生物

DNA图谱 / 问答 / 标签

真核生物的细胞分裂从间期进入前期,有什么现象

核膜消失,核仁消失,出现高度螺旋的染色体和纺锤丝 间期细胞进入有丝分裂前期时,核的体积增大,由染色质构成的细染色线逐渐缩短变粗,形成染色体.因为染色体在间期中已经复制,所以每条染色体由两条染色单体组成.核仁在前期的后半渐渐消失.在前期末核膜破裂,于是染色体散于细胞质中.动物细胞有丝分裂前期时靠近核膜有两个中心体.每个中心体由一对中心粒和围绕它们的亮域,称为中心质或中心球所组成.由中心体放射出星体丝,即放射状微管.带有星体丝的两个中心体逐渐分开,移向相对的两极.这种分开过程推测是由于两个中心体之间的星体丝微管相互作用,更快地增长,结果把两个中心体(两对中心粒)推向两极,而于核膜破裂后终于形成两极之间的纺锤体.

高中生物细胞分裂详细过程?

1、细胞周期,分为间期与分裂期两个阶段。2、间期又分为三期、即DNA合成前期(G1期)、DNA合成期(S期)与DNA合成后期(G2期)。3、细胞分裂期:也就是指M期。  细胞分裂期:前期,中期,后期,末期。以下是口诀,清晰的描述了分裂的主要变化,先记口诀,再慢慢详细化整个过程,简单好记。前期:仁膜消失两体现(核仁核膜消失,染色体纺锤体出现)中期:形定数晰赤道齐(染色体的形状和数目稳定清晰,着丝点整齐地排列在赤道板上)后期:点裂数加均两级(染色体着丝点分裂,染色体数目加倍,分裂的染色体平均向细胞两级移动)末期:两消两现重开始(染色体纺锤体消失,核仁核膜重新出现,又开始一个新的细胞周期)手打字辛苦,如果觉得不错望采纳!

真核生物的细胞分裂从间期进入前期,有什么现象

核膜消失,核仁消失,出现高度螺旋的染色体和纺锤丝 前期 自分裂期开始到核膜解体为止的时期。间期细胞进入有丝分裂前期时,核的体积增大,由染色质构成的细染色线逐渐缩短变粗,形成染色体。因为染色体在间期中已经复制,所以每条染色体由两条染色单体组成。核仁在前期的后半渐渐消失。在前期末核膜破裂,于是染色体散于细胞质中。动物细胞有丝分裂前期时靠近核膜有两个中心体。每个中心体由一对中心粒和围绕它们的亮域,称为中心质或中心球所组成。由中心体放射出星体丝,即放射状微管。带有星体丝的两个中心体逐渐分开,移向相对的两极(图1)。这种分开过程推测是由于两个中心体之间的星体丝微管相互作用,更快地增长,结果把两个中心体(两对中心粒)推向两极,而于核膜破裂后终于形成两极之间的纺锤体。(来自百度百科)

高中生物关于有丝分裂间期的解释

G1期,S期,G2期。其中G1和G2期主要是合成有关蛋白质和RNA,S期则完成DNA 的复制。以下是百度百科:G1期的特点:G1期是从上次细胞增殖周期完成以后开始的。G1期是一个生长期。在这一时期主要进行RNA和蛋白质的生物合成,并且为下阶段S期的DNA合成做准备。如合成各种与DNA复制有关的酶,线粒体、核糖体等都增多了,内质网在更新扩大,来自内质网的高尔基体、溶酶体等也增加了。动物细胞的2个中心粒也彼此分离并开始复制。也就是说为S期储备物质和能量。S期的特点:从G1期进入S期是细胞增殖的关键。S期最主要的特征是DNA的合成(组蛋白的合成),DNA分子的复制就是在这个时期进行的。通常只要DNA的合成一开始,细胞增殖活动就会进行下去,直到分裂成两个子细胞。G2期的特点:G2期又叫做“有丝分裂的准备期”因为它主要为后面的分裂期(M期)做准备。在G2期中,DNA的合成终止,但是还有RNA和蛋白质的合成,不过合成量逐渐减少。特别是微管蛋白的合成,为分裂期(M期)纺锤体微管的组装提供原料。在G2期中心粒完成复制,形成2对中心粒。

真核生物的细胞分裂从间期进入前期,有什么现象

核膜消失,核仁消失,出现高度螺旋的染色体和纺锤丝前期自分裂期开始到核膜解体为止的时期。间期细胞进入有丝分裂前期时,核的体积增大,由染色质构成的细染色线逐渐缩短变粗,形成染色体。因为染色体在间期中已经复制,所以每条染色体由两条染色单体组成。核仁在前期的后半渐渐消失。在前期末核膜破裂,于是染色体散于细胞质中。动物细胞有丝分裂前期时靠近核膜有两个中心体。每个中心体由一对中心粒和围绕它们的亮域,称为中心质或中心球所组成。由中心体放射出星体丝,即放射状微管。带有星体丝的两个中心体逐渐分开,移向相对的两极(图1)。这种分开过程推测是由于两个中心体之间的星体丝微管相互作用,更快地增长,结果把两个中心体(两对中心粒)推向两极,而于核膜破裂后终于形成两极之间的纺锤体。(来自百度百科)

浙科版 高中生物课本说有丝分裂周期包括间期。但又有一句:有丝分裂分为四个时期,前中后末。那包括间期吗

动植物细胞有丝分裂周期包括分裂期和分裂间期,而又将分裂间期分为G1期,S期与G2期,将分裂期分为前,中,后,末四个时期,所以说有丝分裂周期与间期与分裂期是包含关系,而间期与分裂期是平行关系,前中后末四个时期与分裂期是包含关系,但是我认为问题就出在对《有丝分裂过程》的理解,他究竟指的是有丝分裂周期整个过程,还是指动植物细胞在由染色质变为染色体后由一个细胞变成两个子细胞的分裂过程既分裂期,所以我个人认为可能是课本表述不准确,造成歧义,所以不同理解造成不同答案,但基本概念我已经说过了,如果是第一种理解则包括,第二种则不包括。

蛋白质可在生物体外自我合成吗?

不能。如果是在体外,需要人工合成。因为蛋白质的合成需要很多必要条件

高中生物中,蛋白质到底在哪里合成?

1、严格意义上讲,核糖体上合成的往往还是多肽,一般还要经过糖基化等加工过程才能成为真正的蛋白质。但一般来说默认蛋白质的合成场所是核糖体。2、分泌蛋白要经过内质网、高尔基体的再加工过程才行。但不等于说胞内蛋白的合成不需要内质网、高尔基体。许多蛋白如膜蛋白、溶酶体中的蛋白质都要经过内质网和高尔基体的加工。只是高中教材没提及。3、氨基酸要形成多肽后才能加工成蛋白质。细胞内极少数多肽(如谷胱甘肽)不是在核糖体上合成的,绝大多数蛋白质都是在核糖体上合成为多肽后形成的,因此可以认为合成蛋白质的最低细胞器是核糖体。感兴趣的话,你可以看看细胞生物学,上面讲得非常清楚。

蛋白质的生物合成简介

目录 1 拼音 2 英文参考 3 注解 1 拼音 dàn bái zhì de shēng wù hé chéng 2 英文参考 protein biosynthesis 3 注解 蛋白质在生物体中的合成是在核酸的指导和控制下进行的。 蛋白质在生物体内常处于合成和分解的动态平衡。因而各种蛋白质都以其固有的速度进行分解或重新合成。在细胞内合成蛋白质的场所是核蛋白体。核蛋白体在细胞内以游离的或结合在粗面内质网上的状态而存在,前者主要进行细胞质(酶)的合成,后者主要是以分泌蛋白质(酶)及膜组成成分的蛋白质的合成。蛋白质的一级结构,即氨基酸的排列是由DNA的堿基对来决定的。其信息是通过mRNA传递到核蛋白体的,该mRNA上的三联体,也就是相邻的三个堿基对来决定一个氨基酸。作为组成蛋白质原料的氨基酸,由ATP活化变成氨酸基tRNA的形式tRNA既具有活化氨基酸载体的作用,同时也具有解读遗传信息受体的功能。氨酰基tRNA和mRNA结合在核蛋白体上形成多核蛋白体,边进行遗传密码的翻译,边进行蛋白质的合成。蛋白质的生物合成从N末端开始朝向C末端进行。mRNA上的密码是从5′末端朝着C末端翻译。从而,mRNA的N′末端有相当于肽链的N末端的起始点存在,在这里开始肽链的合成,随之肽链的延长,最后到C末端蛋白质合成终结。已合成的蛋白质可从核蛋白体上游离下来。在其各个过程存在着多肽链开始因子、多肽链延长因子,以及多肽链终止因子,在GTP的参与下,进行各自的反应。 从基因到蛋白质的信息传递不能直接进行,而是需要依靠另一种核酸核糖核酸(RNA)来牵线搭桥。核糖核酸有几类,其中主要是接受脱氧核糖核酸(DNA)中的遗传密码并负责传递给蛋白质的信使核糖核酸mRNA。从脱氧核糖核酸DNA到人使核糖核酸mRNA传递遗传密码时,堿基按A≡U、G≡C的原则进行配对,即以脱氧核糖核酸DNA的一条链为模板,合成信使核糖核酸mRNA ,脱氧核糖核酸DNA上的三联体密码也随之转移到信使核糖核酸mRNA上,这个过程称为转录。之所以要进行转录,是因为蛋白质的合成场所是核外的核糖体上,与脱氧核糖核酸DNA所在染色体还有一段距离,染色体不会流动到核外主动去找适合蛋白质合成的场地,必须通过信使来完成使命。于是,就由信使核糖核酸mRNA担当这个角色,接受脱氧核糖核酸DNA的三联体密码并来到核外核糖体内行使职权,指使特定的氨基酸按照顺序同毗连的另一种氨基酸连接起来,形成肽链,即蛋白质,这个过程,称之为“转译”。 复杂的蛋白质生物合成过程可以概括为以下四个步骤: 第一步,氨基酸活化与转运。这个过程是在氨基酸活化酶和镁离子作用下把氨基酸激活成为活化氨基酸。当然,这一过程还有许多其它因子的参与,其发生部位在细胞质。 第二步,肽链(蛋白质)合成的起动。以原核细胞中肽链合成的起动为例:首先是原核细胞中的起始因子结合在核蛋白体的小亚基上,使大小亚基分开,再与信使核糖核酸mRNA的一端形成复合物。核蛋白体大亚基与此小亚复合物结合,形成核蛋白复合体,释放出起始因子,为以后肽链延长作准备。这一过程发生在核蛋白体上。 第三步,肽链(蛋白质)延长。核蛋白体的大亚基上有两个位置可与运输核糖核酸tRNA结合,分别称为“给位”(P位)和“受位”(A位),此时蛋氨酰 tRNA占据在给位上,而受位空着,准备接受下一个新的氨基酰 tRNA。 第四步,肽链(蛋白质)合成的终止:对信使核糖核酸mRNA上的终止密码进行识别,最后的肽酰 tRNA酯键水解,使新合成的肽链释入出来。这个过程与(3)一样,也是发生在核蛋白体上。 研究蛋白质的生物合成机理,可以指导现实生活中的许多问题,如医学中肿瘤的发病机理、病毒、免疫及遗传等方面问题。

蛋白质的生物合成过程一般包括哪些步骤

蛋白质合成是指生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。蛋白质生物合成亦称为翻译(Translation),即把mRNA分子中碱基排列顺序转变为蛋白质或多肽链中的氨基酸排列顺序过程。这是基因表达的第二步,产生基因产物蛋白质的最后阶段。不同的组织细胞具有不同的生理功能,是因为它们表达不同的基因,产生具有特殊功能的蛋白质,参与蛋白质生物合成的成份至少有200种,其主要体是由mRNA、tRNA、核糖核蛋白体以及有关的酶和蛋白质因子共同组成。扩展资料生物体内蛋白质合成的速度,主要在转录水平上,其次在翻译过程中进行调节控制。它受性别、激素、细胞周期、生长发育、健康状况和生存环境等多种因素及参与蛋白质合成的众多的生化物质变化的影响。由于原核生物的翻译与转录通常是偶联在一起的,且其mRNA的寿命短,因而蛋白质合成的速度主要由转录的速度决定。弱化作用是一个通过翻译产物的过量与不足首先影响转录,从而调节翻译速度的一种方式。mRNA的结构和性质也能调节蛋白质合成的速度。参考资料来源:百度百科-蛋白质合成

蛋白质生物合成中氨基酸可与DNA形成共价复合物吗

生物按照从脱氧核糖核酸(DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。由于mRNA上的遗传信息是以密码(见遗传密码)形式存在的,只有合成为蛋白质才能表达出生物性状,因此将蛋白质生物合成比拟为转译或翻译。蛋白质生物合成包括氨基酸的活化及其与专一转移核糖核酸(tRNA)的连接;肽链的合成(包括起始、延伸和终止)和新生肽链加工成为成熟的蛋白质3大步骤。其中心环节是肽链的合成。蛋白质生物合成需核糖体、mRNA、tRNA、氨酰转移核糖核酸(氨酰tRNA)合成酶、可溶性蛋白质因子等大约200多种生物大分子协同作用来完成。  氨基酸的活化及其与专一tRNA的连接 生物体内的氨基酸不能直接反应生成肽链,而首先由特异性的氨酰tRNA合成酶催化活化的氨基酸的羧基与其对应的tRNA的3"端羟基反应,生成含高能酯键的氨酰tRNA。氨酰基可连接到tRNA3"端腺苷的3"-羟基(图1)或2"-羟基上,并可在两者之间迅速移动,达到一个平衡。氨基酸与tRNA反应的整个过程分两步进行(见转移核糖核酸),其总反应式表示如下:  上述反应都是在氨酰tRNA合成酶催化下进行的。此酶具有高度专一性,每种氨基酸至少有一种氨酰tRNA合成酶。不同氨酰tRNA合成酶在大小、亚基结构和氨基酸组成上各不相同,其分子量大多在85000~110000之间,其中有些酶已制得结晶。  肽链的合成 分3个步骤:起始、延伸、终止。合成方向从氨基端(N端)向羧基端(C端)进行。mRNA的翻译方向则是从5"端→3"端。  起始 无论原核生物还是真核生物都是先由起始因子、鸟三磷(GTP)、核糖体、mRNA和氨酰tRNA形成起始复合物。起始密码子都是AUG(或GUG)。  原核生物蛋白质生物合成的起始因子有3种──IF-1、IF-2和IF-3,参与起始的氨酰tRNA(也叫起始tRNA)是甲酰甲硫氨酰,其中甲酰基是在甲酰化酶催化下加到甲硫氨酰tRNA上的。起始过程分以下3步:①70S核糖体在起始因子IF-3和IF-1作用下解离,产生30S和50S两个亚基。②30S亚基与mRNA起始密码子部位结合,在IF-2作用下,并有GTP参与,进入30S亚基,释放出IF-3,形成30S起始复合物。在这个复合物中,上的反密码子与mRNA上的起始密码子(翻译开始的信号)之间形成互补碱基对。③30S起始复合物与50S亚基结合,IF-2(具有依赖于核糖体的GTP水解酶活性)水解GTP,产生GDP和无机磷,并释放出能量,使IF-2,IF-1和GDP等从复合物中释放出来,形成70S起始复合物(包括70S核糖体、mRNA和)。这时,占据核糖体上的肽基-tRNA位置(P位)。70S起始复合物已具备了肽链延伸的条件(图2)。  真核生物肽链合成的起始因子比原核的多(如兔网织细胞至少有9种),起始tRNA是甲硫氨酰tRNA(Met-,不同于原核生物的。起始基本步骤与原核生物的相同,也包括核糖体的解离,小亚基(40S)起始复合物的形成和肽链起始复合物(80S)的形成。主要区别在于真核生物的核糖体小亚基先与氨酰化的起始tRNA结合,然后再与mRNA结合;而原核生物核糖体小亚基在形成起始复合物时则先与mRNA结合,再与起始tRNA结合。   延伸 经许多延伸循环使肽链延长的过程。每次循环使核糖体沿mRNA移动一个密码子(3个核苷酸)的距离,并使新生肽链加上一个氨基酸。除某些细节外,原核和真核生物的延伸循环大致相同,但前者的延伸因子有EF-Tu、EF-Ts和EF-G,后者则是EF-1和EF-2。每次循环包括以下3步:①氨酰tRNA与核糖体的结合。EF-Tu与GTP首先结合形成复合物,该复合物能与除外的任何氨酰tRNA相结合,然后由处于核糖体起始复合物上A位的mRNA的密码子选择带有与其对应的反密码子的氨酰tRNA进入A位,反密码子与密码子通过氢键形成碱基对。②肽键的形成。由于占据了核糖体的P位,氨酰tRNA占据了核糖体的A位,在核糖体上的肽基转移酶催化下,上的甲酰甲硫氨酸的α-羧基与氨酰tRNA上氨基酸的α-氨基之间形成肽键。此时,P位上的起始不携带氨基酸,而A位上的tRNA的3"端则带有一个二肽,称作肽基tRNA。许多证据表明,肽基转移酶是核糖体大亚基(为核糖体上的一个区域,由许多大分子协同作用的结果。不需要可溶性蛋白因子和GTP参与),真核生物肽键形成过程与原核生物基本步骤相同。但由于对不同的抑制剂的敏感程度不同,因而两类生物的肽基转移酶活性中心的结构可能有差异。③位移。在EF-G(也叫位移酶)和GTP的作用下进行。包括3种相关的运动,即失去氨酰基的tRNA(或起始tRNA)离开P位;肽基tRNA由A位移至P位;核糖体沿mRNA朝3"端方向移动一个密码子的距离,mRNA上的下一个密码子处在核糖体的A位上。EF-Tu将氨酰tRNA带进A位后,即从核糖体上脱落下来,在另一延伸因子EF-Ts的帮助下能与GTP形成新的(EF-Tu·GTP)复合物,参与第2轮延伸循环(图3)。  在肽链延伸过程中,当第1个核糖体沿mRNA移动到离起始密码子较远(约40个核苷酸)时,第2个核糖体又与起始密码子结合并开始另一条新肽链的合成,同样第3、第4个核糖体相继与同一mRNA结合,从而形成多核糖体。体内蛋白质合成实际上是以多核糖体的形式进行的(图4)。  终止 随着延伸循环的不断进行,肽链逐渐延长,最后,mRNA上的终止密码子(UAA、UAG和UGA)出现在核糖体的A位上,由于细胞内没有识别这些密码子的氨酰tRNA,因而肽链合成到此停止。此时,释放因子RF-1或RF-2和RF-3在GTP的参与下能够辨认并结合终止密码子,随之活化肽基转移酶并使其专一性发生变化,催化P位上的肽基tRNA的酯键水解,最后新生的肽链和脱去氨酰基的tRNA从核糖体上释放出来。释放因子还具有依赖核糖体的鸟苷三磷酸水解酶活性,它水解GTP,为释放因子脱离核糖体提供能量。游离的核糖体即可进入下一轮核糖体循环(图5)。

简述蛋白质生物合成的简单过程

1、氨基酸的活化:氨酰-t R N A合成酶具有高度的专一性,20种氨基酸在各自特异的酶的作用下形成氨酰-t R NA.2、肽链合成的起始:形成30S复合物:30S-m RNA-f M e t-t RNA f,再与50S亚基相结合,形成有生物学功能的70S起始复合物3、肽链的延伸:进位,转肽,移位,4、肽链合成的终止与释放蛋白质的合成是一个高耗能过程,第一个氨基酸参需要消耗3个ATP,以后每掺入一个AA需要消耗4个AT P。

简要说明参与蛋白质生物合成体系的组分有哪些

(1)mRNA:蛋白质合成的模板;(2)tRNA:蛋白质合成的氨基酸运载工具;(3)核糖体:蛋白质合成的场所;(4)辅助因子:(a)起始因子—--参与蛋白质合成起始复合物形成;(b)延长因子—--肽链的延伸作用;(c)释放因子一--终止肽链合成并从核糖体上释放出来.

参与蛋白质生物合成的物质有()

参与蛋白质生物合成的物质有() A.核蛋白体 B.mRNA C.连接酶 D.转氨酶 E.氨基酰-tR 正确答案:核蛋白体、氨基酰-tRNA.mRNA

蛋白质生物合成的主要过程

1、细胞核内DNA先转录成mRNA; 2、mRNA穿过核孔进入核糖体内进行翻译,在核糖体内变成氨基酸; 3、氨基酸通过脱水缩合形成肽链; 4、肽链进入内质网并在其中盘曲折叠,加工形成蛋白质; 5、蛋白质由高尔基体分泌出细胞外 。

原核生物如何合成蛋白质?

这个涉及内容较多.核糖体只负责将mRNA上的信息翻译成多肽单链.要变成具有三维功能和结构的蛋白质,有一个翻译后加工过程.1蛋白质可以自发的折叠成其三维结构.2蛋白质可以在伴侣蛋白的协助下折叠成三维结构3蛋白质有一系列修饰,如糖基化,甲基化,乙酰基化,等等是借助于酶进行修饰.线粒体和叶绿体的蛋白质主要在细胞质内合成,通过信号肽在导入到线粒体或叶绿体内.

形成蛋白质的生物化学反应是什么

具体的比较复杂,所以简单的来讲:氨基酸通过脱水缩合形成肽链(这个过程在核糖体中进行),再由肽链不断盘曲折叠形成更高级别的结构。(这个过程在内质网中进行)然后进一步加工处理(这个过程在高尔基体中进行)再形成囊泡排到细胞外,这是形成分泌蛋白的过程。在脱水缩合之前RMA还要转录DNA的遗传信息,这里就不详细说了因为太麻烦了。重点在于脱水缩合这个生物化学反应:本来一个L型α型氨基酸(高中时所学的氨基酸)左边是-N-H-H(氨基)右边是-C-O-O-H(羧基)当脱水缩合时另一个氨基酸的氨基或羧基会与前一个氨基酸的氨基或羧基反应,使其连接起来形成肽键。肽键的化学式:-NH-CO-由于刚好脱去了一个H2O所以就叫脱水缩合肽链就是通过一个个脱水缩合才形成的。(这个过程在核糖体中进行)

试述参与蛋白质生物合成的物质及其作用

蛋白质的生物合成就是mRNA翻译的过程 步骤如下: 1.翻译的起始:核糖体与mRNA结合并与氨酰-tRNA生成起始复合物 2.肽链的延伸:核糖体沿着mRNA 5‘到3"端移动,开始了从氮端到碳端的多肽合成 3.肽链的终止与释放:核糖体从mRNA上解离. 需要的物质:起始因子、核糖体、mRNA、tRNA、氨基酸、ATP、各种酶以及延伸因子和终止因子 顾名思义,起始因子、延伸因子和终止因子就是负责使合成起始、延伸和终止的.核糖体是蛋白质合成的场所.mRNA是遗传信息的携带者,其中有三联密码子.tRNA是负责携带氨基酸并合成多肽链的.氨基酸就是多肽链的基本合成单位.ATP提供能量.酶当然就是催化反应了. 合成结束后还涉及到多肽链的加工修饰等许多问题. 如果帮上忙的话望采纳,也欢迎来提问.

蛋白质生物合成中需要哪些物质参加

蛋白质的生物合成包括转录和翻译两个阶段。转录:DNA、RNA聚合酶、游离的核糖核苷酸、ATP翻译:mRNA、转运RNA(tRNA)、游离的氨基酸、ATP因此,蛋白质的合成过程需要:DNA、核糖核苷酸、RNA聚合酶、氨基酸、ATP

高中生物中,蛋白质到底在哪里合成?

1、严格意义上讲,核糖体上合成的往往还是多肽,一般还要经过糖基化等加工过程才能成为真正的蛋白质。但一般来说默认蛋白质的合成场所是核糖体。2、分泌蛋白要经过内质网、高尔基体的再加工过程才行。但不等于说胞内蛋白的合成不需要内质网、高尔基体。许多蛋白如膜蛋白、溶酶体中的蛋白质都要经过内质网和高尔基体的加工。只是高中教材没提及。3、氨基酸要形成多肽后才能加工成蛋白质。细胞内极少数多肽(如谷胱甘肽)不是在核糖体上合成的,绝大多数蛋白质都是在核糖体上合成为多肽后形成的,因此可以认为合成蛋白质的最低细胞器是核糖体。感兴趣的话,你可以看看细胞生物学,上面讲得非常清楚。

简述原核生物蛋白质的合成过程

原核生物的蛋白质合成分为四个阶段:氨基酸的活化、肽链合成的起始、延伸和终止。①氨基酸的活化:游离的氨基酸必须经过活化以获得能量,才能参与蛋白质的合成,活化反应由氨酰tRNA合成酶催化,最终氨基酸连接在tRNA3ˊ端AMP的3ˊ-OH上,合成氨酰-tRNA。②肽链合成的起始:首先IF1和IF3与30S亚基结合,以阻止大亚基的结合;接着,IF2和GTP与小亚基结合,以利于随后的起始tRNA的结合;形成的小亚基复合物经由核糖体结合点附着在mRNA上,起始tRNA和AUG起始密码子配对并释放IF3,并形成30S起始复合物。大亚基与30S起始复合物结合,替换IF1和IF2+GDP,形成70S起始复合物。这样在mRNA正确部位组装成完整的核糖体。③肽链的延伸:延伸分三步进行,进位:负载tRNA与EF-Tu和GTP形成的复合物被运送至核糖体,GTP水解,EF-TuGDP释放出来,在EF-Ts和GTP的作用下,EF-Tu GDP可以再次利用。转肽:肽酰转移酶将相邻的两个氨基酸相连形成肽键,该过程不需要能量的输入。移位:移位酶(EF-G)利用GTP水解释放的能量,使核糖体沿mRNA移动一个密码子,释放出空载的tRNA并将新生肽链运至P位点。④肽链的终止与释放:释放因子(RF1或RP2)识别终止密码子,并在RP3的作用下,促使肽酰转移酶在肽链上加上一个水分子并释放肽链。核糖体释放因子有助于核糖体亚基从mRNA上解离。原核生物特点:① 核质与细胞质之间无核膜因而无成形的细胞核(拟核或类核);RNA转录和翻译同时进行。② 遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA)。③ 以简单二分裂方式繁殖,不存在有丝分裂或减数分裂。④ 没有性行为,有的种类有时有通过接合、转化或转导,将部分基因组从一个细胞传递到另一个细胞的准性行为。⑤ 没有由肌球、肌动蛋白构成的微纤维系统,故细胞质不能流动,也没有形成伪足、吞噬作用等现象。⑥鞭毛并非由微管构成,更无“9+2”的结构,仅由几条螺旋或平行的蛋白质丝构成。⑦ 细胞质内仅有核糖体而没有线粒体、高尔基体、内质网、溶酶体、液泡和质体(植物)、中心粒(低等植物和动物)等细胞器。

蛋白质的生物合成需要哪些物质?

参与蛋白质生物合成的物质生物体内的各种蛋白质度是利用20种氨基酸为原料合成的参与蛋白质生物合成的各种因素,构成了蛋白质合成体系,该体系包括①mRNA作为蛋白质生物合成的模板,决定多肽链中氨基酸的排列顺序(RNA聚合酶复合体RNA聚合酶Ⅱ)②tRNA搬运氨基酸的工具(RNA聚合酶Ⅲ)③核糖体(核蛋白体),蛋白体生物合成的场所。④酶及其他蛋白质因子,起始因子,延伸因子,释放因子。⑤功能物质及无机离子。1.翻译模板mRNA及遗传密码mRNA是遗传信息的携带者,作为指导蛋白质生物合成的模板,MMA中每三个相邻的核苷酸组成三联体。2.tRNA和氨基酸的羧化游离的氨基酸不能直接进入核糖体氨基酸,必须经过活化氨基酸的活化后,就是与自己特有的tRNA结合形成相映的氨酰tRNA。3.rRNA和核蛋白体(核糖体)在蛋白质生物合成过程中,常常由若干核糖体结合在同1mRNA分子上同时进行翻译,但每两个相邻核蛋白之间存在一定的间隔形成链球状结构由若干个核蛋白体结合,在一条MOA上同时进行多肽链的翻译,所形成的链球状结构称为多核蛋白体。4.启动因子(IF)与多肽链合成启动有关的蛋白因子。5.延长因子其主要作用主要促使氨基酰tiRNA进入核糖体的A位点,并可促进移位过程。6.释放因子(终止因子RF)其主要作用是识别终止密码,协助多肽链的释放。7.供能物质和无机离子多肽链合成时,需要ATP GTP作为供能物质,并须镁Mg2+,K+参与氨基酸活化时需消耗2分子高能磷酸键,一个肽键形成时又消耗两分子。高能磷酸键,故缩和一分子氨基酸残基需要消耗4分子高能磷酸键。

高中生物 关于蛋白质合成的正确流程

分类: 教育/科学 >> 学习帮助 问题描述: 麻烦哪位大虾跟我说一下蛋白质在细胞内的合成的具体流程,以及在这个过程中每个细胞器的作用,尤其是高尔基体和内质网 解析: 细胞中的蛋白质都是在核糖体上合成的,并都是起始于细胞质基质之中。(1)有些蛋白质开始合成后不久,就借助从核糖体大亚基上露出的信号肽与内质网上的受体识别并与之结合,接着信号肽穿过内质网膜,引导新合成的多肽链进入内质网的腔隙中,信号肽随之溶解,使原来表面平滑的内质网变成局部凸起的粗面内质网,这类蛋白质有溶酶体蛋白,分泌到细胞外的蛋白,构成质膜骨架的蛋白。 (2)也有一部分蛋白质,像装配线粒体叶绿体膜的蛋白质,以游离状态留在细胞质中,不必进入内质网。 进入内质网的蛋白质要发生化学修饰,比如糖基化,羟基化,形成二硫键等,除此之外,新生的多肽还要发生折叠,或者进一步装配成寡聚体。蛋白质从内质网出来后进入高尔基体,进行加工,分类,包装,然后分门别类运送到特定部位或分泌到细胞外。

简要说明参与蛋白质生物合成体系的组分有哪些?它们具有什么功能

参与蛋白质生物合成的物质生物体内的各种蛋白质度是利用20种氨基酸为原料合成的参与蛋白质生物合成的各种因素,构成了蛋白质合成体系,该体系包括①mRNA作为蛋白质生物合成的模板,决定多肽链中氨基酸的排列顺序(RNA聚合酶复合体RNA聚合酶Ⅱ)②tRNA搬运氨基酸的工具(RNA聚合酶Ⅲ)③核糖体(核蛋白体),蛋白体生物合成的场所。④酶及其他蛋白质因子,起始因子,延伸因子,释放因子。⑤功能物质及无机离子。1.翻译模板mRNA及遗传密码mRNA是遗传信息的携带者,作为指导蛋白质生物合成的模板,MMA中每三个相邻的核苷酸组成三联体。2.tRNA和氨基酸的羧化游离的氨基酸不能直接进入核糖体氨基酸,必须经过活化氨基酸的活化后,就是与自己特有的tRNA结合形成相映的氨酰tRNA。3.rRNA和核蛋白体(核糖体)在蛋白质生物合成过程中,常常由若干核糖体结合在同1mRNA分子上同时进行翻译,但每两个相邻核蛋白之间存在一定的间隔形成链球状结构由若干个核蛋白体结合,在一条MOA上同时进行多肽链的翻译,所形成的链球状结构称为多核蛋白体。4.启动因子(IF)与多肽链合成启动有关的蛋白因子。5.延长因子其主要作用主要促使氨基酰tiRNA进入核糖体的A位点,并可促进移位过程。6.释放因子(终止因子RF)其主要作用是识别终止密码,协助多肽链的释放。7.供能物质和无机离子多肽链合成时,需要ATP GTP作为供能物质,并须镁Mg2+,K+参与氨基酸活化时需消耗2分子高能磷酸键,一个肽键形成时又消耗两分子。高能磷酸键,故缩和一分子氨基酸残基需要消耗4分子高能磷酸键。

什么是原核生物的蛋白质生物合成?

【原核生物的蛋白质生物合成】 氨基酸在核糖体上缩合成多肽链是通过核糖体循环而实现的。此循环可分为肽链合成的起始(intiation),肽链的延伸(elongation)和肽链合成的终止三个主要过程。原核细胞的蛋白质合成过程以E.coli细胞为例。【1】.肽链合成的起始 1.三元复合物的形成。核糖体30S小亚基附着于mRNA的起始信号部位,该结合反应是由起始因子3(IF3)介导的,另外有Mg2+的参与。故形成IF3-30S亚基-mRNA三元复合物。 2.30S前起始复合物的形成。在起始因子2(IF2)的作用下,甲酰蛋氨酸-起始型tRNA(fMet-tRNA Met)与mRNA分子中的起始密码子(AUG或GUG)相结合,即密码子与反密码子相互反应。同时IF3从三元复合物脱落,形成30S前起始复合物,即IF2-30S亚基-mRNA-fMet-tRNAMef复合物。此步亦需要fGTP和Mg2+参与。3.70S起始复合物形成。50S亚基与上述的30S前起始复合物结合,同时IF2脱落,形成70S起始复合物,即30S亚基-mRNA-50S亚基-fMer-tRNA Met复合物。此时fMet-tRNA Met占据着50S亚基的肽酰位(peptidyl site,简称为P位或给位),而50S的氨基酰位(aminoacyl site,简称为A位或受位)暂为空位。原核细胞蛋白质合成的起始过程氨基酸活化(fMet-tRNAMet形成)【2】.肽链合成的延长 这一过程包括进位、肽键形成、脱落和移位等四个步骤。肽链合成的延长需两种延长因子(Elongationfactor,简写为EF),分别称为EF-T和EF-G.此外尚需GTP供能加速翻译过程。1.进位即新的氨基酰-tRNA进入50S大亚基A位,并与mRNA分子上相应的密码子结合.在70S起始复合物的基础上,原来结合在mRNA上的fMet-tRNAMet占据着50S亚基的P位点(当延长步骤循环进行二次以上时,在P位点则为肽酰-tRNA)新进入的氨基酰-tRNA则结合到大亚基的A位点,并与mRNA上起始密码子随后的第二个密码子结合。此步需GTP、EF-T及Mg2+的参与。2.肽键形成在大亚基上肽酰转移酶(见第四章)的催化下,将P位点上的tRNA所携带的甲酰蛋氨酰(或肽酰基)转移给A位上新进入的氨基酰-tRNA的氨基酸上,即由P位上的氨基酸(或肽的3"端氨基酸)提供α-COOH基,与A位上的氨基酸的α-NH2基形成肽链。此后,在P位点上的tRNA成为无负载的tRNA,而A位上的tRNA负载的是二肽酰基或多肽酰基。此步需Mg2+及K+的存在。 3.脱落即50S亚基P位上无负载的tRNA(如tRNAMet)脱落。 4.移位指在EF-G和GTP的作用下,核糖体沿mRNA链(5"→3")作相对移动。每次移动相当于一个密码子的距离,使得下一个密码子能准确的定位于A位点处。与此同时,原来处于A位点上的二肽酰tRNA转移到P位点上,空出A位点。随后再依次按上述的进位、肽键形成和脱落步骤进行下一循环,即第三个氨基酰-tRNA进入A位点,然后在肽酰转移酶催化下,P位上的二肽酰tRNA又将此二肽基转移给第三个氨基酰-tRNA,形成三肽酰tRNA。同时,卸下二肽酰的tRNA又迅速从核糖体脱落。像这样继续下去,延长过程每重复一次,肽链就延伸一个氨基酸残基。多次重复,就使肽链不断地延长,直到增长到必要的长度。通过实验已经证明,mRNA上的信息的阅读是从多核苷酸链的5"端向3"端进行的,而肽链的延伸是从N端开始的。【3】.肽链合成的终止,需终止因子或释放因子(releasing factor简写为RF)参与。在E.coli中已分离出三种RF:RF1(MW36000),RF2(MW38000和RF3(MW46000)。其中,只有RF3与GTP(或GDP)能结合。它们均具有识别mRNA链上终止密码子的作用,使肽链释放,核糖体解聚。 1.多肽链的合成已经完毕,这时,虽然多肽链仍然附着在核蛋白体及tRNA上,但mRNA上肽链合成终止密码子UAA(亦可以是UAG或UGA)已在核蛋白体的A位点上出现。终止因子用以识别这些密码子,并在A位点上与终止密码子相结合,从而阻止肽链的继续延伸。RF3的作用还不能肯定,可能具有加强RF1和RF2的终止作用。RF1和RF2对终止密码子的识别具有一定特异性,RF1可识别UAA和UAG,RF2识别UAA和UGA。RF与EF在核糖体上的结合部位是同一处,它们重叠的结合部位与防止了EF与F同时结合于核糖体上,而扰乱正常功能。 2.终止因子可能还可以使核蛋白体P位点上的肽酰转移酶发生变构,酶的活性从转肽作用改变为水解作用,从而使tRNA所携带的多肽链与tRNA之间的酯键被水解切断,多肽链从核蛋白体及tRNA释放出来。 最后,核蛋白体与mRNA分离;同时,在核蛋白体P位上的tRNA和A位上的RF亦行脱落。与mRNA分离的核蛋白体又分离为大小两个亚基,可重新投入另一条肽链的合成过程。核蛋白体分离为大小两个亚基的反应需要起始因子(IF3)的参与。必须指出,上述只是单个核蛋白体的循环,即单个核蛋白体的翻译过程。采用温和的条件小心地从细胞中分离核蛋白体时,可以得到3-4个甚至上百个成串的核蛋白体。称为多核蛋白体,即在一条mRNA链上同一时间内结合着许多个核蛋白体,两个核蛋白体之间有一定的长度间隔,是裸露的mRNA链段,所以多核蛋白体可以在一条mRNA链上同时合成几条多肽链,这就大提高了翻译的效率。在开始合成蛋白质时,一个核蛋白体先附着在mRNA链的起始部位,再沿着mRNA链由5"端向3"端移动,根据mRNA链的信息,有次序的接受携带基酰的各种tRNA,并合成多种肽链。当这一核蛋白体移动到足够远的位置时,另一核蛋白体又可附着此mRNA的起始部位,并开始合成另一条同样的多肽链。每当一个核蛋白体又可到此mRNA的终止密码子时,多肽链即合成完毕,并从核蛋白体及tRNA上释出。同时,此核蛋白体随之从mRNA链上脱落分离为两个亚基,而脱落下来的大小亚基又可重新投入核蛋白体循环的翻译过程。多核蛋白体中的核蛋白体个数,视其所附着的mRNA大小而定。例如,血红蛋白的多肽链约由150个氨基酸残基组成,相应的mRNA的编码区应有450个碱基组成的多核苷酸,长约150nm。网织红细胞核蛋白体的直径为22nm,所以每条mRNA足以容纳好几个核蛋白体。现已证明,网织红细胞多核蛋白体由5-6个核蛋白体串连而成,两个核蛋白体之间的间隔约为3nm。肌球蛋白(即肌凝蛋白)的重链由1800个氨基酸残基组成,相应的mRNA链的编码区应当是5400个核苷酸组成的长链,多核蛋白体由60多个核蛋白体串连而成。

蛋白质的合成与生物合成有区别吗

生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。由于mRNA上的遗传信息是以密码(见遗传密码)形式存在的,只有合成为蛋白质才能表达出生物性状,因此将蛋白质生物合成比拟为转译或翻译。所以,RNA是蛋白质合成的直接模板蛋白质合成是生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。

蛋白质的生物合成需要哪些原料?

参与蛋白质生物合成的物质生物体内的各种蛋白质度是利用20种氨基酸为原料合成的参与蛋白质生物合成的各种因素,构成了蛋白质合成体系,该体系包括①mRNA作为蛋白质生物合成的模板,决定多肽链中氨基酸的排列顺序(RNA聚合酶复合体RNA聚合酶Ⅱ)②tRNA搬运氨基酸的工具(RNA聚合酶Ⅲ)③核糖体(核蛋白体),蛋白体生物合成的场所。④酶及其他蛋白质因子,起始因子,延伸因子,释放因子。⑤功能物质及无机离子。1.翻译模板mRNA及遗传密码mRNA是遗传信息的携带者,作为指导蛋白质生物合成的模板,MMA中每三个相邻的核苷酸组成三联体。2.tRNA和氨基酸的羧化游离的氨基酸不能直接进入核糖体氨基酸,必须经过活化氨基酸的活化后,就是与自己特有的tRNA结合形成相映的氨酰tRNA。3.rRNA和核蛋白体(核糖体)在蛋白质生物合成过程中,常常由若干核糖体结合在同1mRNA分子上同时进行翻译,但每两个相邻核蛋白之间存在一定的间隔形成链球状结构由若干个核蛋白体结合,在一条MOA上同时进行多肽链的翻译,所形成的链球状结构称为多核蛋白体。4.启动因子(IF)与多肽链合成启动有关的蛋白因子。5.延长因子其主要作用主要促使氨基酰tiRNA进入核糖体的A位点,并可促进移位过程。6.释放因子(终止因子RF)其主要作用是识别终止密码,协助多肽链的释放。7.供能物质和无机离子多肽链合成时,需要ATP GTP作为供能物质,并须镁Mg2+,K+参与氨基酸活化时需消耗2分子高能磷酸键,一个肽键形成时又消耗两分子。高能磷酸键,故缩和一分子氨基酸残基需要消耗4分子高能磷酸键。

什么是蛋白质的生物合成?

我想你问的是“生物如何合成蛋白质”真核生物的核酸是DNA,在细胞核内,mRNA充当信使,反转录出核孔,与核糖体结合,翻译密码子,编码蛋白质,然后蛋白质进入内质网和高尔基体进行深入加工,最后通过囊泡出细胞膜,这里注意,如果问穿过几层膜,就是0层,因为蛋白质是胞吐,所以不过膜结构。

蛋白质的生物合成指的是()。

蛋白质的生物合成指的是()。 A.蛋白质分解的逆反应过程 B.氨基酸自发聚合成多肽链的过程 C.以mRNA为模板指导蛋白质合成的过程 D.氨基酸聚合酶催化各种核苷酸连接成多肽链的过程 E.蛋白质的变性过程 正确答案:C

高中生物:蛋白质的合成过程(精简)

1.由相关基因片段转录成mRNA2.mRNA由细胞核进入到细胞质和核糖体结合。在核糖体和指导合成肽链,组装成蛋白质3.合成的蛋白质经内质网加工处理,4.分泌蛋白再经高尔基体修饰、包装、转运。最后以外排的形式分泌出去

蛋白质生物合成中需要哪些物质参加

蛋白质的生物合成包括转录和翻译两个阶段。转录:DNA、RNA聚合酶、游离的核糖核苷酸、ATP翻译:mRNA、转运RNA(tRNA)、游离的氨基酸、ATP因此,蛋白质的合成过程需要:DNA、核糖核苷酸、RNA聚合酶、氨基酸、ATP

生物蛋白质的合成

(一)蛋白质合成的细胞内定位 核糖体的功能就是将mRNA上的遗传密码(核苷酸顺序)翻译成多肽链上的氨基酸顺序。因此,它是肽链的装配机,即细胞内蛋白质合成的场所,细胞合成的蛋白质可分为两类:外输性蛋白和内源性蛋白。 1.外输性蛋白:主要在固着核糖体上合成,分泌到细胞外发挥作用,如抗体蛋白、蛋白类激素、酶原、唾液等,也能合成部份自身结构蛋白,如膜嵌入蛋白、溶酶体蛋白。 2.内源性蛋白:又称结构蛋白,是指用于细胞本身或组成自身结构的蛋白质,主要是在游离核糖体上合成,如红细胞中的血红蛋白,肌细胞中的肌纤维蛋白。 (二)蛋白质生物合成的简要过程 蛋白质生物合成是一个复杂而重要的生命活动,它在细胞中有粗细的结构基础,进行得十分迅速有效,是依靠分子水平上的严密组织和准确控制进行的。 蛋白质合成不仅要有合成的场所,而且还必须有mRNA、tRNA、20种氨基酸原料和一些蛋白质因子及酶。Mg、K+离子等参与,并由ATP、GTP提供能量,合成中mRNA是编码2合成蛋白质的模板,tRNA是识别密码子,转运相应氨基酸的工具。核糖体则是蛋白质的装配机,它不仅组织了mRNA和rRNA的相互识别,将遗传密码翻译成蛋白质的氨基酸顺序,并且控制了多肽链的形成,下面看看真核细胞中蛋白质合成的主要步骤,是怎样在细胞内超微结构水平上进行的。 蛋白质生物合成过程可分成三个阶段 1.氨基酸的激素和转运 阶段在胞质中进行,氨基酸本身不认识密码,自己也不会到Ribosome上,须靠tRNA。 氨基酸+tRNA →→氨基酰tRNA复合物 每一种氨基酸均有专一的氨基酰-tRNA合成酶催化,此酶首先激活氨基酸的羟基,使它与特定的tRNA结合,形成氨基酰tRNA复合物。所以,此酶是高度专一的,能识别并反应对应的氨基酸与其tRNA,而tRNA能以反密码子识别密码子,将相应的氨基酸转运到核糖体上合成肽链。 2.在多聚核糖体上的mRNA分子上形成多肽链 氨基酸在核糖体上的聚合作用,是合成的主要内容,可分为三个步骤: (1)多肽链的起始:mRNA从核到胞质,在起始因子和Mg 的作用下,小亚基与mRNA的起始部位结合,甲硫氨酰(蛋氨酸)—tRNA的反密码子,识别mRNA上的起始密码AuG(mRNA)互补结合,接着大亚基也结合上去,核糖体上一次可容纳二个密码子。 (2)多肽链的延长:第二个密码对应的氨酰基—tRNA进入核糖体的A位,也称受位,密码与反密码的氢键,互补结合。在大亚基上的多肽链转移酶(转肽酶)作用下,供位(P位)的tRNA携带的氨基酸转移到A位的氨基酸后并与之形成肽键(—CO-NH—),tRNA脱离P位并离开P位,重新进入胞质,同时,核糖体沿mRNA往前移动,新的密码又处于核糖体的A位,与之对应的新氨基酰-tRNA又入A位,转肽键把二肽挂于此氨基酸后形成三肽,ribosome又往前移动,由此渐进渐进,如此反复循环,就使mRNA上的核苷酸顺序转变为氨基酸的排列顺序。 注意: P位(供位):供tRNA;供肽链 A位(受位):受氨基酸-tRNA;受肽链核苷酸与氨基酸相连系的桥梁是tRNA。 (3)多肽链的终止与释放:肽链的延长不是无限止的,当mRNA上出现终止密码时(UGA,U氨基酸和UGA),就无对应的氨基酸运入核糖体,肽链的合成停止,而被终止因子识别,进入A位,抑制转肽酶作用,使多肽链与tRNA之间水解脱下,顺着大亚基中央管全部释放出,离开核糖体,同时大小亚基与mRNA分离,可再与mRNA起始密码处结合,也可游离于胞质中或被降解,mRNA也可被降解。 这是在一个核糖体上氨基酸聚合成肽链,每一个核糖体一秒钟可翻译40个密码子形成40个氨基酸肽键,其合成肽链效率极高。可见,核糖体是肽链的装配机。 合成的若是结构蛋白,则这些多肽便经过某些修饰、剪接后形成四级结构,投入使用,若是输出蛋白呢? 我们知道分泌蛋白质是先存在于内质网腔中,后经高尔基体排出,胞吐外排,那么,合成的输出蛋白是怎样进入内质网腔的呢? 3.信号学说:Signal hypothesis 与膜结合的核糖体和游离核糖体在性质上是一样的,那这种核糖体为什么会结合到粗面内质网膜上呢?新肽链又是怎样进入RER囊腔的呢?信号学说阐明了固着核糖体上合成蛋白质的特殊性,该学说的基本要点。 (1)分泌蛋白质多肽的合成一开始也在游离多聚核糖体上,但其mRNA在AUG之后有一段45-90bp的信号顺序(密码),由此能翻译出15-30个氨基酸的多肽(信号肽)Signal Peptide。这种能合成信号肽的核糖体将成为附着核糖体与内质网结合,不能合成信号肽的为游离核糖体,仍散布于胞质中。 (2)近几年的研究发现,胞质中存在着信号识别颗粒(Signal RecoynitionParticle,SRP),它既能识别露出核糖体之外的信号肽,又能识别RER膜上的SRP受体,只有当核糖体出现信号肽时,SRP才与核糖体的亲和力增高。 (3)SRP与核糖体一结合,便以tRNA的构型占据了核糖体的“A”位,使核糖体的蛋白质合成暂时停止。 (4)SRP-核糖体复合体与RER上的SRP受体结合核糖体则以大亚基结合于RER上的嵌入蛋白(核糖体结合蛋白Ⅰ和Ⅱ),所以SRP受体又称停泊蛋白(docking 蛋白质),SRP与SRP受体结合是暂时的,当核糖体附着于内质网膜后,SRP便离去,核糖体结合蛋白只存在于RER上。 (5)信号肽由疏水性氨基酸构成,当能合成信号肽的核糖体与内质网膜结合后,信号肽便经由内质网膜插入膜腔内,(内质网膜中2-多个识别信号肽的受体蛋白侧向移动,集中在一起形成临时性管道与中央管相连接),而先前处于暂停状态的蛋白质合成活动又重新开始。进入内质网腔的信号肽将与之相连的新生肽链引入内质网腔。信号肽便被位于内质网内表面的信号肽酶切掉,核糖体继续合成肽链,肽链不断延长,并在内质网腔中保护不被破坏并在网腔中形成具有一定空间构型的蛋白质,当合成终止,受体蛋白重新分散,肽链从核糖体脱下,核糖体大小亚基离开,所以,固着核糖体与RER的结合不是结构性的,而是特异性、暂时性、功能性的。 所以,如信号顺序发生改变,所合成的信号肽不能被受体识别,核糖体就结合不到膜上。

蛋白质生物合成的主要过程

1、细胞核内DNA先转录成mRNA;2、mRNA穿过核孔进入核糖体内进行翻译,在核糖体内变成氨基酸;3、氨基酸通过脱水缩合形成肽链;4、肽链进入内质网并在其中盘曲折叠,加工形成蛋白质;5、蛋白质由高尔基体分泌出细胞外。

rRNA和mRNA的生物学意义各是什么?

mRNA是信使RNA tRNA是转移RNA rRNA是核糖体RNA核糖体RNA (ribosomal RNAs,rRNAs) 约占RNA总量的 80%,它们与蛋白质结合构成核糖体的骨架。核糖体是蛋白质合成的场所,所以rRNAs的功能是作为核糖体的重要组成成分参与蛋白质的生物合成。rRNAs是细胞中含量最多的一类RNA,且分子量比较大,代谢都不活跃,种类仅有几种,原核生物中主要有5S rRNAs、16S rRNAs和23S rRNAs三种,真核生物中主要有5S rRNAs、5.8S rRNAs、18S rRNAs和28S rRNAs四种。 信使RNA(messenger RNAs,mRNAs),约占RNA总量的5%。mRNAs是以DNA为模板合成的,又是蛋白质合成的模板。它是携带一个或几个基因信息到核糖体的核酸。由于每一种多肽都有一种相应的mRNAs,所以细胞内mRNAs是一类非常不均一的分子。但就每一种mRNAs的含量来说又十分低。这也解释了为什么mRNAs的发现比rRNAs与tRNAs要迟。 转移RNAs (transfer RNAs,tRNAs) 约占RNA总量的15%。tRNAs的分子量在2.5×104左右,由70~90个核苷酸组成,因此它是最小的RNA分子。它的主要功能是在蛋白质生物合成过程中把mRNA的信息准确地翻译成蛋白质中氨基酸顺序的适配器(adapter)分子,具有转运氨基酸的作用,并以此氨基酸命名。此外,它在蛋白质生物合成的起始作用中,在DNA反转录合成中及其他代谢调节中也起重要作用。细胞内tRNA的种类很多,每一种氨基酸都有其相应的一种或几种tRNA。

RNA主要有哪几种?他们在蛋白质生物合成过程中各有什么功能?

在生物体内发现主要有三种不同的RNA分子在基因的表达过程中起重要的作用.它们是信使RNA(messengerRNA,mRNA)、转运RNA(transfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA).RNA含有四种基本碱基,即A腺嘌呤、G鸟嘌呤、C胞嘧啶和U尿嘧啶.此外还有几十种稀有碱基. RNA的一级结构主要是由AMP、GMP、CMP和UMP四种核糖核苷酸通过3",5"磷酸二酯键相连而成的多聚核苷酸链.天然RNA的二级结构,一般并不像DNA那样都是双螺旋结构,只有在许多区段可发生自身回折,使部分A-U、G-C碱基配对,从而形成短的不规则的螺旋区.不配对的碱基区膨出形成环,被排斥在双螺旋之外.RNA中双螺旋结构的稳定因素,也主要是碱基的堆砌力,其次才是氢键.每一段双螺旋区至少需要4~6对碱基对才能保持稳定.在不同的RNA中,双螺旋区所占比例不同.【RNA的二级结构】细胞内有三类主要的核糖核酸,即:mRNA、rRNA、tRNA.它们各有特点.在大多数细胞中RNA的含量比DNA多5~8倍.【大肠杆菌RNA的性质】 mRNA(信使RNA) 生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成.而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体.现已证明,这种中介物质是一种特殊的RNA.这种RNA起着传递遗传信息的作用,因而称为信使RNA(messenger RNA,mRNA). mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程.在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质.因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnRNA). tRNA(转运RNA) 如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂.但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力.因此,必须用一种特殊的RNA——转运RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链.每种氨基酸可与1-4种tRNA相结合,现在已知的tRNA的种类在40 种以上. tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成.而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶.这类稀有碱基一般是在转录后,经过特殊的修饰而成的.

RNA有哪几种?其主要生物学功能是什么?

答:RNA的种类:在生物体内发现主要有三种不同的RNA分子在基因的表达过程中起重要的作用。它们是信使RNA(messengerRNA,mRNA)、转移(tranfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA)。RNA含有四种基本碱基,即腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。此外还有几十种稀有碱基。 RNA的一级结构主要是由AMP、GMP、CMP和UMP四种核糖核苷酸通过3",5"磷酸二酯键相连而成的多聚核苷酸链。天然RNA的二级结构,一般并不像DNA那样都是双螺旋结构,只有在许多区段可发生自身回折,使部分A-U、G-C碱基配对,从而形成短的不规则的螺旋区。不配对的碱基区膨出形成环,被排斥在双螺旋之外。RNA中双螺旋结构的稳定因素,也主要是碱基的堆砌力,其次才是氢键。每一段双螺旋区至少需要4~6对碱基对才能保持稳定。在不同的RNA中,双螺旋区所占比例不同。【RNA的二级结构】细胞内有三类主要的核糖核酸,即:mRNA、rRNA、tRNA。它们各有特点。在大多数细胞中RNA的含量比DNA多5~8倍。【大肠杆菌RNA的性质】mRNA 生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成。而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体。现已证明,这种中介物质是一种特殊的RNA。这种RNA起着传递遗传信息的作用,因而称为信使RNA(message RNA,mRNA)。mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程。在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnRNA)。tRNA 如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂。但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,必须用一种特殊的RNA——转移RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链。每种氨基酸可与1-4种tRNA相结合,现在已知的tRNA的种类在40 种以上。tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成。而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶。这类稀有碱基一般是在转录后,经过特殊的修饰而成的。1969年以来,研究了来自各种不同生物,:如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能折叠成三叶草形二级结构(图3-23),而且都具有如下的共性:① 5"末端具有G(大部分)或C。② 3"末端都以ACC的顺序终结。③ 有一个富有鸟嘌呤的环。④ 有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对。⑤ 有一个胸腺嘧啶环。rRNA 核糖体RNA(ribosomal RNA,rRNA)是组成核糖体的主要成分。核糖体是合成蛋白质的工厂。在大肠杆菌中,rRNA量占细胞总RNA量的75%-85%,而tRNA占15%,mRNA仅占3-5%。rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例。5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸。而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、1900和4700个核苷酸。rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域。在双链区,碱基因氢键相连,表现为发夹式螺旋。rRNA在蛋白质合成中的功能尚未完全明了。但16 S的rRNA3"端有一段核苷酸序列与mRNA的前导序列是互补的,这可能有助于mRNA与核糖体的结合。snRNA 除了上述三种主要的RNA外,细胞内还有小核RNA(small nuclearRNA,snRNA)。它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分。现在发现有五种snRNA,其长度在哺乳动物中约为100-215个核苷酸。snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用。另外,还有端体酶RNA(telomeraseRNA),它与染色体末端的复制有关;以及反义RNA(antisenseRNA),它参与基因表达的调控。上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA等并不携带翻译为蛋白质的信息,其终产物就是RNA。

生物:信使RNA能否携带遗传信息?

能。RNA是DNA转录得来的。DNA在转录出RNA时按照半保留半复制和碱基互补原则。每个mRNA都能逆转录成为唯一对应的DNA,所以mRNA携带有遗传信息。构建基因的cDNA文库时就是采用的RNA逆转录的方法。(知识所限,有错误请提醒,谢谢)

RNA有哪几种?其主要生物学功能是什么?

答:RNA的种类: 在生物体内发现主要有三种不同的RNA分子在基因的表达过程中起重要的作用.它们是信使RNA(messengerRNA,mRNA)、转移(tranfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA).RNA含有四种基本碱基,即腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶.此外还有几十种稀有碱基. RNA的一级结构主要是由AMP、GMP、CMP和UMP四种核糖核苷酸通过3",5"磷酸二酯键相连而成的多聚核苷酸链.天然RNA的二级结构,一般并不像DNA那样都是双螺旋结构,只有在许多区段可发生自身回折,使部分A-U、G-C碱基配对,从而形成短的不规则的螺旋区.不配对的碱基区膨出形成环,被排斥在双螺旋之外.RNA中双螺旋结构的稳定因素,也主要是碱基的堆砌力,其次才是氢键.每一段双螺旋区至少需要4~6对碱基对才能保持稳定.在不同的RNA中,双螺旋区所占比例不同.【RNA的二级结构】细胞内有三类主要的核糖核酸,即:mRNA、rRNA、tRNA.它们各有特点.在大多数细胞中RNA的含量比DNA多5~8倍.【大肠杆菌RNA的性质】 mRNA 生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成.而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体.现已证明,这种中介物质是一种特殊的RNA.这种RNA起着传递遗传信息的作用,因而称为信使RNA(message RNA,mRNA). mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程.在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质.因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnRNA). tRNA 如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂.但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力.因此,必须用一种特殊的RNA——转移RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链.每种氨基酸可与1-4种tRNA相结合,现在已知的tRNA的种类在40 种以上. tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成.而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶.这类稀有碱基一般是在转录后,经过特殊的修饰而成的. 1969年以来,研究了来自各种不同生物,:如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能折叠成三叶草形二级结构(图3-23),而且都具有如下的共性: ① 5"末端具有G(大部分)或C. ② 3"末端都以ACC的顺序终结. ③ 有一个富有鸟嘌呤的环. ④ 有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对. ⑤ 有一个胸腺嘧啶环. rRNA 核糖体RNA(ribosomal RNA,rRNA)是组成核糖体的主要成分.核糖体是合成蛋白质的工厂.在大肠杆菌中,rRNA量占细胞总RNA量的75%-85%,而tRNA占15%,mRNA仅占3-5%. rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷.原核生物的核糖体所含的rRNA有5S、16S及23S三种.S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例.5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸.而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、1900和4700个核苷酸. rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域.在双链区,碱基因氢键相连,表现为发夹式螺旋. rRNA在蛋白质合成中的功能尚未完全明了.但16 S的rRNA3"端有一段核苷酸序列与mRNA的前导序列是互补的,这可能有助于mRNA与核糖体的结合. snRNA 除了上述三种主要的RNA外,细胞内还有小核RNA(small nuclearRNA,snRNA).它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分.现在发现有五种snRNA,其长度在哺乳动物中约为100-215个核苷酸.snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用.另外,还有端体酶RNA(telomeraseRNA),它与染色体末端的复制有关;以及反义RNA(antisenseRNA),它参与基因表达的调控. 上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA等并不携带翻译为蛋白质的信息,其终产物就是RNA.

蛋白质的生物合成是怎样进行的?

原核生物的蛋白质合成分为四个阶段:氨基酸的活化、肽链合成的起始、延伸和终止。①氨基酸的活化:游离的氨基酸必须经过活化以获得能量,才能参与蛋白质的合成,活化反应由氨酰tRNA合成酶催化,最终氨基酸连接在tRNA3ˊ端AMP的3ˊ-OH上,合成氨酰-tRNA。②肽链合成的起始:首先IF1和IF3与30S亚基结合,以阻止大亚基的结合;接着,IF2和GTP与小亚基结合,以利于随后的起始tRNA的结合;形成的小亚基复合物经由核糖体结合点附着在mRNA上,起始tRNA和AUG起始密码子配对并释放IF3,并形成30S起始复合物。大亚基与30S起始复合物结合,替换IF1和IF2+GDP,形成70S起始复合物。这样在mRNA正确部位组装成完整的核糖体。③肽链的延伸:延伸分三步进行,进位:负载tRNA与EF-Tu和GTP形成的复合物被运送至核糖体,GTP水解,EF-TuGDP释放出来,在EF-Ts和GTP的作用下,EF-Tu GDP可以再次利用。转肽:肽酰转移酶将相邻的两个氨基酸相连形成肽键,该过程不需要能量的输入。移位:移位酶(EF-G)利用GTP水解释放的能量,使核糖体沿mRNA移动一个密码子,释放出空载的tRNA并将新生肽链运至P位点。④肽链的终止与释放:释放因子(RF1或RP2)识别终止密码子,并在RP3的作用下,促使肽酰转移酶在肽链上加上一个水分子并释放肽链。核糖体释放因子有助于核糖体亚基从mRNA上解离。原核生物特点:① 核质与细胞质之间无核膜因而无成形的细胞核(拟核或类核);RNA转录和翻译同时进行。② 遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA)。③ 以简单二分裂方式繁殖,不存在有丝分裂或减数分裂。④ 没有性行为,有的种类有时有通过接合、转化或转导,将部分基因组从一个细胞传递到另一个细胞的准性行为。⑤ 没有由肌球、肌动蛋白构成的微纤维系统,故细胞质不能流动,也没有形成伪足、吞噬作用等现象。⑥鞭毛并非由微管构成,更无“9+2”的结构,仅由几条螺旋或平行的蛋白质丝构成。⑦ 细胞质内仅有核糖体而没有线粒体、高尔基体、内质网、溶酶体、液泡和质体(植物)、中心粒(低等植物和动物)等细胞器。

请简述蛋白质的生物合成过程.

1、氨基酸的活化:氨酰-tRNA合成酶具有高度的专一性, 20种氨基酸在各自特异的酶的作用下形成氨酰-tRNA. 2、肽链合成的起始: 形成30S复合物:30S-mRNA- fMet-tRNAf, 再与50S亚基相结合,形成有生物学功能的70S起始复合物 3、肽链的延伸:进位, 转肽, 移位, 4、肽链合成的终止与释放 蛋白质的合成是一个高耗能过程, 第一个氨基酸参入需消耗3个ATP,以后每掺入一个AA需要消耗4个ATP

高中生物请总结一下以磷酸二酯键连接的物质。全面一点?

磷酸二酯键是DNA和RNA上连接两个相邻核苷酸的化学基团,是由两个核苷酸的其中一个3‘脱去HO和另一个5"脱去H 结合而成的。通常是连接腺嘌呤 ,鸟嘌呤,胞嘧啶,胸腺嘧啶,鸟嘌呤这种碱基的键。

RNA在生物体中的主要作用是什么

RNA分为三种:mRNA,tRNA,rRNA.在生物体内协同作用完成生命活动,如遗传,基因的表达(合成蛋白质)等等. mRNA从细胞核中取出指令,带到细胞质中rRNA做成的生长线上,在这个生产线上,一系列专门的工人——tRNA,把制造蛋白质的各个部分找出来并以mRNA为模板把他们拴在一起构成多肽链 详细资料: mRNA 生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成.而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体.现已证明,这种中介物质是一种特殊的RNA.这种RNA起着传递遗传信息的作用,因而称为信使RNA(message RNA,mRNA). mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程.在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质.因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnRNA). tRNA 如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂.但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力.因此,必须用一种特殊的RNA——转移RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链.每种氨基酸可与1-4种tRNA相结合,现在已知的tRNA的种类在40 种以上. tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成.而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶.这类稀有碱基一般是在转录后,经过特殊的修饰而成的. 1969年以来,研究了来自各种不同生物,:如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能折叠成三叶草形二级结构(图3-23),而且都具有如下的共性: ① 5"末端具有G(大部分)或C. ② 3"末端都以ACC的顺序终结. ③ 有一个富有鸟嘌呤的环. ④ 有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对. ⑤ 有一个胸腺嘧啶环. rRNA 核糖体RNA(ribosomal RNA,rRNA)是组成核糖体的主要成分.核糖体是合成蛋白质的工厂.在大肠杆菌中,rRNA量占细胞总RNA量的75%-85%,而tRNA占15%,mRNA仅占3-5%. rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷.原核生物的核糖体所含的rRNA有5S、16S及23S三种.S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例.5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸.而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、1900和4700个核苷酸. rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域.在双链区,碱基因氢键相连,表现为发夹式螺旋. rRNA在蛋白质合成中的功能尚未完全明了.但16 S的rRNA3"端有一段核苷酸序列与mRNA的前导序列是互补的,这可能有助于mRNA与核糖体的结合. RNA为单链结构,作为低等生物及病毒的遗传物质,需要借助逆转录酶转化为双链RNA来遗传给下一代,结构不稳定,碱基顺序极易发生改变,这也是病毒类病症.疫苗等需要不断更新的重要原因.

RNA有哪几种?其主要生物学功能是什么?

RNA主要分三类,即tRNA(转运RNA),rRNA(核糖体RNA),mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。

同一生物,不同细胞,为什么转运rna一样,信使rna不一样

信使rna是由dna的一条链作为模板转录而来的、携带遗传信息的能指导蛋白质合成的一类单链核糖核酸。转运rna(transferribonucleicacid,trna)是具有携带并转运氨基酸功能的一类小分子核糖核酸。区分mrna和trna,可以从结构和功能这两个方面去把握。结构⑴真核生物的mrna的5"端有帽子结构,3"端为多聚腺苷酸(poly(a))尾巴。⑵trna的二级结构呈三叶草形。三叶草形结构由氨基酸臂、二氢尿嘧啶环、反密码环、额外环和tφc环等5个部分组成。其中,氨基酸臂末端为cca;反密码环中部为反密码子,由3个碱基组成。反密码子可识别mrna的密码子。⑶trna折叠形成三级结构。trna的三级结构呈倒l形,反密码环和氨基酸臂分别位于倒l的两端。功能⑴mrna是合成蛋白质的直接模板。每一种多肽链都有一种特定的mrna做模板,因此细胞内mrna的种类也是很多的。它将dna上的遗传信息转录下来,携带到核糖体上,在那里以密码的方式控制蛋白质分子中氨基酸的排列顺序,作为蛋白质合成的直接模板。⑵trna的功能是转运氨基酸。在蛋白质合成过程中,trna与合成蛋白质所需的单体——氨基酸形成复合物,将氨基酸转运到核糖体中mrna的特定位置上。

真核生物mrna头尾结构特点?

真核生物mrna具有5‘帽子和3"多聚A尾巴;真核生物mrna一般以单顺反子的形式存在;真核生物mrna的半衰期较长;真核生物转录的mrna前体则需经转录后加工,加工为成熟的mrna与蛋白质结合生成信息体后才开始工作。mrna一般指信使RNA,信使RNA是由DNA的一条链作为模板转录而来的、携带遗传信息的能指导蛋白质合成的一类单链核糖核酸。以细胞中基因为模板,依据碱基互补配对原则转录生成mRNA后,mRNA就含有与DNA分子中某些功能片段相对应的碱基序列,作为蛋白质生物合成的直接模板。mRNA虽然只占细胞总RNA的2%~5%,但种类最多,并且代谢十分活跃,是半衰期最短的一种RNA,合成后数分钟至数小时即被分解。mRNA的加工在真核生物、细菌和古细菌中差异很大。实质上,非真核mRNA在转录时是成熟的,除极少数情况外不需要加工。然而,真核pre-mRNA需要大量加工。5"端加帽子:5‘帽(也称为RNA帽,RNA7-甲基鸟苷帽或RNAm7G帽)就是一个经修饰的鸟嘌呤核苷酸,在转录开始不久后就被添加到新产生的真核mRNA的“前”即5"末端。5"帽由末端7-甲基鸟苷残基组成,它通过5"-5"-三磷酸键与第一转录出的核苷酸连接。它的存在对于核糖体的识别和对mRNA的保护至关重要。3"端加尾:是指聚腺苷酰基部分与mRNA分子的共价连接。在真核生物中,大多数信使RNA(mRNA)分子在3"末端被多聚腺苷酸化。PolyA尾巴和与其结合的蛋白质有助于保护mRNA免于被核酸外切酶降解。3"端加尾对于转录终止,从细胞核输出mRNA和翻译也很重要。原核生物中的mRNA也常被3"端加尾,但此时的poly(A)尾巴促进而不是防止核酸外切酶对mRNA的降解。

高一生物 这张图是什么意思啊? 什么是磷酸二酯键?

DNA的一半链,一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与另一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二酯键。脱氧核糖与磷酸之间连接的键为磷酸二酯键。(百度上的)

高中生物中氢键,二硫键,磷酸二酯键分别连接的是什么?

内容如下:解旋酶,聚合酶,磷酸二酯键断裂用内切酶,连接 磷酸二酯键如果是片断用连接酶如果单个用聚合酶磷酸二酯键在实质上是一个磷酸与相邻的两个五碳糖(核糖或脱氧核糖)的羟基(-OH)通过酯化反应形成的两个磷酸酯键而构成的连接键。分析如下:其中一个磷酸酯键就存在于核苷酸中,核糖或脱氧核糖的第一个碳原子与含氮碱基相连形成的化合物就是核苷(核糖核苷或脱氧核糖核苷)。高中生物教材中提到的能催化形成磷酸二酯键的酶主要有DNA聚合酶、DNA连接酶、逆转录酶和RNA聚合酶。DNA聚合酶的作用是在DNA复制过程中,以亲代DNA的两条链为模板,催化DNA的单体即脱氧核苷酸之间形成磷酸二酯键而聚合为子代DNA。DNA连接酶的作用是在基因工程中把被限制酶断开而得到的DNA片段之间通过重新形成磷酸二酯键而得到重组DNA分子。逆转录酶作用是某些RNA病毒在宿主细胞内的增殖过程中,以其自身的RNA为模板,催化脱氧核苷酸之间形成磷酸二酯键而合成DNA。RNA聚合酶的作用是在DNA转录形成RNA过程中,RNA聚合酶能够识别并结合于DNA模板链上的RNA聚合酶结合位点(即启动子),然后以DNA模板链为模板催化RNA的单体即核糖核苷酸之间形成磷酸二酯键而聚合为RNA。生物简介:(英语:Organism,又称生命体、有机体)是具有动能的生命体,也是一个物体的集合,而个体生物指的是生物体,与非生物相对。其元素包括:在自然条件下,通过化学反应生成的具有生存能力和繁殖能力的有生命的物体以及由它(或它们)通过繁殖产生的有生命的后代,能对外界的刺激做出相应反应,能与外界的环境相互依赖、相互促进。并且,生物能够呼吸,能够排出体内无用的物质,具有遗传与变异的特性

高一生物 这张图是什么意思啊? 什么是磷酸二酯键?

DNA的一半链,一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与另一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二酯键。脱氧核糖与磷酸之间连接的键为磷酸二酯键。(百度上的)

高中生物中氢键,二硫键,磷酸二酯键连接啥

生物学中:1、氢键连接的是DNA中(部分呈双链结构的RNA,比如tRNA)互补的碱基;2、二硫键连接的是蛋白质分子的氨基酸残基,维持蛋白质的空间结构;3、磷酸二酯键连接的是核酸中的核苷酸(DNA、RNA中均有分布)。

生物中磷酸二酯键什么时候形成?

生物中磷酸二酯键的形成在合成DNA或RNA的时候,包括这些过程,DNA复制,转录,逆转录,RNA复制,基因工程中构建基因表达载体等都会有磷酸二酯键的形成。

图为生物选修三教材4页图。红圈中圈住了一个磷酸基团和两条键,请问磷酸二酯键到底是哪一条?

图中为高中生物选修一课本第四页的插图,红色圆圈中的部分为磷酸二酯键是绝对没问题的!所谓的化学键是指原子或原子团之间的相互作用,很抽象的一个化学概念。磷酸二酯键,从名称上来看,首先是化学键,然后含有磷酸基团,还得含有两个酯键。酯键的形成需发生酯化反应。磷酸基团和本身的脱氧核糖5‘端形成一个酯键,又和上一个脱氧核苷酸的3"端形成一个酯键。磷酸二酯键指一分子磷酸与两个醇(羟基)酯化形成的键.该酯键成了两个醇之间的桥梁。

什么是磷酸二酯键,什么是磷酸二酯键生物

1.磷酸二酯键是一种化学基团,指一分子磷酸和两个醇羟基酯化形成的两个酯键。 2.磷酸二酯键成了两个醇之间的桥梁。 3. 例如前一个核苷酸的羰基中的3碳上OH羟基和后一个核苷酸的5磷酸基形成酯键,此处的磷酸基同时和前后两个羟基形成酯键,故称磷酸二酯键。 4.依次连下去,形成多核苷酸链,即核酸大分子链。

(生物)磷酸二酯键是不是化学键 磷酸二酯键有多种吗

磷酸二酯键   英文名称:phosphodiester linkage   一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与另一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二酯键。 脱氧核糖与磷酸之间连接的键为磷酸二酯键。 定义:两个核苷酸分子核苷酸残基的两个羟基分别与同一磷酸基团形成的共价连接键。 应用学科:生物化学与分子生物学(一级学科);核酸与基因(二级学科)他是一种化学键,而且是特定的,所以只有一种了

高一生物 这张图是什么意思啊? 什么是磷酸二酯键?

磷酸二酯键是一个核苷酸和另一个核苷酸之间的连接,位于核糖与磷酸之间。高能磷酸键是指三磷酸核苷的第二个磷酸基团和第三个磷酸基团之间的键,因为这个键断开时会释放很多能量,所以叫高能磷酸键。举例如下:rna中核糖与磷酸之间,dna中脱氧核糖与磷酸之间形成的是3",5"-磷酸二酯键。四种dntp(datp,dttp,dctp,dgtp)和四种ntp(atp,utp,ctp,gtp)都含有高能磷酸键,脱磷酸后变为dndp或ndp。

磷酸戊糖途径有何特点?其生物学意义何在?

特点:1 产生NADPH(注意:不是NADH!NADPH不参与呼吸链) 2 生成磷酸核糖,为核酸代谢做物质准备 3 分解戊糖 意义:1 补充糖酵解2 氧化阶段产生NADPH,促进脂肪酸和固醇合成。 3 非氧化阶段产生大量中间产物为其它代谢提供原料

糖代谢答案什么是磷酸戊糖途径?有何生物学意义

磷酸戊糖途径是在动、植物和微生物中普遍存在的一条糖的分解代谢途径,但在不同的组织中所占的比重不同。如动物的骨胳肌中基本缺乏这条途径,而在乳腺、脂肪组织、肾上腺皮质中,大部分葡萄糖是通过此途径分解的。在生物体内磷酸戊糖途径除提供能量外,主要是为合成代谢提供多种原料。如为脂肪酸、胆固醇的生物合成提供NADPH;为核苷酸辅酶、核苷酸的合成提供5-磷酸核糖;为芳香族氨基酸合成提供4-磷酸赤藓糖。此途径生成的四碳、五碳、七碳化合物及转酮酶、转醛酶等,与光合作用也有关系。因此磷酸戊糖途径是一条重要的多功能代谢途径。戊糖磷酸途径(pentose phosphate pathway)也称之单磷酸己糖支路(hexose monophosphate shunt)。是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子的NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解中的两个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。戊糖磷酸途径的氧化阶段的两步脱氢反应在生理条件下是不可逆的,为整个戊糖磷酸途径的限速反应,催化这两步反应的G6PDH和6PGDH都是该途径的限速酶。戊糖磷酸途径除了受 G6PDH 和 6PGDH制约外,还受细胞内 NADPH 的调节,当[NADPH]/[NADP+]比率过高时,会抑制 G6PDH 和 6PGDH 的活性。

磷酸戊糖途径有何特点?其生物学意义何在

特点:1产生NADPH(注意:不是NADH!NADPH不参与呼吸链)2生成磷酸核糖,为核酸代谢做物质准备3分解戊糖意义:1补充糖酵解2氧化阶段产生NADPH,促进脂肪酸和固醇合成。3非氧化阶段产生大量中间产物为其它代谢提供原料

磷酸戊糖途径的生理意义主要是生成的什么在生物合成过程中提供还原力

特点:1产生NADPH(注意:不是NADH!NADPH不参与呼吸链)2生成磷酸核糖,为核酸代谢做物质准备3分解戊糖意义:1补充糖酵解2氧化阶段产生NADPH,促进脂肪酸和固醇合成。3非氧化阶段产生大量中间产物为其它代谢提供原料

生物化学中的bp是什么单位

bp是DNA和RNA的单位。bp是指碱基对。碱基对是形成DNA、RNA单体以及编码遗传信息的化学结构。碱基对是一对相互匹配的碱基(即A—T, G—C,A—U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。扩展资料组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T,G:C,A:U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。基因是编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位.是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。包括编码序列(外显子)、编码区前后对于基因表达具有调控功能的序列和单个编码序列间的间隔序列(内含子)。参考资料来源:百度百科-bp

什么是“分子生物学”?什么是“基因工程”?

什么是分子生物学? 生物学的研究可以说长期以来都是科研的重点,惟其所涉及的方方面面与人类生活紧密相连。本世纪5O年代以前的生物学研究,虽然有些已进人了微观领域,但总的来说,主要是研究生物个体组织、器官、细胞或是亚细胞器这些东西之间的相互关系。50年代中期,随着沃森和克里克揭示出DNA分子的空间结构,生物学才真正开始了其揭开分子水平生命秘密的研究历程。到70年代,重组DNA技术的发展又给人们提供了研究DNA的强有力的手段,于是分子生物学就逐渐形成了。顾名思义,分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础。从分子水平上对生物体的多种生命现象进行研究;分子生物学在理论和实践中的发展也为基因工程的出现和发展打下了良好的基础,因此可以说基因工程就是分子生物学的工程应用。现在基因工程所展现出的强大生命力和巨大的经济发展潜力完全得益于分子生物学的迅猛发展,而且有证据表明,基因工程的进一步发展仍然要依赖于分子生物学研究的发展。 ========================================什么是基因工程? 随着 DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。

基因工程菌在普通微生物发酵中存在的问题和优势是什么

不同场合的基因工程菌问题与优势均不一样。基因工程菌主要是指以微生物为操作对象,通过基因工程技术获得的表达外源基因或过量表达或抑制表达自身基因的工程生物,也称为重组菌。特点是,发酵产物比常规菌更纯粹和单一,能大幅度提高产物的含量,能合成生产外源基因编码的产物。需要固定化技术提高质粒稳定性。

利用工程菌产生的蛋白质类药物有没有生物活性,蛋白质不是得经过内质网和高尔基体

您好,对于你所提供的问题,作如下解答:1、利用工程菌产生的蛋白质类药物有两类,一种是有活性的,如胰岛素、一些疫苗类,是注射用的。另一种是不具活性的如营养蛋白(一般是菌体)一般做保健类药品,是口服的。2、蛋白质确实得经过内质网和高尔基体加工才具有活性,才能行使他的功能,细菌同样是有内质网和高尔基体的,要不细菌靠什么来加工蛋白质?

工程菌从哪提取转基因产物,为何产物不一定有生物活性

那要看你你的产品的特点了。如果分泌与细胞外,很好办,只需要离心收集上清液 纯化目标便可。但若在胞内,则需要破碎细胞纯化目标物质。一般地 产品若为蛋白质,只有高级结构才能具有生物活性,如果你表达的是真核生物(如人)的蛋白,常常 被表达的蛋白质不能正确折叠成高级结构,因此虽然合成了肽链,但却没有生物活性。

生物工程技术包括哪些具体的内容?

生物工程技术包括基因工程、DNA重组技术的物质基础、DNA重组技术的一般操作步骤、细胞工程。1、基因工程基因工程是指在基因水平上,按照人类的需要进行设计,然后按设计方案创建出具有某种新的性状的生物新品系,并能使之稳定地遗传给后代。基因工程采用与工程设计十分类似的方法,明显地既具有理学的特点,同时也具有工程学的特点。生物学家在了解遗传密码是RNA转录表达以后,还想从分子的水平去干预生物的遗传。1973年,美国斯坦福大学的科恩教授,把两种质粒上不同的抗药基因"裁剪"下来,"拼接"在同一个质粒中。当这种杂合质粒进入大肠杆菌后,这种大肠杆菌就能抵抗两种药物,且其后代都具有双重抗菌性,科恩的重组实验拉开了基因工程的大幕。DNA重组技术是基因工程的核心技术。重组,顾名思义,就是重新组合,即利用供体生物的遗传物质,或人工合成的基因,经过体外切割后与适当的载体连接起来,形成重组DNA分子,然后将重组DNA分子导入到受体细胞或受体生物构建转基因生物,该种生物就可以按人类事先设计好的蓝图表现出另外一种生物的某种性状。2、DNA重组技术的物质基础(1)目的基因基因工程是一种有预期目的的创造性工作,它的原料就是目的基因;所谓目的基因,是指通过人工方法获得的符合设计者要求的DNA片段。在适当条件下,目的基因将会以蛋白质的形式表达,从而实现设计者改造生物性状的目标。(2)载体目的基因一般都不能直接进入另一种生物细胞,它需要与特定的载体结合,才能安全地进入到受体细胞中。目前常用的载体有质粒、噬菌体和病毒。质粒是在大多数细菌和某些真核生物的细胞中发现的一种环状DNA分子,它位于细胞质中。许多质粒含有在某种环境下可能是必不可少的基因。噬菌体是专门感染细菌的一类病毒,由蛋白质外壳和中心的核酸组成。在感染细菌时,噬菌体把DNA注入到细菌里,以此DNA为模板,复制DNA分子,并合成蛋白质,最后组装成新的噬菌体。当细菌死亡破裂后,大量的噬菌体被释放出来,去感染下一个目标。质粒、噬菌体和病毒的相似之处在于,它们都能把自己的DNA分子注入到宿主细胞中并保持DNA分子的完整,因而,它们成为运载目的基因的合适载体。因此,基因工程中的载体实质上是一些特殊的DNA分子。(3)工具酶基因工程需要有一套工具,以便从生物体中分离目的基因,然后选择适合的载体,将目的基因与载体连接起来。DNA分子很小,其直径只有20埃(10-10米)。基因工程实际上是一种“超级显微工程”,对DNA的切割、缝合与转运,必须有特殊的工具。1968年,科学家第一次从大肠杆菌中提取出了限制性内切酶。限制性内切酶最大的特点是专一性强,能够在DNA上识别特定的核苷酸序列,并在特定切点上切割DNA分子。70年代以来,人们已经分离提取了400多种限制性内切酶。有了它,人们就可以随心所欲地进行DNA分子长链切割了。表4-3是一些限制性内切酶的识别位点1976年,5个实验室的科学家几乎同时发现并提取出一种酶,作DNA连接酶。从此,DNA连接酶就成了 “粘合”基因的“分子粘合剂”。3、DNA重组技术的一般操作步骤一个典型的DNA重组包括五个步骤:(1)目的基因的获取目前,获取目的基因的方法主要有三种:反向转录法、从细胞基因组直接分离法和人工合成法。反向转录法是利用mRNA反转录获得目的基因的方法。现在用这种方法人们已先后合成了家兔、鸭和人的珠蛋白基因、羽毛角蛋白基因等。从细胞基因组中直接分离目的基因常用"鸟枪法",因为这种方法犹如用散弹打鸟,所以又称"散弹枪法"。用"鸟枪法"分离目的基因,具有简单、方便和经济等优点。许多病毒和原核生物、一些真核生物的基因,都用这种方法获得了成功的分离。化学合成目的基因是20世纪70年代以来发展起来的一项新技术。应用化学合成法,可在短时间内合成目的基因。科学家们已相继合成了人的生长激素释放抑制素、胰岛素、干扰素等蛋白质的编码基因。(2)DNA分子的体外重组体外重组是把载体与目的基因进行连接。例如,以质粒作为载体时,首先要选择出合适的限制性内切酶,对目的基因和载体进行切割,再以DNA连接酶使切口两端的脱氧核苷酸连接。于是目的基因被镶嵌进质粒DNA,重组形成了一个新的环状DNA分子(杂种DNA分子)。(3)DNA重组体的导入把目的基因装在载体上后,就需要把它引入到受体细胞中。导入的方式有多种,主要包括转化、转导、显微注射、微粒轰击和电击穿孔等方式。转化和转导主要适用于细菌一类的原核生物细胞和酵母这样的低等真核生物细胞,其他方式主要应用于高等动植物的细胞。(4)受体细胞的筛选由于DNA重组体的转化成功率不是太高,因而,需要在众多的细胞中把成功转入DNA重组体的细胞挑选出来。应事先找到特定的标志,证明导入是否成功。 例如,我们常用抗生素来证明证明导入的成功。(5)基因表达目的基因在成功导入受体细胞后,它所携带的遗传信息必须要通过合成新的蛋白质才能表现出来,从而改变受体细胞的遗传性状。目的基因在受体细胞中要表达,需要满足一些条件。例如,目的基因是利用受体细胞的核糖体来合成蛋白质,因此目的基因上必须含有能启动受体细胞核糖体工作的功能片段。这五个步骤代表了基因工程的一般操作流程。人们掌握基因工程技术的时间并不长,但已经获得了许多具有实际应用价值的成果。基因工程作为现代生物技术的核心,将在社会生产和实践中发挥越来越重要的作用。4、细胞工程关于细胞工程的定义和范围还没有一个统一的说法,一般认为,细胞工程是根据细胞生物学和分子生物学原理,采用细胞培养技术,在细胞水平进行的遗传操作。细胞工程大体可分染色体工程、细胞质工程和细胞融合工程。细胞培养技术是细胞工程的基础技术。所谓细胞培养,就是将生物有机体的某一部分组织取出一小块,进行培养,使之生长、分裂的技术。细胞培养又叫组织培养。近二十年来细胞生物学的一些重要理论研究的进展,例如细胞全能性的揭示,细胞周期及其调控,癌变机理与细胞衰老的研究,基因表达与调控等,都是与细胞培养技术分不开的。体外细胞培养中,供给离开整体的动植物细胞所需营养的是培养基,培养基中除了含有丰富的营养物质外,一般还含有刺激细胞生长和发育的一些微量物质。培养基一般有固态和液态两种,它必须经灭菌处理后才可使用。此外,温度、光照、振荡频率等也都是影响培养的重要条件。扩展资料:生物工程,是20世纪70年代初开始兴起的一门新兴的综合性应用学科。所谓生物工程,一般认为是以生物学(特别是其中的微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合化工、机械、电子计算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能,短期内创造出具有超远缘性状的新物种,再通过合适的生物反应器对这类“工程菌”或“工程细胞株”进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。生物工程包括五大工程,即遗传工程(基因工程)、细胞工程、微生物工程(发酵工程)、酶工程(生化工程)和蛋白质工程。在这五大领域中,前两者作用是将常规菌(或动植物细胞株)作为特定遗传物质受体,使它们获得外来基因,成为能表达超远缘性状的新物种——“工程菌”或“工程细胞株”。后三者的作用则是这一有巨大潜在价值的新物种创造良好的生长与繁殖条件,进行大规模的培养,以充分发挥其内在潜力,为人们提供巨大的经济效益和社会效益。参考资料来源:百度百科 - 生物工程技术

生物工程属于什么学科门类

生物工程,是20世纪70年代初开始兴起的一门新兴的综合性应用学科。所谓生物工程,一般认为是以生物学的理论和技术为基础,结合化工、机械、电子计算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能。短期内创造出具有超 远缘性状的新物种,再通过合适的生物反应器对这类“工程菌”或“工程细胞株”进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。扩展资料生物工程的学习要求:1.掌握微生物学、生物化学、化学工程、发酵工程等学科的基本理论和基本知识;2.掌握生物细胞培养与选育、生物技术与工程等方面的基本技术;3.具备在生物技术与工程领域从事设计、生产、管理和新技术研究、新产品开发的基本能力;4.熟悉与生物工业有关的方针、政策和法规;5.了解当代生物工业发展动态和应用前景;6.掌握文献检索、资料查询的基该方法,具有一定的科学研究和实际工作能力。参考资料来源:百度百科-生物工程

利用细菌工程生产药物,但细菌没内质网,高尔基体,生产出来的药物就没有生物活性,如何变成有生物活性?

首先,细菌是可以加工出有活性的蛋白质的,虽然没有内质网和线粒体,但是却有加工蛋白质的酶!如果没有的话,也就产生不了核糖体了(结构与真核生物不同)。所以,工程菌是可以加工出蛋白质的,但是只能加工出初步的蛋白质。如果是加工胰岛素,也只是不完全的胰岛素,还要进一步人工处理得到。所以利用工程菌产生的蛋白质类药物一般没有生物活性,不过蛋白质不经过内质网和高尔基体也可以产生生物活性,如上面的有加工蛋白质的酶

关于生物工程

生物工程生物工程,是20世纪70年代初开始兴起的一门新兴的综合性应用学科。所谓生物工程,一般认为是以生物学(特别是其中的微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合化工、机械、电子计算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能,短期内创造出具有超 远缘性状的新物种,再通过合适的生物反应器对这类“工程菌”或“工程细胞株”进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。 生物工程包括五大工程,即遗传工程(基因工程)、细胞工程、微生物工程(发酵工程)、酶工程(生化工程)和生物反应器工程。在这五大领域中,前两者作用是将常规菌(或动植物细胞株)作为特定遗传物质受体,使它们获得外来基因,成为能表达超远缘性状的新物种——“工程菌”或“工程细胞株”。后三者的作用则是这一有巨大潜在价值的新物种创造良好的生长与繁殖条件,进行大规模的培养,以充分发挥其内在潜力,为人们提供巨大的经济效益 和社会效益。生物工程的应用领域非常广泛,包括农业、工业、医学、药物学、能源、环保、冶金、化工原料等。它必将对人类社会的政治、经济、军事和生活等方面产生巨大的影响,为世界面临的资源、环境和人类健康等问题的解决提供美好的前景。主要课程:有机化学、生物化学、化工原理、生化工程、微生物学、细胞生物学、遗传学、生物化学、分子生物学、基因工程、细胞工程、微生物工程、生化工程、生物工程下游技术、发酵工程设备等。主要实践性教学环节:包括教学实习、生产实习和毕业论文(设计等,一般安排10-20周。修业年限:四年授予学位:工学学士相近专业:生物科学 生物技术 生物信息学生物信息技术 生物科学与生物技术 动植物检疫 生物化学与分子生物学 医学信息学 植物生物技术 动物生物技术 生物工程 生物安全开办院校:北京 北京航空航天大学 中国农业大学 北京理工大学 北京化工大学 北京工商大学 北京联合大学 天津 天津大学 天津理工大学 天津科技大学 天津商学院 天津农学院 上海 上海交通大学 华东理工大学 上海大学 东华大学 重庆 重庆大学 西南农业大学 重庆工商大学 重庆工学院 河北 燕山大学 河北大学 河北工业大学 河北农业大学 河北科技大学 河北经贸大学 河南 周口师范学院 平顶山工学院 河南大学 河南师范大学 河南农业大学 河南工业大学 郑州轻工业学院 南阳师范学院 河南科技学院 商丘师范学院 山东 山东大学 中国海洋大学 山东农业大学 山东科技大学 曲阜师范大学 山东理工大学 青岛科技大学 聊城大学 烟台大学 烟台师范学院 莱阳农学院 山东建筑大学 泰山医学院 山西 山西大学 太原理工大学 中北大学 山西农业大学 安徽 合肥工业大学 安徽大学 淮北煤炭师范学院 安徽工程科技学院 安徽技术师范学院 合肥学院 江西 南昌大学 江西师范大学 江西农业大学 江西理工大学 江西中医学院 宜春学院 江苏 东南大学 中国矿业大学 苏州大学 南京理工大学 南京农业大学 南京工业大学 江南大学 中国药科大学 南京林业大学 淮海工学院 盐城工学院 浙江 浙江大学 浙江工业大学 宁波大学 浙江工商大学 浙江万里学院中国计量学院 浙江中医学院 浙江科技学院 湖州师范学院 湖北 华中科技大学 华中农业大学 湖北大学 长江大学 武汉科技大学 三峡大学 中南民族大学 湖北工业大学 武汉工程大学 武汉科技学院 武汉工业学院 湖北民族学院 孝感学院 武汉生物工程学院湖南 中南大学 中南林业科技大学 湘潭大学 长沙理工大学 湖南农业大学 吉首大学 湖南理工学院 湖南中医学院 湖南工程学院 邵阳学院 怀化学院 湖南科技学院广东 华南理工大学 华南师范大学 华南农业大学 广东工业大学 广州大学 广东医学院 广州医学院 嘉应学院 广西 广西大学 桂林电子科技学院 广西工学院 云南 昆明理工大学 贵州 贵州大学 贵州工业大学 遵义医学院 四川 四川大学 成都大学 西南交通大学 成都理工大学 西南石油大学 四川农业大学 西华大学 四川理工学院 宜宾学院 攀枝花学院 陕西 西安交通大学 西北大学 西北农林科技大学 陕西科技大学 西安工程科技学院 陕西理工学院 西安生物医药技术学院黑龙江 哈尔滨工业大学 黑龙江大学 东北林业大学 东北农业大学 齐齐哈尔大学 哈尔滨商业大学 黑龙江八一农垦大学 吉林 吉林大学 吉林农业大学 延边大学 长春工业大学 东北电力大学 吉林工程技术师范学院 吉林化工学院 辽宁 大连理工大学 东北大学 沈阳农业大学 沈阳药科大学 沈阳大学 辽宁石油化工大学 辽宁科技大学 大连大学 沈阳化工学院 大连轻工业学院 大连民族学院 新疆 新疆大学 内蒙古 内蒙古大学 内蒙古农业大学 内蒙古科技大学 内蒙古工业大学 海南 海南大学 福建 厦门大学 福州大学 福建师范大学 华侨大学 集美大学 福建师范大学闽南科技学院甘肃 兰州理工大学 兰州交通大学 甘肃农业大学 西北民族大学

什么是生物工程

生物工程学(Biological Engineering)或者生物系统工程,是一种即利用数学、物理的法则,以及工程学本身的解析及综合方法学,以应付在生物学及医学范畴上种种新挑战的学科。生物工程学包含有医学工程学、修补工程学、人类工程学和仿生学等分支领域。由于对这些分支领域的研究必然要关系到对生物体的构造和机能进行工程学的分析,所以往往被称为生物工程学。

基因工程的名词解释_未来前景_生物应用

  基因工程的名词解释   基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代 方法 为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。基因工程是生物工程的一个重要分支。   基因工程的生物应用   农牧业、食品工业   运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。   1.转基因鱼   生长快、耐不良环境、肉质好的转基因鱼(中国)。   2.转基因牛   乳汁中含有人生长激素的转基因牛(阿根廷)。   3.转黄瓜抗青枯病基因的甜椒   4.转鱼抗寒基因的番茄   5.转黄瓜抗青枯病基因的马铃薯   6.不会引起过敏的转基因大豆   7.超级动物   导入贮藏蛋白基因的超级羊和超级小鼠   8.特殊动物   导入人基因具特殊用途的猪和小鼠   9.抗虫棉   苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫 棉。   环境保护   基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。   利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。   基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质(通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。)   医学   基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。   用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。   我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。   无论哪一种基因治疗,处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。   可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。   >>>下一页更多精彩“基因工程的未来前景”

什么是生物基因工程?

简单的说,生物工程就是用生物技术的手段,按照人类的意愿改造生物的某些生理功能,这些改造的对象往往都是对人类生产生活有帮助的一些方面。生物技术包括基因工程,dna重组技术,细胞工程,蛋白质工程等等。。我本人就是学这个的。

生物基因工程到底是什么?

随着 DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组 DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。 DNA 分子很小,其直径只有20埃,约相当于五百万分之一厘米,在它们身上进行“手术”是非常困难的,因此基因工程实际上是一种“超级显微工程”,对 DNA的切割、缝合与转运,必须有特殊的工具。 要把目的基因从供体 DNA长链中准确地剪切下来,可不是一件容易的事。1968年,沃纳·阿尔伯博士、丹尼尔·内森斯博士和汉密尔·史密斯博士第一次从大肠杆菌中提取出了限制性内切酶,它能够在DNA上寻找特定的“切点”,认准后将DNA分子的双链交错地切断。人们把这种限制性内切酶称为“分子剪刀”。这种“分子剪刀”可以完整地切下个别基因。自70年代以来,人们已经分离提取了 400多种“分子剪刀”。有了形形色色的“分子剪刀”,人们就可以随心所欲地进行DNA分子长链的切割了。 DNA的分子链被切开后,还得缝接起来以完成基因的拼接。1976年,科学们在5个实验室里几乎同时发现并提取出一种酶,这种酶可以将两个DNA片段连接起来,修复好DNA链的断裂口。1974年以后,科学界正式肯定了这一发现,并把这种酶叫作DNA连接酶。从此,DNA连接酶就成了名符其实的“缝合”基因的“分子针线”。只要在用同一种“分子剪刀”剪切的两种 DNA碎片中加上“分子针线”,就会把两种DNA片段重新连接起来。 把“拼接”好的 DNA分子运送到受体细胞中去,必须寻找一种分子小、能自由进出细胞,而且在装载了外来的 DNA片段后仍能照样复制的运载体。理想的运载体是质粒,因为质粒能自由进出细菌细胞,应当用“分子剪刀”把它切开,再给它安装上一段外来的 DNA片段后,它依然如故地能自我复制。有了限制性内切酶、连接酶及运载体,进行基因工程就可以如愿以偿了。 运载体将目的基因运到受体细胞是基因工程的最后一步,目的基因的导入过程是肉眼看不到的。因此,要知道导入是否成功,事先应找到特定的标志。例如我们用一种经过改造的抗四环素质粒PSC100作载体,将一种基因移入自身无抗性的大肠杆菌时,如果基因移入后大肠杆菌不能被四环素杀死,就说明转入获得成功了。

生物工程包括什么

问题一:生物工程包括什么专业? 生物工程,生物技术,食品质量与安全,制药工程,基因工程 本科还是研究生?本科范围一般比较大:生物工程、生物技术、生命科学、环境工程、环境保护、制药工程、食品工程、发酵工程要专一的还有植物学、动物学、动物医学、动物科学、种子学、栽培学不要研究动植物就走人的路线啊:临床医学、药剂学、基础医学、检验需要有细节的问题还可以继续问。不过我就学生物工程的,实话说,不好就业。 问题二:生物工程技术包括哪些具体的内容? 生物工程包括五大工程,即遗传工程(基因工程)、细胞工程、微生物工程(发酵工程)、酶工程(生化工程)和生物反应器工程。在这五大领域中,前两者作用是将常规菌(或动植物细胞株)作为特定遗传物质受体,使它们获得外来基因,成为能表达超远缘性状的新物种――“工程菌”或“工程细胞株”。后三者的作用则是这一有巨大潜在价值的新物种创造良好的生长与繁殖条件,进行大规模的培养,以充分发挥其内在潜力,为人们提供巨大的经济效益 和社会效益。 问题三:生物工程设备有哪些东西 1.生物工程的概念 生物工程是应用生物体(包括微生物、动物细胞、植物细胞)或其组成部分(细胞器和酶),在最适条件下,生产有价值产物的生物技术。它包括生物体或其亚细胞组分在制造业、服务业和环境管理等方面的实际应用技术。生物工程是以细菌、酵母、真菌、藻类、植物细胞和培养的哺乳动物细胞作为工业生产过程的原料,因此,只有微生物学、生物学、遗传学、分子生物学、化学和化工诸学科,多技术的结合才能使生物工程的应用获得成功。 生物工程通常包括生物细胞或生物材料的生产以及所需化学转化物的获得。后者又可分为:所需终产物的合成(如酶、抗生素、有机酸、类固醇)及特定起始物的分解(如污水处理、工业废物及废油的分解)。 生物工程通常有下列几个分支:发酵工程(微生物工程);细胞工程;酶工程;基因工程;生化工程。其中发酵工程占主要位置。不论是微生物,还是运植物细胞;也不论是一般选育的菌株,还是工程菌(重组微生物),其生产过程大致如图9-1所示。不采取这种模式的生物工程有单克隆抗体与植物基因工程。 2.生物工程专业 所谓生物工程,一般认为是以生物学(特别是其中的微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合化工、机械、电子机算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能,短期内创造出具有超远缘性状的新物种,再通过合适的生物反应器对这类“工程菌”或“工程细胞株”进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。生物工程包括五大工程,即遗传工程(基因工程)、细胞工程、微生物工程(发酵工程)、酶工程(生化工程)和生物反应器工程。在这五大领域中,前两者作用是将常规菌(或动植物细胞株)作为特定遗传物质受体,使它们获得外来基因,成为能表达超远缘性状的新物种――“工程菌”或“工程细胞株”。后三者的作用则是这一有巨大潜在价值的新物种创造良好的生长与繁殖条件,进行大规模的培养,以充分发挥其内在潜力,为人们提供巨大的经济效益和社会效益 3.生物工程人才素质和就业前景 1、生物工程人才素质:jX 21世纪是竞争越来越激烈的时代,迅速变化的时代要求不断地创新。21世纪的人才首先要拥有创新意识,要能够用新的思维方法分析所遇到的各种问题,没有创新的思维,人类无法解决新世纪面临的复杂问题。其次,要具备创新能力,这种能力不仅包括自然科学知识,还包括人文社会科学知识,而后者在我们这样一个长期忽视人文社会科学的国度中显得更为重要。ZNM? 在当今技术时代,人们从事任何职业都应具有下述五项基本能力和三种基本素质。.}i4{ 1)五项能力C~wO (1).合理利用与支配各类资源的能力。时间―――选择有意义的行为,合理分配时间,计划并掌握工作进展;资金―――制定经费预算并随时做必要调整;设备―――获取,储存与分配利用各种设备;人力―――合理分配工作,评估工作表现。( (2).处理人际关系的能力。能够作为集体的一员参与工作;向别人传授新技术;诚心服务;坚持以理服人并积极提出建议;调整利益以求妥协;能与背景不同的人共事。K* (3).获取信息并利用信息的能力。获取信息和评估;分析与传播信息;使用计算机处理信息。&rP& (4).综合与系统分析能力。理解社会体系及技术体系,辨别趋势,能对现行体系提出修改建议或设计替代的新体系。S> 问题四:生物工程属于哪个专业大类和专业中类 楼主说的专业大类和中类不是很清楚,但是 生物工程专业是属于工程类学科,一般是在工学院下面,但是有的学校会划分在生命科学学院下面。 国外的话要看触体的叫法,一般bioengineering的话是在工学院居多,农学院和文理学院比较少,像chemical bioengineering这种交叉的划分就更混乱一些。国外的bioengineering和biomedical engineering有很多做的东西是一样的。 问题五:生物工程技术包括什么?(高中生物) 生物工程就是生物技术,包括1,基因工程,2,细胞工程(包括:细胞培养、细胞融合、组织培养、核移植、细胞器移植等;),3,微生物发酵工程。 你的问题回答有字数限制,故不详细解答,望您见谅。 问题六:生物工程技术都有哪些? 生物工程技术主要包括:1、植物细胞工程技术:植物组织培养和植物体细胞杂交2、动物细胞工程技术:动物细胞培养、动物细胞融合、单克隆抗体的制备、核移植和胚胎移植等。3、遗传工程技术:基因拼接技术(基因工程)4、发酵工程技术:微生物培养、发酵5、酶工程技术:酶制剂的生产与应用

基因工程菌的发酵和传统的微生物发酵有什么不同

利用基因重组技术构建的生物工程菌的发酵工艺不同于传统的发酵工艺,就其选用的生物材料而言,前者含有带外源基因的重组载体;而后者是单一的微生物细胞;从发酵工艺考虑,生物工程菌的发酵生产之目的是希望能获得大量的外源基因产物,尽可能减少宿主细胞本身蛋白的污染,外源基因的高水平表达,不仅涉及宿主,载体和克隆基因三者之间的相互关系,而且与其所处的环境条件息息相关,因此仅按传统的发酵工艺生产生物制品是远远不够的,需要对影响外源基因表达的因素进行分析,探索出一套适于外源基因高效表达的发酵工艺.基因工程菌发酵问题中最重要的两个问题是菌体的高密度发酵和诱导条件的确定.菌株的高密度生长将导致供氧不足和培养基中大量乙酸的产生,这将极大的影响菌体的生长,这是一个值得注意的地方;另外,菌体密度的高低与外源蛋白表达量之间并没有直接相关性,它们之间的结合点就是诱导条件的确定.另外,不同的发酵条件,工程菌的代谢途径也许不一样,这对目标蛋白的下游纯化工艺将造成不同的影响.因此,在高表达高密度的前提,尽量建立有利于纯化的发酵工艺也是非常重要的问题.

基因工程菌的发酵和传统的微生物发酵有什么不同

利用基因重组技术构建的生物工程菌的发酵工艺不同于传统的发酵工艺,就其选用的生物材料而言,前者含有带外源基因的重组载体;而后者是单一的微生物细胞;从发酵工艺考虑,生物工程菌的发酵生产之目的是希望能获得大量的外源基因产物,尽可能减少宿主细胞本身蛋白的污染,外源基因的高水平表达,不仅涉及宿主,载体和克隆基因三者之间的相互关系,而且与其所处的环境条件息息相关,因此仅按传统的发酵工艺生产生物制品是远远不够的,需要对影响外源基因表达的因素进行分析,探索出一套适于外源基因高效表达的发酵工艺。基因工程菌发酵问题中最重要的两个问题是菌体的高密度发酵和诱导条件的确定。菌株的高密度生长将导致供氧不足和培养基中大量乙酸的产生,这将极大的影响菌体的生长,这是一个值得注意的地方;另外,菌体密度的高低与外源蛋白表达量之间并没有直接相关性,它们之间的结合点就是诱导条件的确定。另外,不同的发酵条件,工程菌的代谢途径也许不一样,这对目标蛋白的下游纯化工艺将造成不同的影响。因此,在高表达高密度的前提,尽量建立有利于纯化的发酵工艺也是非常重要的问题。

比较乳腺生物反应器与工程菌的优越性

乳腺生物反应器可以直接引用,不需要去杂。工程菌可以快速大量生产,原材料利用率高

西科大生物工程学什么

生物工程,是20世纪70年代初开始兴起的一门新兴的综合性应用学科。 所谓生物工程,一般认为是以生物学(特别是其中的微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合化工、机械、电子计算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能,短期内创造出具有超 远缘性状的新物种,再通过合适的生物反应器对这类“工程菌”或“工程细胞株”进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。? 生物工程包括五大工程,即遗传工程(基因工程)、细胞工程、微生物工程(发酵工程)、酶工程(生化工程)和生物反应器工程。在这五大领域中,前两者作用是将常规菌(或动植物细胞株)作为特定遗传物质受体,使它们获得外来基因,成为能表达超远缘性状的新物种——“工程菌”或“工程细胞株”。后三者的作用则是这一有巨大潜在价值的新物种创造良好的生长与繁殖条件,进行大规模的培养,以充分发挥其内在潜力,为人们提供巨大的经济效益 和社会效益。 生物工程的应用领域非常广泛,包括农业、工业、医学、药物学、能源、环保、冶金、化工原料等。它必将对人类社会的政治、经济、军事和生活等方面产生巨大的影响,为世界面临的资源、环境和人类健康等问题的解决提供美好的前景。 主要课程:有机化学、生物化学、化工原理、生化工程、微生物学、细胞生物学、遗传学、生物化学、分子生物学、基因工程、细胞工程、微生物工程、生化工程、生物工程下游技术、发酵工程设备等。 主要实践性教学环节:包括教学实习、生产实习和毕业论文(设计等,一般安排10-20周。 修业年限:四年 授予学位:工学学士 但是这门学科毕竟是有些冷门,你可以到网上去查一查 生物工程位列最难找工作的10大专业之首!! 将来的就业会有些困难,要想找到好的工作,必须学得很好。所以你如果要学这个专业,考研是必要的。 而且西南科技大学的王牌专业都是偏理工科的 ,所以生物工程不是很好,不建议报考,但是如果有很强的兴趣,可以找个好点 的学校来学。 恩 希望LZ慎重考虑喔```

生物染色体变异,DNA变异,染色体重组,DNA重组,DNA突变,有什么区别??谢谢!

DNA是脱氧核糖核酸分子;染色体是由DNA分子也即脱氧核糖核酸分子组成;所以染色体变异与DNA变异本质都是一样的,就是脱氧核糖核酸分子发生变异,而变异和突变也是一个概念,所以 生物染色体变异、DNA变异、DNA突变三者无本质区别。染色体重组与DNA重组也是一样无本质区别。所以现在只要区别DNA变异和重组了变异是只DNA分子的组成成分、位置顺序发生变化,包括碱基的增减与顺序捣乱;重组是指指DNA分子内或分子间发生的遗传信息的重新共价组合过程。包括同源重组、特异位点重组和转座重组等类型,广泛存在于各类生物。

重组DNA技术在现代分子生物学发展中的意义?

中心法则:http://baike.baidu.com/view/15948.html?wtp=tt由中心法则你可以知道重组的DNA可以表达新的蛋白,表达新的蛋白又可以调控DNA的转绿。我想我能给你提供的东西只有这么多。主要是你说的太大了。不好回答

DNA重组技术是怎样的原理 ,高中生物

最基本的原理是核酸内切酶的特异切割活性(高中一般只提粘性末端)和连接酶的链接活性,以及碱基互补配对。通过使用特定的核酸内切酶,将目的片段和经改造后的特定载体(质粒、病毒核酸链,其上有特异的切割位点,转录启动、终止序列,以及用于筛选表达的序列)切割,形成能够互补的粘性末端,再通过连接酶进行聚合形成重组子。将重组质粒(以质粒为例)导入感受态细胞,培养,筛选,最后进行表达

生物基因重组发生在什么时期

基因重组指在生物体进行有性生殖的过程中,控制不同性状的基因重新组合。其发生在二倍体生物的每一个世代中。基因是一个包含必要的信息,在可控制的方式生产功能的RNA产物的核酸段。 基因重组发生在哪个阶段 减数分裂中哪些时期发生基因重组?减数分裂前期和后期发生基因重组。 减数第一次分裂前期(也可以说是减数分裂的四分体时期):同源染色体上的非姐妹染色单体的交叉互换) 减数第一次分裂后期:同源色体分离,非同源染色体自由组合,发生基因重组。 基因重组,每条染色体的两份拷贝在有些位置可能具有不同的等位基因,通过互换染色体间相应的部分,可产生于亲本不同的重组染色体。重组来源于染色体物质的物理交换,减数分裂前期,每条染色体有4份拷贝,所有的4份拷贝紧密相连,发生联会。这个结构称为二阶体,二阶体的每条染色体单元称为染色单体,染色体物质的两两交换就发生在不一样的染色单体(非姐妹染色单体)之间。 基因重组的过程 二阶体中的两条染色单体在相应的位点发生断裂,断裂的两端成“十”字形重接,产生新的染色单体。每一条新染色单体之间的接点的一端包含来自一条染色单体的物质,另一端包含另一条染色单体的物质。 发生重组的必须条件是两条DNA链的互补性。每条染色单体包含一条长的双链DNA,发生重组的断裂位点依赖于位点附近碱基的互补配对。当双链中的一条链与另一条双链的一条链发生交叉时,将形成一条杂合DNA。每个重组包括左侧亲本双链体DNA通过一段杂合DNA与右侧的另一条亲本双链体相连。 杂合DNA的形成同时也要求两条重组双链体的序列相邻,并能在两条互补链之前配对。如果两条亲本双链DNA在重组区域没有差别,将形成完全互补配对的杂合DNA。若在该区域内,两条亲本双链DNA存在小差异,这种反应也能发生但杂合DNA存在错配点。错配点将在后续进行错配纠正。 从广义上讲,任何造成基因型变化的基因交流过程,都叫做基因重组。而狭义的基因重组仅指涉及DNA分子内断裂—复合的基因交流。真核生物在减数分裂时,通过非同源染色体的自由组合形成各种不同的配子,雌雄配子结合产生基因型各不相同的后代,这种重组过程虽然也导致基因型的变化,但是由于它不涉及DNA分子内的断裂c复合,因此,不包括在狭义的基因重组的范围之内。 根据重组的机制和对蛋白质因子的要求不同,可以将狭义的基因重组分为三种类型,即同源重组、位点特异性重组和异常重组。同源重组的发生依赖于大范围的DNA同源序列的联会,在重组过程中,两条染色体或DNA分子相互交换对等的部分。真核生物的非姊妹染色单体的交换、细菌以及某些低等真核生物的转化、细菌的转导接合、噬菌体的重组等都属于这种类型。大肠杆菌的同源重组需要RecA蛋白,类似的蛋白质也存在于其他细菌中。位点特异性重组发生在两个DNA分子的特异位点上。它的发生依赖于小范围的DNA同源序列的联会,重组也只限于这个小范围。两个DNA分子并不交换对等的部分,有时是一个DNA分子整合到另一个DNA分子中。这种重组不需要RecA蛋白的参与。异常重组发生在顺序不相同的DNA分子间,在形成重组分子时往往依赖于DNA的复制而完成重组过程。例如,在转座过程中,转座因子从染色体的一个区段转移到另一个区段,或从一条染色体转移到另一条染色体。这种类型的重组也不需要RecA蛋白的参与。 现代基因工程技术是在试管内按人为的设计实施基因重组的技术,也称为重组DNA。 目的是将一个个体细胞内的遗传基因转移到另一个不同性状的个体细胞内DNA分子,使之发生遗传变异。来自供体的目的基因被转入受体细菌后,可进行基因产物的表达,从而获得用一般方法难以获得的产品,如胰岛素、干扰素、乙型肝炎疫苗等是通过以相应基因与大肠杆菌或酵母菌的基因重组而大量生产的。即基因重组 由于基因的独立分配或连锁基因之间的交换而在后代中出现亲代所没有的基因组合。 原核生物的基因重组有转化、转导和接合等方式。受体细胞直接吸收来自供体细胞的DNA片段,并使它整合到自己的基因组中,从而获得供体细胞部分遗传性状的现象,称为转化。通过噬菌体媒介,将供体细胞DNA片段带进受体细胞中,使后者获得前者的部分遗传性状的现象,称为转导。自然中转导现象较普遍,可能是低等生物进化过程中产生新的基因组合的一种基本方式。供体菌和受体菌的完整细胞经直接接触而传递大段DNA遗传信息的现象,称为接合。细菌和放线菌均有接合现象。高等动植物中的基因重组通常在有性生殖过程中进行,即在性细胞成熟时发生减数分裂时同源染色体的部分遗传物质可实现交换,导致基因重组。基因重组是杂交育种的生物学基础,对生物圈的繁荣昌盛起重要作用,也是基因工程中的关键性内容。 从广义上讲,任何造成基因型变化的基因交流过程,都叫做基因重组。而狭义的基因重组仅指涉及DNA分子内断裂—复合的基因交流。真核生物在减数分裂时,通过非同源染色体的自由组合形成各种不同的配子,雌雄配子结合产生基因型各不相同的后代,这种重组过程虽然也导致基因型的变化,但是由于它不涉及DNA分子内的断裂c复合,因此,不包括在狭义的基因重组的范围之内。
 首页 上一页  36 37 38 39 40 41 42  下一页  尾页