激因子(rhGM—CSF):作用于造血祖细胞,促进其增殖和分化,其重要作用是刺激粒、单核巨噬细胞成熟,促进成熟细胞向外周血释放,并能促进巨噬细胞及嗜酸性细胞的多种功能。(3)蛋白同化激素俗称合成类固醇,是一类拟雄性激素的人工合成的甾体激素,临床上应用的主要有甲睾酮、丙酸睾酮、十一酸睾酮、丙酸诺龙、司坦唑醇、群勃龙、脱氢异雄酮等。由于其主要结构与雄激素颇为相似,因此具有与雄激素相似的生理作用,但其雄性化作用甚弱,而蛋白同化作用却很强,临床上有多种用途,其中一种用途是作为升白药物使用,能刺激骨髓造血功能,使红细胞和血红蛋白量升高。(4)利可君(利血生)是一种噻唑羧酸类升白细胞药,为半胱氨酸的衍生物,能分解为半胱氨酸和醛,具有促进骨髓内粒细胞生长和成熟的作用,可促进白细胞增生。(5)小檗胺是从小檗科植物中提取的双苄基异喹啉类生物碱,其作用广泛,具有促进白细胞增生、抗炎、降血压、抗肿瘤、抗心肌缺氧缺血、抗心律失常等作用。(6)维生素B4又称腺嘌呤,是生物体内辅酶与核酸的组成和活性成分,其参与机体的代谢功能,具有刺激骨髓白细胞增生的作用。(7)鲨肝醇在动物骨髓造血组织中含量较多,可能是体内造血因子之一,有促进白细胞增生及抗放射线的作用。(8)脱氧核苷酸钠是为复方制剂,组分为脱氧糖胞嘧啶核苷酸、脱氧核糖腺嘌呤核苷酸、脱氧核糖胸腺嘧啶核苷酸及脱氧核糖鸟嘌呤核苷酸钠盐。有促进细胞活力的功能,以及改变机体代谢的作用。故正确答案为E。

6-氨基-5-(4-吗啉甲基)-2(1H)-嘧啶酮的欧盟海关编码是什么?

基本信息:中文名称6-氨基-5-(4-吗啉甲基)-2(1H)-嘧啶酮英文名称6-amino-5-(morpholin-4-ylmethyl)-1H-pyrimidin-2-one英文别名5-(morpholin-4-ylmethyl)cytosine;6-AMINO-5-(4-MORPHOLINYLMETHYL)-2(1H)-PYRIMIDINONE;5-(4"-morpholinyl)methylcytosine;2(1H)-Pyrimidinone,6-amino-5-(4-morpholinylmethyl);CAS号919524-54-2欧盟海关编码(HS-code):29349990概述(Summary):29349990.Othernucleicacidsandtheirsalts,whetherornotchemicallydefined;otherheterocycliccompounds.Generaltariff:6.5%.

3-氨基-2-恶唑酮(aoz)是什么物质

1-aminohydantoin(AHD) 1-氨基乙内酰脲3-amino-5-morpholinomethyl-2-oxazolidinone(AMOZ) 3-氨基-5-吗啉甲基-2-恶唑烷酮3-amino-2- oxazolidinone(AOZ) 3-。

1-(2-氨基-5-吗啉苯基)-1-乙酮的海关编码是什么?

基本信息:中文名称1-(2-氨基-5-吗啉苯基)-1-乙酮英文名称1-(2-amino-5-morpholin-4-ylphenyl)ethanone英文别名2-amino-5-morpholinoacetophenone;5-Morpholino-2-aminoacetophenone;1-(2-Amino-5-morpholinophenyl)-1-ethanone;2-amino-5-morpholinylacetophenone;1-[2-amino-5-(morpholin-4-yl)phenyl]ethanone;CAS号98440-50-7中国海关编码(HS-code):29349990.90概述:2934999090.其他杂环化合物.增值税率:17.0%.退税率:13.0%.监管条件:无.最惠国关税:6.5%.普通关税:20.0%.申报要素:品名,成分含量,用途.Summary:2934999090.otherheterocycliccompounds.VAT:17.0%.Taxrebaterate:13.0%..MFNtariff:6.5%.Generaltariff:20.0%.其他各国海关编码海关数据详见:http://baike.molbase.cn/cidian/1079443

6-氨基-5-(4-吗啉甲基)-2(1H)-嘧啶酮的韩国海关编码是什么?

基本信息:中文名称6-氨基-5-(4-吗啉甲基)-2(1H)-嘧啶酮英文名称6-amino-5-(morpholin-4-ylmethyl)-1H-pyrimidin-2-one英文别名5-(morpholin-4-ylmethyl)cytosine;6-AMINO-5-(4-MORPHOLINYLMETHYL)-2(1H)-PYRIMIDINONE;5-(4"-morpholinyl)methylcytosine;2(1H)-Pyrimidinone,6-amino-5-(4-morpholinylmethyl);CAS号919524-54-2韩国海关编码(HS-code):2934999000概述(Summary):2934999000.Otherheterocycliccompounds.Generaltariff:6.5%.

3-氨基-4-吡唑甲酸乙酯的合成路线有哪些?

基本信息:中文名称3-氨基-4-吡唑甲酸乙酯中文别名5-氨基-1H-吡唑-4-甲酸乙酯;3-氨基吡唑-4-甲酸乙酯;3-氨基-4-乙氧羰基吡唑;3-氨基-4-吡唑羧酸乙酯;英文名称Ethyl3-amino-1H-pyrazole-4-carboxylate英文别名ethyl5-amino-1H-pyrazole-4-carboxylate;CAS号6994-25-8合成路线:1.通过2-氰基-3-乙氧基丙烯酸乙酯合成3-氨基-4-吡唑甲酸乙酯,收率约93%;2.通过2-氰基-3-(4-吗啉基)-2-丙烯酸乙酯合成3-氨基-4-吡唑甲酸乙酯,收率约90%;更多路线和参考文献可参考http://baike.molbase.cn/cidian/1487172

4-[2-(吗啉基)乙基氨甲酰基]苯硼酸的欧盟海关编码是什么?

基本信息:中文名称4-[2-(吗啉基)乙基氨甲酰基]苯硼酸中文别名4-(2-吗啉乙基氨甲酰基)苯基硼酸;英文名称(4-((2-Morpholinoethyl)carbamoyl)phenyl)boronicacid英文别名[4-(2-morpholin-4-ylethylcarbamoyl)phenyl]boronicacid;CAS号913835-45-7欧盟海关编码(HS-code):29349990概述(Summary):29349990.Othernucleicacidsandtheirsalts,whetherornotchemicallydefined;otherheterocycliccompounds.Generaltariff:6.5%.

3-氨基-6-吗啉基吡啶的合成路线有哪些?

基本信息:中文名称3-氨基-6-吗啉基吡啶中文别名2-吗啉-5-氨基-吡啶;5-氨基-2-(4-吗啉基)吡啶;6-吗啉吡啶-3-胺;英文名称6-Morpholinopyridin-3-amine英文别名6-morpholin-4-ylpyridin-3-amine;5-Amino-2-(4-morpholinyl)pyridine;CAS号52023-68-4合成路线:1.通过2-吗啉基-5-硝基吡啶合成3-氨基-6-吗啉基吡啶,收率约99%;2.通过2-氯-5-硝基吡啶合成3-氨基-6-吗啉基吡啶更多路线和参考文献可参考http://baike.molbase.cn/cidian/377332

半必需氨基酸有哪些

半必需氨基酸有:胱氨酸、酪氨酸、精氨酸、丝氨酸、甘氨酸。半必需氨基酸又称为条件必需氨基酸。主要指半胱氨酸和酪氨酸,它们在体内分别由蛋氨酸和苯丙氨酸转变而成,如果膳食中能够直接提供这两种氨基酸,则人体对蛋氨酸和苯丙氨酸的需要可减少。一般来说,构成天然蛋白质的氨基酸有20种,对于人体来说,大致可以分为三类:必需氨基酸、半必需氨基酸和非必需氨基酸。细腻肌肤的胱氨酸:胱氨酸带负电具有亲水性,属于含硫的半必需氨基酸。弹性光泽的酪氨酸: 酪氨酸带负电是具有亲水性的一种半必需氨基酸。酪氨酸最早由奶酪中发现,可以预防皮肤癌。保健养生的精氨酸:精氨酸带正电具有亲碱性含有双基,属于半必需蛋白氨基酸,人体可以合成一部分,其他需要食物提供。属于幼儿生长期的必需氨基酸。参与乌氨酸和脯氨酸的循环过程,促进胶原蛋白质合成,增强吞噬细胞能力。提高肝脏精氨酸酶的活性,辅助转化血液中的氨变成尿素排出体外。转化生成一氧化氮,扩张心血管愈合各种伤口,维持体内氮离子平衡参与组成磷酸化合物。具有补充体力增加身高的作用,辅助肝脏维持血液氨基酸水平恒定,过量时会造成肾脏压力益智排毒的甘氨酸:甘氨酸又叫氨基丁酸是脂肪一族,具有亲水性,结构简单,由丝氨酸脱去一个碳生成,带有甜味。甘氨酸和天冬氨酸与谷氨酰胺等合成核苷酸,进而形成核糖核酸,参与体内生物基因的遗传过程。 可以合成胶原蛋白作用于大脑中枢神经,善于和体内各种多余的毒性内源物结合,并迅速排出体外。对肝胆有重要保护功能,能为所有非必需氨基酸提供氮源。过量影响其他氨基酸吸收

L-苏氨酸的用途

1.主要用作营养增补剂。与葡萄糖共热易生成焦香和巧克力香味,有增香作用。也可用于生化研究。2.作饲料营养强化剂,苏氨酸是一种必需的氨基酸。苏氨酸常添加到未成年仔猪和家禽的饲料中,是猪饲料的第二限制氨基酸和家禽饲料的第三限制氨基酸。添加于以小麦,大麦等谷物为主的饲料中。3.营养添加剂,亦用于配制氨基酸输液和综合氨基酸制剂。4.用于消化溃疡的辅助治疗。也可治贫血及心绞痛、主动脉炎、心功能不全等心血管系统疾患。5.苏氨酸(L-苏氨酸)是由W.C.Rose 1935年从纤维蛋白水解产物中分离和鉴定出来的,现已证明是最后被发现的必需氨基酸,它是畜禽的第二或第三限制性氨基酸,它在动物体内具有极其重要的生理作用。如促进生长、提高免疫机能等;平衡日粮氨基酸,使氨基酸比例更接近于理想蛋白质,从而降低畜禽对饲料中蛋白含量的要求。缺乏苏氨酸,可导致动物采食量降低、生长受阻、饲料利用率下降、免疫机能抑制等症状。近几年来,赖氨酸、蛋氨酸合成品在饲料中得到了广泛应用,苏氨酸逐渐成为影响动物生产性能的限制性因素,对苏氨酸的进一步研究,有助于有效地指导畜禽生产。苏氨酸(L-苏氨酸)是动物本身不能合成,但又十分需要的氨基酸,能用来精确平衡饲料的氨基酸组成,满足动物生长维持需要,提高增重和瘦肉率,降低料肉比;可改善氨基酸消化率低的饲料原料的营养价值,提高低能量饲料生产性能;可降低饲料粗蛋白水平,提高饲料氮利用率,降低饲料成本;可用于猪、鸡、鸭和高级水产的饲养和养殖。L—苏氨酸是采用生物工程原理,用玉米淀粉等原料经过液体深层发酵、精制而生产出来的饲料添加剂。可调整饲料中氨基酸平衡,促进生长、改善肉质、改善氨基酸消化率低的饲料原料的营养价值、生产低蛋白的饲料,有助于节约蛋白质资源、降低饲料原料成本、降低畜禽粪便和尿液中的含氮量,畜禽舍中氨气浓度及释放速度。广泛用于添加仔猪饲料、种猪饲料、肉鸡饲料、对虾饲料和鳗鱼饲料。 6.苏氨酸(L-苏氨酸)在体内的分解代谢中,是唯一不经过脱氨基作用和转氨基作用,而是直接通过苏氨酸脱水酶、苏氨酸脱氢酶和苏氨酸醛缩酶催化转变为其它物质的氨基酸,例如苏氨酸可转变成丁酰辅酶A、琥珀酰辅酶A、丝氨酸、甘氨酸等。另外苏氨酸过量能提高赖氨酸-α-酮葡萄糖酸还原酶的活性,在日粮中添加适量苏氨酸可消除因赖氨酸过量造成的体增重下降,肝脏、肌肉组织中蛋白质/脱氧核糖核酸(DNA)、核糖核酸(RNA)/DNA比值降低。添加苏氨酸也可减轻色氨酸或蛋氨酸过量引起的生长抑制。据报道,鸡对苏氨酸的吸收大部分在十二指肠,嗉囔和腺胃吸收后的苏氨酸迅速转变成肝脏蛋白质,沉积在体内。

请大神写出生物中的八种核氨酸

腺嘌呤核糖核苷酸A鸟嘌呤核糖核苷酸G胞嘧啶核糖核苷酸C胸腺嘧啶核糖核苷酸T腺嘌呤脱氧核苷酸A鸟嘌呤脱氧核苷酸G胞嘧啶脱氧核苷酸C尿嘧啶脱氧核苷酸U

氨基和羟基能反应吗

可以反应,羧基-COOH或酚中的-OH可以与胍基(NH2)2-C=NH(一个碳连2个氨基,双键再连一个亚胺基.碱性与KOH相当)中NH2-反应,发生的是酸碱中和反应,即羟基去H+,NH2-得H+.机理是羧基中羰基的氧诱导作用吸电子,使羧基中—OH氧电负性减弱,对H的束缚能力减小.另外氨基中N有孤对电子,(电子对的提供者)是路易斯碱.可以结合H+.一般羟基没有自由基反应和亲电反应.氨基中的N可以发生亲电反应.chliuyy(站内联系TA)看什么情况了,具体点cherry5592(站内联系TA)具体看氨基和羧基的反应活性而定,反应活性越低,反应条件越苛刻,甚至不反应,一般看羧基和氨基前面的脂肪连的柔性如何,如果是芳香连则不易反应红尘寻梦(站内联系TA)不能,一些你能看到到得反应其实是氨基与半缩醛中的-OH反应,并非是与-OH反应.不能 氨基可以和羧基反应sxykdxyxy(站内联系TA)可以,控制好反应条件

如何从氨基酸制备对应的氨基酸钠盐

tmRNA的结构已经确定,只能运送和自己互补的。氨基酸一共有20种,61种密码子对应了最多61种tmRNA,所以,一种氨基酸可以由几种转运RNA运送。

氨基酸的替换是不是基因突变

A、基因突变是指DNA分子中由于碱基对的替换、缺失或增添而引起的基因结构的改变,所以信使RNA上的某个密码子的一个碱基发生替换不属于基因突变,A错误; B、tmRNA上决定氨基酸的某个密码子的一个碱基发生替换,根据碱基互补配对原则,则识别该密码子的tRNA上的反密码子也发生改变,B正确; C、一种密码子只决定一种氨基酸,一种氨基酸可由一种或几种来决定,即存在密码子的简并性,所以氨基酸不一定改变,C错误; D、tRNA一定改变,氨基酸不一定改变,D错误. 故选:B.

一个氨基酸可以对应多个tRNA,但一个tRNA只能对应一个氨基酸?

是的。不同的氨基酸有的有多个遗传密码,这样的氨基酸就由多个tRNA转运。但每个tRNA都有特定的反密码子,只能转运一种氨基酸。

氨基酸改变密码子一定改变吗

tmRNA上决定氨基酸的某个密码子的一个碱基发生替换,根据碱基互补配对原则,则tRNA上的反密码子也发生改变;一种密码子只决定一种氨基酸,一种氨基酸可由一种或几种来决定,即存在密码子的简并性,则氨基酸不一定改变. 故选:A.

为什么一个tRNA只能携带一种氨基酸!但是有些氨基酸可以对应多个tRNA,我不知道怎么记住.....

tmRNA的结构已经确定,只能运送和自己互补的。氨基酸一共有20种,61种密码子对应了最多61种tmRNA,所以,一种氨基酸可以由几种转运RNA运送。

一个氨基酸可以对应多个tRNA,但一个tRNA只能对应一个氨基酸?

是的。不同的氨基酸有的有多个遗传密码,这样的氨基酸就由多个tRNA转运。但每个tRNA都有特定的反密码子,只能转运一种氨基酸。

一种tRNA可以携带多种氨基酸吗?详解

生命体遗传物质绝大部分是DNA,有少部分RNA病毒的遗传 是RNA。RNA分为mRNA,tRNA,rRNA。tRNA上的叫反密码子,是三联体的,而有相应的mRNA上的三联体密码子决定了tRNA上运送的氨基酸,所以每一种tRNA仅有一种氨基酸。但是tRNA上的碱基不是只有3个,是有很多的。

概述受体酪氨酸激酶介导的信号通路的组成、特点及其主要功能?

信息传导通路通常是由分泌释放信息物质的特定细胞、信息物质(包含细胞间与细胞内的信息物质和运载体、运输路径等)以及靶细胞(包含特异受体等)等构成。特点:受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。主要功能:磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(signaling complex)。刚刚磷酸化的酪氨酸部位立即成为细胞内信号蛋白(signaling protein)的结合位点,可能有10~20种不同的细胞内信号蛋白同受体尾部磷酸化部位结合后被激活。信号复合物通过几种不同的信号转导途径,扩大信息,激活细胞内一系列的生化反应;或者将不同的信息综合起来引起细胞的综合性应答(如细胞增殖)。通过多种方式,细胞外配体结合通常会引起或稳定受体二聚化。这使得每个受体单体的细胞质部分中的酪氨酸被其伴侣受体反式磷酸化,从而通过质膜传播信号。扩展资料各个信号通路中上游蛋白对下游蛋白活性的调节(包括激活或抑制作用)主要是通过添加或去除磷酸基团,从而改变下游蛋白的立体构象完成的。所以,构成信号通路的主要成员是蛋白激酶和磷酸酶,它们能够快速改变和恢复下游蛋白的构象。从细胞受体接收外界信号到最后做出综合性应答,不仅是一个信号转导过程,更重要的是将外界信号进行逐步放大的过程。参考资料来源:百度百科-信号通路参考资料来源:百度百科-细胞信号传导通路参考资料来源:百度百科-细胞信号传导通路

由氨基酸变成的信号分子有哪些

生物细胞所接受的信号既可以使物理信号(光、热、电流),也可以是化学信号,但是在有机体间和细胞间的通讯中最广泛的信号是化学信号。从化学结构来看细胞信号分子包括:短肽、蛋白质、气体分子(NO、CO)以及氨基酸、核苷酸、脂类和胆固醇衍生物等等,其共同特点是:①特异性,只能与特定的受体结合;②高效性,几个分子即可发生明显的生物学效应,这一特性有赖于细胞的信号逐级放大系统;③可被灭活,完成信息传递后可被降解或修饰而失去活性,保证信息传递的完整性和细胞免于疲劳。从产生和作用方式来看可分为内分泌激素、神经递质、局部化学介导因子和气体分子等四类。从溶解性来看又可分为脂溶性和水溶性两类。脂溶性信号分子,如甾类激素和甲状腺素,可直接穿膜进入靶细胞,与胞内受体结合形成激素-受体复合物,调节基因表达。水溶性信号分子,如神经递质、细胞因子和水溶性激素,不能穿过靶细胞膜,只能与膜受体结合,经信号转换机制,通过胞内信使(如cAMP)或激活膜受体的激酶活性(如受体酪氨酸激酶),引起细胞的应答反应。所以这类信号分子又称为第一信使(primary messenger),而cAMP这样的胞内信号分子被称为第二信使(secondary messenger)。目前公认的第二信使有cAMP、cGMP、三磷酸肌醇(IP3)和二酰基甘油(DG),Ca2+被称为第三信使是因为其释放有赖于第二信使。第二信使的作用是对胞外信号起转换和放大的作用。

肌酸和氨基酸效果一样吗,有什么联系

“细胞增容”是营养补剂中最具使用价值的五类产品中的一类,也是近年流行的健美词汇,它是指把重要的营养物质输入肌细胞内部,使肌肉外观更饱满、结实,血管密布,纹理尽现,使用更大的重量完成更多的次数,更大的强度训练更长的时间,较少的疲劳感觉。肌酸就属此类,它使肌肉细胞储存较多量的水分,有利于蛋白质合成,在提高力量、助长肌肉方面有确实的效果,使其成为目前最受欢迎的补剂之一。 肌酸(creatine),或叫肌氨酸,天然存在于人体中,由三种氨基酸组成,分别是精氨酸、甘氨酸、蛋氨酸。它在人体供能系统中扮演着重要角色,如果肌肉内的肌酸越多,便具有更大的潜在能量。一水肌酸粉是经典的,但已显颓势,厂商们围绕它不断推出增强型产品,多数是添加大剂量的葡萄糖等单糖,效果比单独使用一水肌酸粉要强上许多,但并非完美无缺、不可超越。而有些则是耍弄花样,产品缺乏科学理论的支持,只面世时如火如荼,却经不住市场考验。通过刺激胰岛素释放帮助肌酸的吸收是种常用方法,均依赖大剂量的葡萄糖来实现,其它成分只是点缀,例如硫辛酸,在实际测试中使用200-400毫克的硫辛酸对影响胰岛素敏感与促进肌酸吸收毫无效果,可200毫克几乎是所有添加硫辛酸的肌酸配方中的“标准”,此剂量是远不够的。经测试一个体重160磅的人需要用整整1克的硫辛酸,才会产生一点儿效果。硫辛酸价格相对较贵,由于是一种酸,即使足量使用,也会引起咽喉与胃部的强烈烧灼感觉。休 闲 居 编辑 不管厂商的广告措辞,大剂量的葡萄糖就是完成“刺胰”任务的主力军,效果虽佳,尚有三点缺陷。其一,葡萄糖、肌酸与水混合后,其通过胃的速度较慢,时常引起胃部不适、腹涨。其二,因消化吸收速度不同,葡萄糖与肌酸不能同时进入血流,即不能默契协作。其三,在越来越多“无糖(sugar)”食品出现的今天,加以运动营养学角度上的考虑,使用大量的像葡萄糖这样的单糖已不合时宜。 作为次世代产品,惟它高(专利名Vitargo)/肌酸配方与柠檬肌酸等新型肌酸在上市之后的短短一月间,便赢得众多消费者的认可及赞誉。其中,以训练后饮料之身份登场的惟它高/肌酸配方最具吸引力。 “惟它高”是来源于瑞典的高分子量碳水化合物,凭借其特性,足以取代葡萄糖等单糖在肌酸配方或训练后饮料中之地位,从而延续肌酸的经典魅力。将其与水、肌酸混合后,形成一种低渗溶液。换句话说,“惟它高”有极低的渗透度(渗透度表示溶液通过胃的速度快慢,越低则越快),论消化速度其比葡萄糖或是麦芽糖糊精等快80%,故不会引起胃部不适、腹涨等。“惟它高”能与葡萄糖等单糖一样高效的刺激胰岛素释放,却不含糖(sugar),此项数据可参看产品成分表。再者,“惟它高”像一个“泵”,把水、肌酸一起带进血流,大大缩短了肌酸从胃至血流的“运输时间”,使之与胰岛素峰值水平同步,强化吸收。 在训练后使用肌酸与碳水化合物促进身体恢复早已不是新闻了。科学研究已证明,“惟它高”恢复肌糖原储备的速度比其它碳水化合物快70%,因为它有约百倍于葡萄糖等的分子量,故可被肌肉快速吸收。糖原是肌肉的主要能源,在细胞增容方面有类似于肌酸的作用,将液体、蛋白质和其它重要的营养物质输至肌细胞内部。由此可见,惟它高/肌酸配方不仅使肌肉吸收更多的肌酸,也使肌糖原储备的恢复速度大大加快,更有效的利用蛋白质等营养物质,快速切换身体代谢进入“增肌状态”。此外,肌酸与糖原以不同途径增加肌细胞容积,当它们同时作用,促成肌细胞的“超级水合”,使其“膨胀”,直如充满气的气球,以达到最佳“饱满”度。 惟它高/肌酸配方是经多次科学研究与临床实验证明其有效的,是款完全基于科学、有完备科学依据的尖端产品。它彻底变革了肌酸的使用方法,指引出一条通往“增肌高速路”的单行线。氨基酸是肌酸的一种

在蛋白质生物合成中起催化氨基酸之间肽键形成的酶是:

在蛋白质生物合成中起催化氨基酸之间肽键形成的酶是: A.氨基酸合成酶 B.转肽酶 C.羧基肽酶 D.氨基肽酶 正确答案:B

氨基酸合成蛋白质所需的酶是什么酶?蛋白质水解成氨基酸的反应式是什么?

据我所知楼上所知的是错误的。蛋白质合成过程中需要酶,而且是需要很多种酶,像氨酰tRNA合成酶,去甲酰化酶,GTP酶,氨肽酶,转肽酶等等。水解反应式-[NHCH(R)CO]n- +nH2O<=>nH2NCH(R)COOH

细菌的氨基酸合成酶是什么

细菌的氨基酸合成酶是色氨酸合成酶。根据查询相关资料信息显示,色氨酸合成酶,存在于细菌和霉菌中的酶,可从吲哚化合物和丝氨酸合成色氨酸。色氨酸可由吲哚和丝氨酸合成而获得。

将氨基酸合成蛋白质的过程需要ATP和酶,为什么?

蛋白质合成的过程 蛋白质生物合成的具体步骤包括:①氨基酸的活化;②活化氨基酸的转运;③活化氨基酸在核蛋白体上的缩合。 (一)氨基酸的活化转运 氨基酸的活化过程及其活化后与相应 tRNA的结合过程,都是由氨基酰tRNA合成酶来催化的,反应方程为:tRNA+氨基酸+ATP〖FY(KN〗氨基酰tRNA合成酶〖FY)〗氨基酰-tRNA+AMP+焦磷酸。以氨基酰tRNA形式存在的活化氨基酸,即可投入氨基酸缩合成肽的过程。氨基酰tRNA合成酶存在于胞液中,具有高度特异性。它们既能识别特异的氨基酸,又能辨认携带该种氨基酸的特异tRNA分子。在体内,每种氨基酰tRNA合成酶都能从多种氨基酸中选出与其对应的一种,并选出与此氨基酸相应的特异tRNA。这是保证遗传信息准确翻译的要点之一。 (二)核蛋白体循环 tRNA所携带的氨基酸,是通过“核蛋白体循环”在核蛋白体上缩合成肽,完成翻译过程的。以原核生物中蛋白质合成为例,将核蛋白体循环人为地分为启动、肽链延长和终止三个阶段进行介绍。 1.启动阶段 在蛋白质生物合成的启动阶段,核蛋白体的大、小亚基,mRNA与一种具有启动作用的氨基酸tRNA共同构成启动复合体。这一过程需要一些称为启动因子的蛋白质以及GTP与镁离子的参与。 原核生物中的启动因子有 3种,IF 1辅助另外两种启动因子IF 2、IF 3起作用。 启动阶段的具体步骤如下: (1)30S亚基在IF 3与IF 1的促进下与mRNA的启动部位结合,在IF 2的促进与IF 1辅助下与甲酰蛋氨酰tRNA以及GTP结合,形成30S启动复合体。 30S启动复合体由30S亚基、mRNA、fMet-tRNA fMet?及IF 1、IF 2、IF 3与GTP共同构成。 (2)30S启动复合体一经形成,IF 3即行脱落,50S亚基随之与其结合,形成了大、小亚基,mRNA,fMet-tRNA fMet?及IF 1、IF 2与GTP共同构成的70S启动前复合体。 (3)70S启动前复合体的GTP水解释出GDP与无机磷酸的同时,IF 2和IF 1随之脱落,形成了启动复合体。至此,已为肽链延长作好了准备。 启动复合体由大、小亚基, mRNA与fMet-tRNA fMet?共同构成。 已知核蛋白体上有两个位置,分别称为“给位”与“受位”,启动复合体中 mRNA的启动信号相对应的fMet-tRNA fMet亦即处于核蛋白体的给位。 2.肽链延长阶段 这一阶段,根据 mRNA上密码子的要求,新的氨基酸不断相应的被特异的tRNA运至核蛋白体受位,形成肽键。同时,核蛋白体从mRNA的5′端向3′端不断移位推进翻译过程。肽链延长阶段需要数种称为延长因子的蛋白质、GTP与某些无机离子的参与。 (1)进位 受位上 mRNA密码子相对应的氨基酸tRNA进入受位,生成复合体V。此步骤需要GTP、Mg 2+和称为肽链延长因子EFTu与EFTs的蛋白质因子。 (2)转肽 50S亚基的给位有转肽酶的存在,可催化肽键形成。此时在转肽酶的催化下,将给位上tRNA所携的甲酰蛋氨酰(或肽酰)转移给受位上已特异性进入的氨基酸tRNA,与其所带的氨基酸的氨基结合形成肽键。此酶需要Mg 2+与K 2+存在。 (3)脱落 原在给位上的脱去甲酰蛋氨酰后的 tRNA fMet,从复合物上脱落。 (4)移位 核蛋白体向 mRNA的3′端挪动相当于一个密码子的距离,使下一个密码子准确定位在受位,同时带有肽链的tRNA由受体移至给位,此步需有肽链延长因子EFG、GTP与Mg 2+?。 以后肽链上每增加一个氨基酸残基,就按①进位(新的氨基酸tRNA进入“受位”)②转肽(形成新的肽键)③脱落(转肽后“给位”上的tRNA脱落)④移位(核蛋白体挪动的同时,原处于“受位”带有肽链的tRNA随之转到“给位”)。 3.终止阶段 当多肽链合成已完成,并且“受位”上已出现终止信号(UAA),此后即转入终止阶段。终止阶段包括已合成完毕的肽链被水解释放,以及核蛋白体与tRNA从mRNA上脱落的过程。这一阶段需要一种起终止作用的蛋白质因子——终止因子的参与。 终止因子使大亚基“给位”的转肽酶不起转肽作用,而起水解作用。在转肽酶的作用下,“给位”上tRNA所携带的多肽链与tRNA之间的酯键被水解,并从核蛋白体及tRNA上释出。 从mRNA上脱落的核蛋白体,分解为大小两个亚基,重新进入核蛋白体循环。核蛋白体的解体需要IF 3的参与。

为什么蛋白质在酸性和碱性条件下会发生水解?是不是因为含有氨基和羧基?

由组成蛋白质的氨基酸的结构特点可知,氨基酸的结构通式是:,中心碳原子上含有氨基酸和羧基,如果r基中不含有氨基和羧基,则为中性,如果含有氨基则为碱性,如果含有羧基则为酸性,因此成蛋白质的氨基酸可以分为酸性、碱性和中性氨基酸,这种差异决定于氨基酸的r基.故选:a.

蛋白质在酸碱条件下水解生成氨基酸还是氨基酸盐

是氨基酸。蛋白质在酸性、碱性、酶等条件下发生水解,蛋白质的水解中间过程,可以生成多肽,但水解的最终产物都是氨基酸。

r基中有碱性基团的氨基酸是?

组氨酸。属于碱性氨基酸(即R基团带正电的氨基酸)的是组氨酸R基是指氨基酸碳原子上连接的第四个东西(基团)不一样的基团。

下列氨基酸中碱性最强的是 选择题

碱性氨基酸包括精氨酸、赖氨酸、组氨酸其中精氨酸的碱性最强
 首页 上一页  16 17 18 19 20 21 22 23 24 25  下一页  尾页