原核生物与真核生物的DNA聚合酶各有哪些种类?
原核生物DNA聚合酶分为Ⅰ,Ⅱ,Ⅲ。Ⅰ主要是起修复的作用(比如光修复),还有就是把RNA引物切除后的空隙填补起来。Ⅱ是参与原核生物SOS修复的酶。Ⅲ是原核生物在DNA延长中起主要作用的酶。再来说真核生物,真核生物的DNA聚合酶分为α,β,γ,δ,ε,。ε类似于原核生物DNA聚合酶Ⅰ,β类似于原核生物DNA聚合酶Ⅱ,δ类似于原核生物DNA聚合酶Ⅲ。α具有引物酶活性,而γ则是作为复制真核生物线粒体内的DNA所需要的酶。扩展资料一般来说,DNA聚合酶具有以下特点:1.这种酶也被称为依赖DNA的DNA聚合酶,因为它需要DNA模板。2.RNA或DNA是必需的引物,这意味着DNA聚合酶是不被初始催化的。3.将DnTP以1000nt/min的速度催化添加到引物的3'-OH端,DNA合成方向为5'~3'。4.这三种DNA聚合酶都是多功能酶,在DNA复制和修复过程的不同阶段起作用。参考资料来源:百度百科—DNA聚合酶参考资料来源:百度百科—原核生物
原核生物的三种DNA聚合酶有何共同特征和区别?
首先,原核生物DNA聚合酶分为Ⅰ,Ⅱ,Ⅲ。一、共同特征1、具有5"→3"聚合酶活性,这就决定了DNA只能沿着5"→3"方向合成;2、需要引物,DNA聚合酶不能催化DNA新链从头合成,只能催化dNTP加入核苷酸链的3"-OH末端。因而复制之初需要一段RNA引物的3"一OH端为起点,合成5"→3"方向的新链。二、区别:1、DNA聚合酶I是单链多肽,可催化单链或双链DNA 的延长;2、DNA聚合酶II则与低分子脱氧核苷酸链的延长有关;3、DNA聚合酶III在细胞中存在的数目不多,是促进DNA链延长的主要酶.功能扩展资料:DNA聚合酶分类:1.大肠杆菌DNA聚合酶I大肠杆菌DNA聚合酶I是大肠杆菌polA基因编码由1000个氨基酸残基组成的单链多肽,具3种酶活性:5"→3"DNA聚合酶活性;5"→3"及3"→5"外切核酸酶活性。2、Klenow聚合酶(Klenow大片段)大肠杆菌DNA聚合酶I的3个结构功能域分别对应着3种不同酶活性。氨基端(1~326)具5"→3"外切酶活性;中间区域(326~542)具3"→5"外切酶活性;羧基端(543~928位)具5"→3"DNA聚合酶活性。枯草杆菌蛋白酶可将大肠杆菌DNA聚合酶I水解成大小2个片段:N端小片段包含1~326位残基,具5"→3"外切酶活性;而C端大片段包含326~928位残基,只具有5"→3"聚合酶活性和3"→5"外切酶活性,称作Klenow聚合酶或Klenow大片段。3、TaqDNA聚合酶TaqDNA聚合酶是一种耐高温的依赖于DNA模板的DNA聚合酶,来源于极度嗜热的嗜热水生菌Thermus aquaticus YT一1,故称作Taq DNA聚合酶,一般应用于PCR反应。TaqDNA聚合酶是一种Mg2+依赖酶,反应体系中必须有Mg2+存在,然而保持适当的Mg2+浓度十分重要,因为Mg2+浓度过高或过低均会影响引物与模板的结合、模板与PCR产物的解链温度、引物二聚体的形成以及酶的活性与精确性。4、逆转录酶逆转录酶是一种依赖于RNA的DNA聚合酶,也称为RNA指导的DNA聚合酶。,可以RNA为模板有效地催化合成互补DNA(complementary DNA)单链,并进而合成DNA第二条链。逆转录酶普遍存在于含RNA的逆转录病毒中,主要有禽源(AMV)和鼠源(MLV)两种,这两种酶均已被克隆并在大肠杆菌中表达。参考资料来源:百度百科-DNA聚合酶
真核生物与原核生物DNA合成过程有何不同
如果就DNA复制的一般概念来说,我们说的再多也比不过书本详细,所以我想从如何更好的理解DNA复制以及掌握原核生物和真核生物的复制过程并知道它们的区别上讲讲我的想法。 首先,我认为要区别它们首先要了解一般的、大致的过程,并要在头脑中有一个直观的概念,我给你看一个我认为比较细致和准确的教学视频“http://www.tudou.com/programs/view/N_1bPF1W_t4/”。对其中一些单词的翻译 nucleus 细胞核;helicase 解旋酶;single-stranded DNA bingding protien 单链DNA结合蛋白 ;DNA polymerase111 DNA聚合酶3 ;leading strand template 前导链;lagging strand template 滞后链;Okazaki fragment 冈崎片段;RNA primase RNA引物酶; RNA primer RNA 引物;DNA ligase DNA连接酶。希望对你有一点帮助。 其次我想补充下前面回答中不全面的地方:“wustone456”说原核生物DNA不与蛋白质结合是错的,原核生物的DNA与非组蛋白有稀疏的结合,当然结合方式和真核生物不同,主要是非组蛋白覆盖在DNA上,而真核生物DNA是与组蛋白和非组蛋白共同结合的,它们的量大约是DNA:蛋白质=1:2。“匿名”说的前导链前进的方向与复制叉前进方向相同;滞后链合成方向与复制叉前进方向相反。因此,DNA聚合酶的反应方向始终保持5′~3′。 其实因果关系应该倒一倒。“werhmk”说的不对称复制应该就是D-loop复制,它的特点是DNA双链一条链迅速复制完成,而另一条则成为单链。 关于两者复制的区别前面一些人已经互相补充的比较全面了,我就不重复了(呵呵,就当是我借他们的功劳),另外补充一点,真核生物的DNA在复制完成前,复制起点不再开始第二轮的复制,而原核生物则因为复制速度较快所以可以表现为虽只有一个复制单元,但可以有多个复制叉。 最后,两者之所以有这些不同是因为DNA的结构和存在方式都不同。原核生物DNA量比较少,一般只有一条染色体,大多数为单拷贝基因,几乎全部DNA都由功能基因和调控序列组成,几乎每个基因序列都与所编码的蛋白质一一对应,存在转录单元、有重叠基因。而真核生物基因组最大的特点就是喊有大量的重复序列(这也是著名的C值反常现象的由来)。 这些就是我的大致认识,我的回答可能也有不少错误的地方,但还是希望能够对你有所启发。
11. 有关原核生物mRNA分子上的S-D序列,下列哪项是错误的 A. 以AGGA为核心 B. 发现者是Shine-Dalgarno C.
C. 可与16S-rRNA近3′-末端处互补B. 30%E. 泛醌在线粒体内膜中的活动范围较大D. 两条DNA链均可作为模板链,不同基因的模板链不一定在同一条DNA链上C. 丙酮酸激酶A. 环型受体D. 是在肝细胞内直接从胆固醇合成的C. 分解(代谢)物基因激活蛋白C. 全酶形式存在B. 随从链上生成的不连续DNA片段
dna生物合成中需要以下哪些酶参与a引物酶b解旋酶
DNA生物合成中需要以下酶参与:引物酶:合成一小段RNA引物,为DNA新链的合成提供3"-OH末端。单链结合蛋白:以四聚体形式存在于复制叉处,只保持单链的存在,并不能起解链作用。DNA解链酶:能通过水解ATP获得能量解开双链。DNA连接酶:通过生成3"5"-磷酸二酯键连接两条DNA链。拓扑异构酶:消除DNA双链的超螺旋堆积。DNA解旋酶(DNA helicase) 催化DNA双链的解链过程。RNA酶(RNase H 等) 在复制完成后切除RNA引物。DNA聚合酶:在RNA引物上延伸合成互补链
原核生物转录时识别起始位点是
原核生物转录时识别起始位点是启动子。识别转录起始位点的是启动子。启动子是DNA分子上能与RNA聚合酶结合,并形成转录起始复合体的区域。在情况下,还包括促进这一过程的调解蛋白的结合位点。转录的起点是指与新生RNA链第一个核苷酸相对应的DNA链上的碱基。故原核生物转录时识别起始位点是启动子。
原核生物,真核生物和病毒复制起始位点都共特征有哪些
原核生物,真核生物和病毒复制起始位点都共特征:起始位点是包括多个短重复序列的独特DNA片段多聚体DNA结合蛋白专一性识别这些短的重复序列起始位点旁侧序列是A-T丰富的,能使DNA螺旋解开
真核生物基因翻译中如何识别起始位点?
起始位点是特定的序列(TATAbox……)有相对应的RNA酶识别那个位点很复杂的……
原核生物DNA复制所需的引物酶DnaG与转录所需的RNA聚合酶有什么不同?
引物酶,合成一小段RNA,用来引导DNA聚合酶起始DNA链的合成。RNA聚合酶是以DNA或RNA为模版合成RNA的酶。这是初步的了解,建议你看看生化课本,南开黄煕泰的那本,上面比较详细~
dna生物合成中需要以下哪些酶参与.a引物酶 b解旋酶 c解链酶 ddna连接酶 edn
abcde引物酶:合成一小段RNA引物,为DNA新链的合成提供3"-OH末端。单链结合蛋白:以四聚体形式存在于复制叉处,只保持单链的存在,并不能起解链作用。DNA解链酶:能通过水解ATP获得能量解开双链。DNA连接酶:通过生成3"5"-磷酸二酯键连接两条DNA链。拓扑异构酶:消除DNA双链的超螺旋堆积。DNA解旋酶(DNA helicase) 催化DNA双链的解链过程。RNA酶(RNase H 等) 在复制完成后切除RNA引物。DNA聚合酶:在RNA引物上延伸合成互补链
真核生物与原核生物dna合成过程有何不同
一、复制起始位点不同:1、原核生物有9-mer和13-mer的重复序列构成的复制起始位点。2、真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶的移动速度较原核生物慢。二、DNA复制时期不同:1、真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制。2、原核生物多重复制同时进行。三、相互作用不同:1、真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。2、原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。参考资料来源:百度百科-DNA合成
原核生物中引物酶的性质是什么
原核生物中引物酶的性质是什么引物酶(Primase) ,用来引导RNA引物/引子(RNA primer)的合成,从而引导DNA聚合酶介导的DNA链的合成。引物酶需引发前体护送才能催化引物合成。
求高中生物教材中涉及的所有酶
限制性核酸内切酶(以下简称限制酶):限制酶主要存在于微生物(细菌、霉菌等)中。一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。是特异性地切断DNA链中磷酸二酯键的核酸酶(“分子手术刀”)。发现于原核生物体内,现已分离出100多种,几乎所有的原核生物都含有这种酶。是重组DNA技术和基因诊断中重要的一类工具酶。例如,从大肠杆菌中发现的一种限制酶只能识别GAATTC序列,并在G和A之间将这段序列切开。目前已经发现了200多种限制酶,它们的切点各不相同。苏云金芽孢杆菌中的抗虫基因,就能被某种限制酶切割下来。在基因工程中起作用。 DNA连接酶:主要是连接DNA片段之间的磷酸二酯键,起连接作用,在基因工程中起作用。 DNA聚合酶:主要是连接DNA片段与单个脱氧核苷酸之间的磷酸二酯键,在DNA复制中起做用。 DNA聚合酶只能将单个核苷酸加到已有的核酸片段的3′末端的羟基上,形成磷酸二酯键;而DNA连接酶是在两个DNA片段之间形成磷酸二酯键,不是在单个核苷酸与DNA片段之间形成磷酸二酯键。 DNA聚合酶是以一条DNA链为模板,将单个核苷酸通过磷酸二酯键形成一条与模板链互补的DNA链;而DNA连接酶是将DNA双链上的两个缺口同时连接起来。因此DNA连接酶不需要模板。 RNA聚合酶(又称RNA复制酶、RNA合成酶)的催化活性:RNA聚合酶以完整的双链DNA为模板,转录时DNA的双链结构部分解开,转录后DNA仍然保持双链的结构。真核生物RNA聚合酶:真核生物的转录机制要复杂得多,有三种细胞核内的RNA聚合酶:RNA聚合酶I转录rRNA,RNA聚合酶II转录mRNA,RNA聚合酶III转录tRNA和其它小分子RNA。在RNA复制和转录中起作用。 反转录酶:RNA指导的DNA聚合酶,具有三种酶活性,即RNA指导的DNA聚合酶,RNA酶,DNA指导的DNA聚合酶。在分子生物学技术中,作为重要的工具酶被广泛用于建立基因文库、获得目的基因等工作。在基因工程中起作用。 解旋酶:是一类解开氢键的酶,由水解ATP来供给能量它们常常依赖于单链的存在,并能识别复制叉的单链结构。在细菌中类似的解旋酶很多,都具有ATP酶的活性。大部分的移动方向是5"→3",但也有3"→5"移到的情况,如n"蛋白在φχ174以正链为模板合成复制形的过程中,就是按3"→5"移动。在DNA复制中起做用。DNA限制酶作用于磷酸二酯键 DNA连接酶作用于磷酸二酯键DNA聚合酶作用于磷酸二酯键DNA解旋酶作用于氢键
生物:DNA解旋酶与RNA解旋酶的区别?
DNA解旋酶解开DNA双链结构RNA解旋酶解开RNA双链结构
高中生物pcr技术dna变性要解旋酶吗
DNA一般以双链的形式存在,而且双链的比单链的稳定. DNA的复制需要双链打开,同样,PCR扩增也需要单链的模板,所以就有了PCR引物这个东西,引物简单来说就是一引路的,告诉聚合酶“呐,就从这里开始”.PCR的基本过程包括变性、退火和延伸.DNA的双链主要是靠氢键联系在一起,高温时,氢键很容易就被断开了,双链变成了单链,提供了PCR的模板.当然解旋酶也可以做到断裂氢键,尚且不考虑温度,我只需考虑 1.酶活,酶活是有限的,如果酶量不足,是否会影响到最终的产量,酶都不便宜.2.PCR需要引物,如果使用解旋酶,是否会把引物从模板上裂解下来。 热变性DNA一般经缓慢冷却后即可复性,简单来说,复性不就是两条互补的单链变成双链吗,所以根据这个特性,完全可以在DNA聚合酶的作用下把已经和引物结合在一起的模板链复制出来.所以,pcr必然有有一个温度变化的过程.一般来说DNA在高温中容易变性,这就决定了使用的聚合酶必须是耐高温的.
高中生物 解旋酶和聚合酶的分类与作用是什么。。?
解旋酶:高中学的是DNA解旋酶,他由蛋白质构成,作用是在DNA复制时将DNA的双螺旋结构解开方便DNA半保留复制。聚合酶:高中学了两种聚合酶1是DNA聚合酶2是RNA聚合酶,DNA聚合酶是当DNA复制时将双链联合在一起,链接碱基对之间的氢键。RNA聚合酶适用于RNA的转录,注意!!RNA聚合酶有解旋作用。纯手打,望采纳O(∩_∩)O谢谢
高中生物,请问dna连接酶,聚合酶,解旋酶,限制酶,分别作用于哪个部位?画图,拍下来,谢谢
1,DNA链接酶和解旋酶是作用于碱基间的氢键,链接和分开两条DNA单链,2,聚合酶和限制酶都是作用于磷酸二酯键的即图上所显示的
如何证明生物的DNA复制方式是半保留复制?
【答案】:Meselson和Stahl的试验结果证实了DNA的半保留复制。这两位科学家对来自不同培养基的大肠杆菌的DNA进行CsCl溶液高速离心。结果,其中来源于11N培养基的,在离心管上部形成DNA带,这称为轻带;来源于15N培养基的,在离心管下部形成DNA带,这称为重带;从15N培养基转入11N培养基繁殖形成的子1代,在离心管中部形成DNA带,称为杂种带;继续在11N培养基繁殖形成的子2代,则在离心管中部和上部形成DNA带,即一条轻带和一条杂种带。按照推理,如果DNA的复制是半保留的话,上述结果正是所预期的,因为从15N转入11N繁殖1代之后,细菌的每个DNA双链分子必定含有1条11N链和1条15N链;子2代中则杂种链和纯合11N链各占1/2。
如何证明生物的DNA复制方式是半保留复制
利用同位素标记的方法用含有氮15的NH4Cl培养液来培养大肠杆菌,获得含有氮15标记的大肠杆菌,然后将大肠杆菌转到含氮14的普通培养液中,并在不同时刻提取大肠杆菌DNA进行密度梯度离心,由于氮15比氮14重,会出现分层的现象,人为地将试管分为上中下三层,会发现第一次测量大部分被标记DNA都在下层,第二次会集中出现在中层,第三次会出现在上和中,说明上层是不含氮15的,中层还含有氮15,但是不在下层,说明DNA复制的方式是半保留复制的,自己理解一下,不会可以追问,望采纳
生物学,染色体半保留复制
半保留复制(semiconservative replication):一种双链脱氧核糖核酸(DNA)的复制模型,其中亲代双链分离后,每条单链均作为新链合成的模板。因此,复制完成时将有两个子代DNA分子,每个分子的核苷酸序列均与亲代分子相同,这是1953年沃森(J.D.Watson)和克里克(F.H.C.Crick)在DNA双螺旋结构基础上提出的假说,1958年得到实验证实。 1958年Meselson和Stahl利用氮标记技术在大肠杆菌中首次证实了DNA的半保留复制,他们将大肠杆菌放在含有15N标记的NH4Cl培养基中繁殖了15代,使所有的大肠杆菌DNA被15N所标记,可以得到15N桪NA。然后将细菌转移到含有14N标记的NH4Cl培养基中进行培养,在培养不同代数时,收集细菌,裂介细胞,用氯化铯(CsCl)密度梯度离心法观察DNA所处的位置。由于15N桪NA的密度比普通DNA(14N-DNA)的密度大,在氯化铯密度梯度离心(density gradient centrifugation)时,两种密度不同的DNA分布在不同的区带。 实验结果表明:在全部由15N标记的培养基中得到的15N桪NA显示为一条重密度带位于离心管的管底。当转入14N标记的培养基中繁殖后第一代,得到了一条中密度带,这是15N桪NA和14N-DNA的杂交分子。第二代有中密度带及低密度带两个区带,这表明它们分别为15N14N-DNA和14N14N-DNA。随着以后在14N培养基中培养代数的增加,低密度带增强,而中密度带逐渐减弱,离心结束后,从管底到管口,CsCl溶液密度分布从高到低形成密度梯度,不同重量的DNA分子就停留在与其相当的CsCl密度处,在紫外光下可以看到DNA分子形成的区带。为了证实第一代杂交分子确实是一半15N-DNA-半14N-DNA,将这种杂交分子经加热变性,对于变性前后的DNA分别进行CsCl密度梯度离心,结果变性前的杂交分子为一条中密度带,变性后则分为两条区带,即重密度带(15N-DNA)及低密度带(14N-DNA)。它们的实验只有用半保留复制的理论才能得到圆满的解释。 DNA既然是主要的遗传物质,它必须具备自我复制的能力。瓦特森和克里克(1953)在提出DNA双螺旋结构模型的同时,对DNA复制也进行了假设。他们根据DNA分子双螺旋结构模型,认为DNA分子的复制,首先是从它的一端氢键逐渐断开。当双螺旋的一端已拆开为两条单链时,各自可以作为模板,从细胞核内吸取与自己碱基互补的游离核苷酸(A吸取T,C吸取G),进行氢键的结合,在复杂的酶系统的作用下,逐渐连接起来,各自形成一条新的互补链,与原来模板单链互相盘旋在一起,两条分开的单链恢复为双链DNA分子,与原来的完全一样。DNA的这种复制方式称为半保留复制(semiconservative replication),因为通过复制所形成的新的DNA分子,保留原来亲本DNA双链分子的一条单链。 DNA在活体内的半保留复制特征已为1958年以来的大量试验所证实。DNA的这种复制方式对保持生物遗传的稳定具有非常重要的作用。 还可能存在其他两种复制方式,都以原来亲本DNA双链分子作为模板链。一种方法称为全保留复制(conservative replication),在复制过程中新的DNA分子单链结合在一起,形成一条新的DNA双链,而亲本DNA双链仍然被保留在一起。另一种方法称为散布式复制(dispersive replication),在复制过程中亲本DNA双链被切割成小片段,分散在新合成的两条DNA双链分子中。 1953年J.D.Watson和 F.H.C. Crick在提出DNA双螺旋结构时,对其互补关系予以很大的重视,而且提出了DNA的复制模型。DNA在进行复制时各以双链中的每一条链作为模板,各个和互补的前体单核苷酸配对重合而形成与这二条单链各各对应的双重子螺旋二条。所谓互补就是指腺嘌呤一定只与胸腺嘧啶配对,鸟嘌呤一定只与胞嘧啶配对,新的单核苷酸排列在模板上时,其排列法是依原来链上的碱基通过互补来决定的。这样无论子分子与子分子间,还是子分子与母分子间,碱基排列顺序是完全相同。这样一来具有和亲本完全一样的遗传信息的子分子自我增殖了二倍。这时所产生的子双重螺旋分子一条链是从亲代原封不动的接受下来的,只有相对的一条链是新合成的,所以把这种复制方式称作半保留复制。这个模型曾用重同位素标记的DNA以密度梯度离心法进行分析,或用放射性同位素标记的DNA以放射自显影法进行测定等等,用几种不同原理的方法,曾在从人到病毒的许多种生物中进行了验证,肯定了这个模型的正确性和普遍性。关于DNA是以半保留方式复制这一点已被认为是生物学中最基本的肯定性原理。
DNA的复制方式是半保留复制,为什么生物不选择全保留的复制方式?
有一个层面上的意义在这: 旧链一般会甲基化,而新链刚出来的时候还没有,所以在半保留复制产生的新DNA分子中,只有一条链是有甲基化的另一条没有,这样机体就可以区分那一条是旧的,哪一条是新的.如果出现错误配对的情况,比如说A和G配了,修复系统就知道旧链上那个就是对的,新链上那个才是错的,然后就把新链上的那个切掉重新安装 如果是全保留复制的,产生的新DNA中有一个是由两个新链组成的,机体无法修复其中的错误
cdna文库包括该种生物的
cDNA文库(cDNA library):是指某生物某一发育时期所转录的mRNA全部经反转录形成的cDNA片段与某种载体连接而形成的克隆的集合。cDNA文库是以特定的组织或细胞mRNA为模板,逆转录形成的互补DNA(cDNA)与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌形成重组DNA克隆群,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织或细胞的cDNA文库。cDNA文库特异地反映某种组织或细胞中,在特定发育阶段表达的蛋白质的编码基因,因此cDNA文库具有组织或细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA。真核生物基因组DNA十分庞大,其复杂程度是蛋白质和mRNA的100倍左右,而且含有大量的重复序列。采用电泳分离和杂交的方法,都难以直接分离到目的基因。这是从染色体DNA为出发材料直接克隆目的基因的一个主要困难。高等生物一般具有10^5种左右不同的基因,但在一定时间阶段的单个细胞或个体中,都仅有15%左右的基因得以表达,产生约15000种不同的mRNA分子。可见,由mRNA出发的cDNA克隆,其复杂程度要比直接从基因组克隆简单得多。cDNA文库在研究具体某类特定细胞中基因组的表达状态及表达基因的功能鉴定方便具有特殊的优势,从而使它在个体发育、细胞分化、细胞周期调控、细胞衰老和死亡调控等生命现象的研究中具有更为广泛的应用价值,是研究工作中最常使用到的基因文库。
生物大神们。基因文库里是不是已经构建好了表达载体了?
不是,基因文库里只有目的基因,构建表达载体是从基因文库里提取目的基因后构建
以RNA为遗传物质的生物体,如何进行基因的翻译和表达?
体及免疫细胞受体是典型得生物文库. 在免疫系统中, 文库设计, 合成以及优化的整个过程都由生物体自己控制. 只有抗原结构和形成胚胎因子的遗传信息是外部的条件, 其余均是由内在因素自发控制. 因为免疫系统使用蛋白质结构文库, 它们将氨基酸作为文库的基本因素. 因为肽或以含氨基酸形成的蛋白质都是通过翻译遗传信息而合成的初产品, 需要序列的蛋白质能容易地藉由向微生物如细菌或病毒体内插入修改后的遗传信息来获得. 微生物文库合成有几大优点. 可以克隆微生物使每种微生物只制造一种蛋白质, 而且即使只有一个细胞也可以利用细胞增殖简单克隆出足够数量. 使用生物的最大好处是他们能自我繁殖, 只需给予充足的补给. 这是对使用微生物的蛋白质合成过程的简短描述. 在合成用于制造目的蛋白质序列的DNA链之后, 合成其互补链, 如果需要的话使用酶. 为使合成的DNA在微生物中恰当的复制并翻译, 需要用病媒动物(vector)压缩它然后进入微生物之内. 蛋白质在微生物的表面上被表达, 下一步是寻找目的蛋白质. 制造文库需要多种遗传信息. 随机DNA合成或切片cDNA或某种生物全基因组DNA都可使用. 制造特定蛋白质的 DNA序列片断能被修改以制造突变蛋白质文库. 考虑到体积限制和微生物繁殖的表达速率, 可以制得109(十亿)种文库. 与106到107种合成文库相比, 这可是个大数. 5单元肽的数量是205(320万)种, 6单元的是6400万, 7单元肽的数量超过10亿. 因此, 如果改变了超过7氨基酸的肽, 就仅能制出没有包含全部可能组合的不完全文库. 但这并不意谓着我们不能制造超过7氨基酸的蛋白质. 对于长链蛋白质, 7个不同的氨基酸能被单独选择而且替换. 当DNA随机合成的时候, 可以重复DNA密码而指定相同的氨基酸, 并且改变产生的频率. 因此, 为得到所有可能的组合, 需要更多的克隆体. ::::抗菌素文库:::: 抗菌素文库是最著名的蛋白质文库法之一. 抗菌素寄居宿主体内, 是一种含有衣壳和遗传物质的病毒. 这种方法在80年代中期发明, 在90年代开始用于多种领域. M13和Lambda病毒是最著名的. M13和lambda病毒 <http://www.cvm.msu.edu/courses/mic569/docs/parasite/> <http://www.hal.rcast.u-tokyo.ac.jp/genome/Present.htm> M13 是一种薄长的病毒, 由于它的基因组体积小, 可以容易地制出多种文库. 不同于其他病毒, 它能到宿主细胞的外面而不损坏它们或抑制它们的生长. 已知M13在宿主细胞中增殖其遗传信息并且以包着衣壳的形式出现, 它能制造10种类型的蛋白质, 而且通常在pVIII, pIII衣壳中合成文库. pVIII蛋白质包围其整个身体, 含有约50个氨基酸. 通常每一病毒表达2700个. 因为它的氨基端伸出衣壳, 可以修饰它以在其上表达一个不同的肽. 通常一个长肽不能够表达, 但是6单位的肽是可能的. 由于同时表达大量相同的文库分子, 尽管相对较短, 用它于多种配体反应是可以的. pIII 蛋白质在病毒末端表达, 而且通常是含有406个氨基酸的3到5种蛋白质. 它能表达相当大的蛋白质因而可以将它用在全蛋白质或抗体文库种. 正常的抗体使用Fab, 即抗原识别区域, 或者说Fvs链. 抗菌素文库和杂种细胞是制造抗体的最著名的方法. M13是制造随机肽文库的理想材料, 而且病毒能够足够稳定的被沉淀和浓缩, 因而在1-10mL体积中筛选109种文库成为可能. 不同于M13, Lambda病毒在细胞质中包裹着衣壳, 当有足够数量后穿出衣壳而不是总是戴着衣壳出现. 换句话说, 如果表达不同的蛋白质, 它将会折叠的形状出现并具有恰当的功能. pV和D蛋白质普遍用于文库合成. 如同能在抗菌素表面表达蛋白质一样, 还有随机肽, 天然蛋白质碎片, 特异性突变蛋白质文库和部份抗体碎片, 他们可用于色谱材料, 蛋白质-蛋白质反应, 受体结合位搜索和药物发现. ::::细菌及酵母文库:::: 不仅带有衣壳的病毒, 还有带有细胞壁和细胞膜的细菌也能用于文库表达. 革兰氏阳性菌和革兰氏阴性菌都能用来在细胞表面表达蛋白质, 还有大肠杆菌(E. coli), 一种革兰氏阴性菌, 也普遍使用. 大肠杆菌是如此有名, 以致于外行如我者也知道两种细菌: 一是大肠杆菌, 另一种是其余的. 细菌文库可以找出一种能够与抗体紧密结合的抗原, 然后将其用作疫苗. 细菌文库也可用于表达诊断抗体或受体文库, 以用于特定材料的分析. 革兰氏阳性菌 革兰氏阴性菌 <www.meddean.luc.edu/.../DeptWebs/ microbio/med/gram/tech.htm> <http://www.hhmi.org> 高等动物的蛋白质被蛋白质合成后的磷化作用或糖加成修饰的功能称为翻译修饰翻译修饰. 但是细菌作为一种原核生物 没有这种功能, 因而合成了一个蛋白质后要么它由于溶解度低而沉淀, 要么失活. 因此, 酿酒酵母, 一种真核细胞就被利用. 尽管酿酒酵母如细菌一般是单细胞, 它有翻译修饰功能并且能够使合成的蛋白质与原始的极为相似. 酵母 <news.bbc.co.uk/hi/english/health/ newsid_761000/761884.stm> 与病毒不同, 由于它有微米大小的细胞所以可以使用FACS(萤光活性细胞分类)技术. 文库中的蛋白质在细胞表面表达, 然后经过FACS机的细管, 这样萤光标记的目标分子就被加到其上. FACS根据萤光颜色和活性强度分类每个细胞. 分类不同颜色的目标分子并分类不同活性和选择性的细胞是可能的. 另外的优点是液相筛选, 它不必分离紧密附着的分子. 分类后的细胞再一次繁殖, 然后再筛选. ::::淘洗(Biopanning):::: 下面是一个合成的微生物文库的实例. 它的目的是寻找一种能够跟特定分子紧密连接的酶. <http://www.hort.purdue.edu/CFPESP/Hasegawa/ha00002.htm> 首先,目标分子平均地被置于检光板上. 制备了的微生物文库被加到板上. 只有与目标分子紧密结合的微生物能够存留, 其余的都到了溶液中. 一段时间后, 除去没有结合的微生物, 然后以恰当的溶液洗涤弱结合或偶然结合的微生物. 目标分子结合的紧密程度决定了洗涤过程. 仍然存留的微生物可通过加入低pH或高浓度的目标分子而分离, 通过繁殖增加数量. 有时结合程度太强时分离它们而不致死细菌是困难的. 如果它是噬菌体, 而不是分离, 那就可以直接感染宿主细胞. 由于存在偶然未考虑的微生物种类, 第一次增殖的微生物直接进行重复筛选-增殖的过程以增加含有活性蛋白质的克隆体数量. 最后在低浓度下培养后, 每个克隆体得以分离. 通常选出几十个克隆体用于DNA序列分析. 如果从DNA信息得到的肽结构是可识别的而且大多数克隆体表现出相同的肽序列, 那就意味着成功了. 然而, 因为蛋白质可能对多种克隆体表现出毒性而且 DNA表达率能改变, 总是有一种可能性存在, 即克隆体增殖速度和表达效果均好于期望的筛选结果. 因此, 通过测量肽合成及键强度的证实步骤是必需的. 即使在被获得的DNA或肽中有重要的药物候选者, 它们也将在蛋白质激酶的作用下在体内迅速水解. 因此, 用具有相似肽结构的人造分子取代它们是必需的, 尽管这个步骤非常困难. 几年以前麻州理工学院的Peter Kim小组报道了一个有趣的实验, 他们用D-氨基酸取代其光学异构体天然L-氨基酸以降低水解率. 他们使用人造D-氨基酸作为靶分子, 用天然L-氨基酸筛选发现了高亲合的肽. 因为真正的受体是由L-氨基酸构成, 也即其镜像, 于是他们合成了已发现的L-肽的镜像, 即D-肽. 当D-肽被用于天然受体的时候, 它仍然表现了高活性. Perter Kim, 过去一直作HIV感染途径和治疗方面的工作, 现在正在Merk工作, 他是在Sung-ho Kim博士那一代之后最强有力的韩国诺贝尔奖候选人. ::::DNA, RNA 文库:::: 微生物蛋白质文库技术基本基于活体生物的自我再生能力. 那就是, 通过放大(饲养)少量已获得的候选分子来提高纯度和数量. 蛋白质是活体生物利用遗传信息的产物这一点也非常重要. 如果用DNA或RNA而不是蛋白质可以吗? PCR(DNA扩增技术)的发展, 使得自90年代早期以来使用核酸做文库成为可能. 因为DNA和RNA是由4种单位构成, 10长度的低聚体有410(约106=一百万)种, 20长度的低聚体文库有约1012种. 通过使用自动固相DNA合成机, 序列中的5"端和3"端被修饰, A, T, C和G随机放置, 每个约占序列的25%. 当有了一条链后, 就通过使用酶或PCR扩增复制它. 通常约1014-15个分子被合成和使用, 但是时常存在大约40个随机引入位(1024种), 有时他们以不完全文库系列开始. 对于DNA文库, 基本使用DNA本身, 而对于RNA文库, 需要T7 RNA 聚合酶转录. 制备的文库按照与靶分子结合程度筛选;用PCR扩增DNA, 用RT-PCR扩增RNA. 蛋白质, 不同的核酸, 糖类和小分子都可用作靶分子. 放大了的文库的筛选和扩增过程被重复直到1014-15 的起始数量降至几百, 然后分析获得的候选分子的序列, 并且测量每个的亲合强度. SELEX <http://web.uvic.ca/sciweb/Courses/B300/B300.Outline.html> 这些已获得的DNA和RNA叫做智能配体(aptamers), 它们表现出对蛋白质靶分子的强亲合性, 高1nM Kd. 智能配体抑制靶分子在体内的功能, 但是它很快地被体内的核酸酶破坏. 为了解决这个问题, 文库的一些部份用人造核酸取代以增强对核酸酶的抵抗性. 在他们之中, 核酶(ribozymes), 一种可以催化其它化学反应的催化剂, 也被发现而且可以确认RNA界假说. 参考资料:http://www.nyu.edu/classes/ytchang/book/c006.html
高中生物 为什么基因文库里的受体菌不能直接用来表达目的基因 还要从基因文库里提取目的基
一、DNA文库和cDNA文库的概念将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆。这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因。以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。二、DNA文库和cDNA文库的构建原理DNA文库:用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。cDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。三、DNA文库和cDNA文库的用途基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同。DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA
高中生物 为什么基因文库里的受体菌不能直接用来表达目的基因 还要从基因文库里提取目的基
一、DNA文库和cDNA文库的概念将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆。这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因。以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。二、DNA文库和cDNA文库的构建原理DNA文库:用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。cDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。三、DNA文库和cDNA文库的用途基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同。DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA
为什么构建基因文库?直接从生物体内提取不行吗
当然不能直接提取。基因是一个人为概念,但从分子角度上看,基因与非基因没有分子水平的差异。而我们要操作分子,必须找到目标靶序列。所以,不可能直接提取任何一个基因,只能通过探针或者其他方式找到基因,并作相应的处理。使之可以识别。另外,不同基因在体内的拷贝数和表达频率差异都很大,例如指导胚胎发育的基因在成体内不表达,不可能从成体体内找到其表达产物,也就无法定位该基因,而例如核糖体DNA之类的基因,表达活跃,拷贝数多,它们往往掩盖了低丰度基因的检测。所以必须构建基因文库,使得高丰度与低丰度的基因都能被覆盖并检测到。最后,理论上,可以直接提取,但是实际和理论是由很大差异的。所以人们才构建许多方法以达到要求。所以不能光因理论可行,就忽略实际情况。
何谓DNA的半保留复制?它是如何证明的?生物学意义是什么?
【答案】:DNA复制时,亲代DNA先行解链,然后以这两条亲代链为模板,按照碱基配对的原则,各形成一条互补的新链。这样,从亲代DNA的一个双股螺旋变为子代的两个双股螺旋。子代DNA分子的一条链来自亲代,另一条链是新合成的,这种复制方式就是半保留复制。1958年,Meselson和Stahl首次用15N标记的大肠杆菌DNA实验直接证明了DNA的半保留复制。用14NH4Cl作为唯一的N源培养大肠杆菌,使大肠杆菌DNA全部是含15N的,再将大肠杆菌转移到14N培养基上培养,每隔一段时间取样,提取DNA并作密度梯度离心,经过一代后,DNA只出现一条区带,浮力密度位于15N-DNA和14N-DNA之间,表明这条区带的DNA是由14N/15N-DNA组成的。经过两代后,出现两条区带,一条为14N-DNA,另一条为14N/15N-DNA,若再继续培养,可以看到14N-DNA分子增多。以此方法可证明新合成的DNA双链中,一条链来自亲代,另一条链是新合成的,从而证明了DNA的复制是半保留复制。半保留复制具有极其重要的生物学意义。生物细胞的遗传特性是通过DNA的复制而传给子代细胞的,DNA以半保留的方式进行复制,使子代DNA分子与亲代DNA分子顺序相同,保证了遗传上的稳定性。
DNA的复制方式是半保留复制,为什么生物不选择全保留的复制方式?
有一个层面上的意义在这:旧链一般会甲基化,而新链刚出来的时候还没有,所以在半保留复制产生的新DNA分子中,只有一条链是有甲基化的另一条没有,这样机体就可以区分那一条是旧的,哪一条是新的。如果出现错误配对的情况,比如说A和G配了,修复系统就知道旧链上那个就是对的,新链上那个才是错的,然后就把新链上的那个切掉重新安装如果是全保留复制的,产生的新DNA中有一个是由两个新链组成的,机体无法修复其中的错误
药品中什么属于生物制品?
当然是疫苗喽,生物制品,是指用微生物或其毒素、酶,人或动物的血清、细胞等制备的供预防、诊断和治疗用的制剂。预防接种用的生物制品包括疫苗、菌苗和类毒素。其中,由细菌制成的为菌苗;由病毒、立克次体、螺旋体制成的为疫苗,有时也统称为疫苗。疫苗是将病原微生物(如细菌、立克次氏体、病毒等)及其代谢产物,经过人工减毒、灭活或利用基因工程等方法制成的用于预防传染病的自动免疫制剂。疫苗保留了病原菌刺激动物体免疫系统的特性。当动物体接触到这种不具伤害力的病原菌后,免疫系统便会产生一定的保护物质,如免疫激素、活性生理物质、特殊抗体等;当动物再次接触到这种病原菌时,动物体的免疫系统便会依循其原有的记忆,制造更多的保护物质来阻止病原菌的伤害。血清是指血液凝固后,在血浆中除去纤维蛋白分离出的淡黄色透明液体,尤指含有特异性免疫体(如抗毒素或凝集素)的免疫血清(抗菌素血清)血液制品是指各种人血浆蛋白制品,包括人血白蛋白、人胎盘血白蛋白、静 脉注射用人免疫球蛋白、肌注人免疫球蛋白、组织胺人免疫球蛋白、特异性免疫 球蛋白、乙型肝炎、狂犬病、破伤风免疫球蛋白、人凝血因子Ⅷ、人凝血酶原复 合物、人纤维蛋白原、抗人淋巴细胞免疫球蛋白等。血液制品的原料是血浆。生化药品是指以生物化学方法为手段从生物材料中分离、纯化、精制而成的用来治疗、预防和诊断疾病的药品。
简述抗体的生物学效应
在人和动物体内,由于抗原或半抗原入侵刺激机体而在细胞中产生的免疫球蛋白.能可逆、非共价、特异地与相应抗原结合,形成抗原-抗体复合体. 作用:(1)特异性结合抗原:抗体本身不能直接溶解或杀伤带有特异抗原的靶细胞,通常需要补体或吞噬细胞等共同发挥效应以清除病原微生物或导致病理损伤.然而,抗体可通过与病毒或毒素的特异性结合,直接发挥中和病毒的作用. (2)激活补体:IgM、IgG1、IgG2和IgG3可通过经典途径激活补体,凝聚的IgA、IgG4和IgE可通过替代途径激活补体. (3)结合细胞:不同类别的免疫球蛋白,可结合不同种的细胞,产生不同的疚,参与免疫应答. (4)可通过胎盘及粘膜:免疫球蛋白G(IgG)能通过胎盘进入胎儿血流中,使胎儿形成自然被动免疫.免疫球蛋白A(IgA)可通过消化道及呼吸道粘膜,是粘膜局部抗感染免疫的主要因素. (5)具有抗原性:抗体分子是一种蛋白质,也具有刺激机体产生免疫应答的性能.不同的免疫球蛋白分子,各具有不同的抗原性. (6)抗体对理化因子的抵抗力与一般球蛋白相同:不耐热,60~70℃即被破坏.各种酶及能使蛋白质凝固变性的物质,均能破坏抗体的作用.抗体可被中性盐类沉淀.在生产上常可用硫酸铵或硫酸钠从免疫血清中沉淀出含有抗体的球蛋白,再经透析法将其纯化. (7)通过与细胞Fc受体结合发挥多种生物效应 ①调理作用 IgG、IgM的Fc段与吞噬细胞表面的FcγR、FcμR结合,增强其吞噬能力,通常将抗体促进吞噬细胞吞噬功能的作用称为抗体的调理作用 (opsonization). ②发挥抗体依赖的细胞介导的细胞毒作用
生物芯片的定义原理作用应用领域
生物芯片技术是随着"人类基因组计划"(human genome project, HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。生物芯片技术包括基因芯片、蛋白质芯片、细胞芯片、组织芯片、以及元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片(1)。本文主要讨论基因芯片技术,它为"后基因组计划"时期基因功能的研究提供了强有力的工具,将会使基因诊断、药物筛选、给药个性化等方面取得重大突破,该技术被评为1998年度世界十大科技进展之一。 1 基本概念 基因芯片(gene chip)也叫DNA芯片、DNA微阵列(DNA microarray)、寡核苷酸阵列(oligonucleotide array),是指采用原位合成(in situ synthesis)或显微打印手段,将数以万计的DNA探针固化于支持物表面上,产生二维DNA探针阵列,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品快速、并行、高效地检测或医学诊断,由于常用硅芯片作为固相支持物,且在制备过程运用了计算机芯片的制备技术,所以称之为基因芯片技术。 2 技术基本过程 2.1 DNA方阵的构建 选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;(2)或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片(3)。 2.2 样品DNA或mRNA的准备。 从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速(4)。 在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。 2.3 分子杂交 样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反(5)。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟(6)。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。 2.4 杂交图谱的检测和分析 用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5)(2),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到有关基因图谱。目前,如质谱法、化学发光法、光导纤维法等更灵敏`、快速,有取代荧光法的趋势。 3 应用 3.1 测序 基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%(7)。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性(8)。 3.2 基因表达水平的检测。 用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。(9)Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实(10)。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了(11)。 3.3 基因诊断 从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如,Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用(12)。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。 3.4 药物筛选 如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再用m RNA 构建c DNA表达文库,然后用得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。或者,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。(13)生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。 3.5 给药个性化 临床上,同样药物的剂量对病人甲有效可能对病人乙不起作用,而对病人丙则可能有副作用。在药物疗效与副作用方面,病人的反应差异很大。这主要是由于病人遗传学上存在差异,如药物应答基因,导致对药物产生不同的反应。例如细胞色素P450酶与大约25%广泛使用的药物的代谢有关,如果病人该酶的基因发生突变就会对降压药异喹胍产生明显的副作用,大约5%~10%的高加索人缺乏该酶基因的活性。现已弄清楚这类基因存在广泛变异,这些变异除对药物产生不同反应外,还与易犯各种疾病如肿瘤、自身免疫病和帕金森病有关。如果利用基因芯片技术对患者先进行诊断,再开处方,就可对病人实施个体优化治疗。另一方面,在治疗中,很多同种疾病的具体病因是因人而异的,用药也应因人而异。例如乙肝有较多亚型,HBV基因的多个位点如S,P及C基因区易发生变异。若用乙肝病毒基因多态性检测芯片每隔一段时间就检测一次,这对指导用药防止乙肝病毒耐药性很有意义。又如,现用于治疗AIDS的药物主要是病毒逆转录酶RT和蛋白酶PRO的抑制剂,但在用药3-12月后常出现耐药,其原因是rt、pro基因产生一个或多个点突变。Rt基因四个常见突变位点是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四个位点均突变较单一位点突变后对药物的耐受能力成百倍增加(14)。如将这些基因突变部位的全部序列构建为DNA芯片,则可快速地检测病人是这一个或那一个或多个基因发生突变,从而可对症下药,所以对指导治疗和预后有很大的意义。 此外,基因芯片在新基因发现、药物基因组图、中药物种鉴定、DNA计算机研究等方面都有巨大应用价值。 4 基因芯片国内外现状和前景 自从1996年美国Affymetrix公司成功地制作出世界上首批用于药物筛选和实验室试验用的生物芯片,并制作出芯片系统(15),此后世界各国在芯片研究方面快速前进,不断有新的突破。美国的Hyseq公司、Syntexi公司、Nanogen公司、Incyte公司及日本、欧洲各国都积极开展DNA芯片研究工作;摩托罗拉、惠普、IBM等跨国公司也相继投以巨资开展芯片研究。98年12月Affymefrix公司和Molecular Dynamics公司宣布成立基因分析协会(Genetic Analysis Technology Consortium)以制定一个统一的技术平台生产更有效而价谦的设备,与此相呼应,英国的Amershcem Pharmacia Biotechnology公司也在同一天宣布将提供部分掌握的技术以推动这项技术的应用(16)。美国关于芯片技术召开了两次会议,克林顿总统在会上高度赞赏和肯定该技术,将基因芯片看作是保证一生健康的指南针(17)。预计在今后五年内生物芯片销售可达200-300亿美元;据《财富》杂志预测(97.3),在21世纪,生物芯片对人类的影响将可能超过微电子芯片。
生物芯片的应用领域
最大用途在于疾病检测基因表达水平的检测 用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。基因诊断 从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymetrix公司,把p53基因全长序列和已知突变的探针集成在芯片上,制成p53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。药物筛选 利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。个体化医疗 临床上,同样药物的剂量对病人甲有效可能对病人乙不起作用,而对病人丙则可能有副作用。在药物疗效与副作用方面,病人的反应差异很大。这主要是由于病人遗传学上存在差异(单核苷酸多态性,SNP),导致对药物产生不同的反应。如果利用基因芯片技术对患者先进行诊断,再开处方,就可对病人实施个体优化治疗。另一方面,在治疗中,很多同种疾病的具体病因是因人而异的,用药也应因人而异。例如乙肝有较多亚型,HBV基因的多个位点如S、P及C基因区易发生变异。若用乙肝病毒基因多态性检测芯片每隔一段时间就检测一次,这对指导用药防止乙肝病毒耐药性很有意义。测序 基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。研究人员用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。生物信息学研究 人类基因组计划是人类为了认识自己而进行的一项伟大而影响深远的研究计划。目前的问题是面对大量的基因或基因片断序列如何研究其功能,只有知道其功能才能真正体现HGP计划的价值--破译人类基因这部天书。后基因组计划、蛋白组计划、疾病基因组计划等概念就是为实现这一目标而提出的。生物信息学将在其中扮演至关重要的角色。生物芯片技术就是为实现这一环节而建立的,使对个体生物信息进行高速、并行采集和分析成为可能,必将成为未来生物信息学研究中的一个重要信息采集和处理平台,成为基因组信息学研究的主要技术支撑。生物芯片作为生物信息学的主要技术支撑和操作平台,其广阔的发展空间就不言而喻。在实际应用方面,生物芯片技术可广泛应用于疾病诊断和治疗、药物基因组图谱、药物筛选、中药物种鉴定、农作物的优育优选、司法鉴定、食品卫生监督、环境检测、国防等许多领域。它将为人类认识生命的起源、遗传、发育与进化、为人类疾病的诊断、治疗和防治开辟全新的途径,为生物大分子的全新设计和药物开发中先导化合物的快速筛选和药物基因组学研究提供技术支撑平台,这从中国99年3月国家科学技术部刚起草的《医药生物技术“十五”及2015年规划》中便可见一斑:规划所列十五个关键技术项目中,就有八个项目(基因组学技术、重大疾病相关基因的分离和功能研究、基因药物工程、基因治疗技术、生物信息学技术、组合生物合成技术、新型诊断技术、蛋白质组学和生物芯片技术)要使用生物芯片。生物芯片技术被单列作为一个专门项目进行规划。总之,生物芯片技术在医学、生命科学、药业、农业、环境科学等凡与生命活动有关的领域中均具有重大的应用前景。
早盘生物制品走强,重组白蛋白不属于生物制品吗
重组白蛋白不属于生物制品生物制品是应用普通的或以基因工程、细胞工程、蛋白质工程、发酵工程等生物技术获得的微生物、细胞及各种动物和人源的组织和液体等生物材料制备,用于人类疾病预防、治疗和诊断的药品。目前,我国人用生物制品包括细菌类疫苗(含类毒素)、病毒类疫苗、抗毒素及免疫血清、血液制品、细胞因子、体内及体外诊断制品以及其他活性制剂(包括毒素、抗原、变态反应原、单克隆抗体、重组DNA产品、抗原-抗体复合物、免疫调节剂、微生态制剂等)。一、生物制品的种类根据各种制品的组成及用途分类如下。1、疫苗(Vaccines)(1)细菌类疫苗(Bacterial Vaccines)由有关细菌、螺旋体或其衍生物制成的减毒活疫苗、灭活疫苗、重组DNA疫苗、亚单位疫苗等,如卡介苗、伤寒Vi多糖疫苗、破伤风疫苗(类毒素)等。(2)病毒类疫苗(Viral Vaccines)由病毒、衣原体、立克次体或其衍生物制成的减毒活疫苗、灭活疫苗、重组DNA疫苗、亚单位疫苗等,如麻疹减毒活疫苗、重组(CHO细胞)乙型肝炎疫苗等。(3)联合疫苗(Combined Vaccines)由二种或二种以上疫苗抗原原液配制成的具有多种免疫原性的灭活疫苗或活疫苗,如百日咳、白喉、破伤风联合疫苗(DTP),麻疹、流行性腮腺炎、风疹联合疫苗(MMR)等。2、抗毒素及免疫血清(Antitoxin and Antisera)由特定抗原免疫动物所得血浆制成的抗毒素或免疫血清,如破伤风抗毒素、抗狂犬病血清等,用于治疗或被动免疫预防。3、血液制品(Blood Products)由健康人的血浆或特异免疫人血浆分离、提纯或由重组DNA技术制成的血浆蛋白组分或血细胞组分制品,如人血白蛋白、人免疫球蛋白、人凝血因子(天然或重组的)、红细胞浓缩物等,用于诊断、治疗或被动免疫预防。4、细胞因子(Cytokines)及重组DNA产品(Recombinant DNA Products)由健康人血细胞增殖、分离、提纯或由重组DNA技术制成的多肽类或蛋白质类制剂,如干扰素(IFN)、白细胞介素(IL)、集落刺激因子(CSF)、红细胞生成素(EPO)等,用于治疗。5、诊断制品(Diagnostic Reagents)(1)体外诊断制品由特定抗原、抗体或有关生物物质制成的免疫诊断试剂或诊断试剂盒,如伤寒、副伤寒、变形杆菌(OX19、0X2、OXK)诊断菌液,沙门氏菌属诊断血清,HBsAg酶联免疫诊断试剂盒等,用于体外免疫诊断。(2)体内诊断制品由变态反应原或有关抗原材料制成的免疫诊断试剂,如卡介菌纯蛋白衍生物(BCG-PPD)、布氏菌纯蛋白衍生物(RB-PPD)、锡克试验毒素、单克隆抗体等,用于体内免疫诊断。6、其他制品(Else Products)由有关生物材料或特定方法制成,不属于上述5类的其他生物制剂,用于治疗或预防疾病。如治疗用A型肉毒毒素制剂、微生态制剂和卡介菌多糖、核酸制剂等。
从生物体克隆目的基因的方法有哪些?
1.PCR扩增克隆法PCR扩增克隆法是在已知植物基因序列的基础上,进行基因序列克隆的一种方法。先从基因文库(genebank)中找到有关基因序列,据此合成一对寡聚核苷酸引物,从植物中提取染色体DNA或RNA,进行PCR扩增。扩增的片段纯化后插入合适的质粒载体上,用酶切分析和序列分析检测重组子,并与已知基因序列比较,以获得目的基因。2.功能克隆法功能克隆(functionalcloning)是根据性状的基本生化特征,在鉴定已知基因功能后进行克隆。该法在纯化相应的编码蛋白质后,构建cDNA文库或基因组文库。然后从文库中用下述两种方法进行基因筛选,其一是将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针,从cDNA文库或基因组文库中筛选编码基因;其二是将编码蛋白质制成相应抗体探针,从cDNA载体表达文库中筛选相应克隆。实行功能克隆的关键步骤是分离出高纯度蛋白质。对于产物不明的基因,不能利用这一方法进行克隆。3.定位(图位)克隆法定位(图位)克隆法(positionalcloning)根据目的基因在染色体上的位置,进而通过染色体步移(chromosomewalking)进行克隆。需预先建立具有目的基因的适宜遗传分离群体(近等基因系或分离群体),将目的基因精确定位在染色体特定的位置之后,用目的基因两侧紧密连锁的分子标记(RFLP标记)为探针,筛选基因组文库,得到阳性克隆,然后以阳性克隆的末端作为探针,获得含有目标基因的大片段克隆,然后以这些新的DNA为探针,获得更趋近目的基因的DNA片段,不断缩小筛选区域,逐步向目的基因靠近,最终克隆到该基因。4.转座子标记法转座子(transposon)是可从一个基因位置转移到另一位置的DNA片段,而原来位置的DNA片段(转座子)并未消失,发生转移的只是转座子的拷贝。基因转座可引起插入突变,使插入位置的基因失活,并诱导产生突变型。通过标记基因就可以检测出突变基因的位置,进而克隆该突变基因。这样将转座子作为基因定位的标记,并通过转座子在染色体上的插入和嵌合来克隆基因称为转座子标记法(transposontagging)。para>5.减法杂交法该法根据植物表现型差异或基因在不同组织或器官的表达差异来克隆植物基因。特异性表达的基因,其mRNA表现不同。分别从表达特异性基因的植物组织和无特异性基因的组织中提取mRNA,反转录为cDNA,两者杂交。在两种组织中都表达的基因产物形成杂交分子,而特异mRNA转录的cDNA仍保持单链状态,将这种单链cDNA分离出来即为差异表达的基因,这一策略被称作减法杂。6.mRNA差异显示法该法可有效鉴别并克隆差异表达的基因。提取不同的mRNA后可用共同的引物反转录成cDNA,进行PCR扩增,获得差异表达的cDNA序列,作为探针,在cDNA文库或基因组文库中筛选基因,并作功能分析。该法可直观筛选差异表达的基因,比减法杂交操作方便、迅速,需要总RNA量少,效率高,短期内可完成cDNA的扩增、鉴定和克隆。
生物 求解 请问效价该怎么计算?
效价是指某一物质引起生物反应的功效单位,可用理化方法检测,也可用生物检测方法测定;或生物制品活性(数量)高低的标志,通常采用生物学方法测定。在管理学中,效价是指某项工作或一个目标对于满足个人需求的价值。理论效价是指抗生素纯品的重量与效价单位的折算比率。
请问下为什么在周德庆 微生物教程中 噬菌体一步生长曲线的图上 潜伏期也有噬菌斑数目啊?
潜伏期没有噬菌斑,等裂解期时,噬菌体释放出来后才会有噬菌斑
微生物列表比较病毒的包含体,多角体,噬菌斑,空斑和枯斑的异同
首先病毒是寄生在活的生物细胞内,并从那里得到所需要的物质和能量,因此属于消费者,但又最终导致细胞死亡,所又该划为分解者。但是,八年级生物上册第18章”生物圈中的微生物”有一句话:在生态系统中,寄生性微生物和动物一样,属于消费者.
生物学中噬菌斑是什么
噬菌斑即噬菌体侵染细菌细胞,导致寄主细胞溶解死亡.因而在琼脂培养基表面形成的空斑. 将适量的噬菌体和敏感细菌在软琼脂中混合,然后平埔于琼脂培养基上,凝固后保温放置,在培养基平面上的细菌,由于噬菌体的作用被溶菌而形成圆形斑,称为噬菌斑。噬菌斑的大小,从肉眼勉强可见的小形斑直到直径1厘米以上的大形斑不等。一般溶原性噬菌体的噬菌斑中央残存着已溶原化的细胞,故成为混浊噬菌斑。相反,烈性噬菌体则形成透明噬菌斑。另还有透明与混浊部分相混杂的斑驳噬菌斑。在适当条件下,一个噬菌体粒子形成一个噬菌斑。对动物病毒一般是把它少量地接种培养于玻璃试管或器皿的单层培养细胞上。当在它上面铺上一层含有中性红染料的琼脂时,由于被病毒感染而变性的细胞不能摄取染料,在一定时间(天数)后便出现噬菌斑。 噬菌斑是噬菌体感染敏感宿主细菌以后在含受体菌的涂布平板上形成的肉眼可见的透明圈。 在涂布有敏感宿主细胞的固体培养基表面,若接种上相应噬菌体的稀释液,其中每一噬菌体粒子 由于 先侵染和裂解一个细胞,然后以此为中心,再反复侵染和裂解周围大量的细胞,结果就会在菌苔上形成一个具有一定形状、大小、边缘和透明度的噬菌斑。
食品微生物——病毒
一. 填空题:(2)根据噬菌体与宿主的关系可分为烈性噬菌体和温和噬菌体两类。(4)烈性噬菌体的生长繁殖方式,称为裂解反应 。(5) E. coli T4 噬菌体的典型外形是 蝌蚪状。(8)溶源性细胞在正常情况下有大约10-5 细胞 会 发 生 裂解 现 象, 这是由于少数溶源细胞中的 温和噬菌体 变成了 烈性噬菌体 的缘故。(10)一种病毒只含一种核酸 , 即 DNA或 RNA; 植物病毒多为RNA病毒; 噬菌体多为DNA病毒。二. 名词解释:(1)病毒:一类超显微的、无细胞结构的,只含有一种类型核酸的、专性寄生的、以复制进行增殖的、最小的生物体。 (2)噬菌斑:噬菌体感染细菌后,使细菌细胞破裂死亡,连续重复感染使大量的细菌死亡,在长满细菌的平板上,可以看到一个个透明不长细菌的透明小圆斑,称为噬菌斑。(3)烈性噬菌体:侵入宿主菌体后就会改变宿主性质,产生大量子代噬菌体,导致菌体裂解死亡的噬菌体(4)温和噬菌体:进入宿主菌体后,根据生长条件不同,可具有两条截然不同的生长途径:一条是与烈性噬菌体相同的生长路线,引起宿主细胞裂解死亡;另一条是将其核酸整合到细菌染色体上,随细菌染色体的复制而复制,该细菌细胞继续生长繁殖,并被溶原化。这类噬菌体被称为“温和噬菌体”。(5)一步生长曲线:以培养时间为横坐标,以噬菌斑数为纵坐标,定量描述烈性噬菌体生长规律的实验曲线称作一步生长曲线(6)前噬菌体 :附着或整合在溶源性细菌染色体上的温和噬菌体的核酸称为前噬菌体 (7)类病毒:类病毒是无蛋白质外壳、裸露的,仅含一个单股闭合环状的RNA分子的侵染性病原体,是比病毒还小的专性细胞内寄生的分子生物。(8)溶源性细胞:含有温和噬菌体的DNA而又找不到形态上可见的噬菌体粒子的宿主的细胞 三.简答题:(1)病毒的基本特点有哪些? 1. 个体极小,能通过细菌过滤器,在电子显微镜下才可看见。 2. 无细胞结构,化学组成简单,仅含有一种类型的核酸——DNA或RNA。(无细胞壁等结构) 3. 没有酶或酶系极不完全,不能进行独立的代谢。 4. 严格活细胞内寄生。严格的宿主特异性。 5. 繁殖方式简单独特。 6. 它们在活细胞外具有一般化学大分子的特征(无生命),进入宿主细胞又具有生命特征。 7. 对抗生素不敏感,对干扰素敏感。(2)请以大肠杆菌T4噬菌体为例,简述噬菌体的繁殖过程。1吸附 2侵入3增值4组装5释放(3)什么是溶源性细菌?溶源性细菌有哪些特征?含有温和噬菌体的DNA而又找不到形态上可见的噬菌体粒子的宿主细胞叫 溶源性细胞 ①可带着前噬菌体繁殖; ②自发裂解;③诱发裂解;④具有“免疫性”; ⑤溶源性细菌可复愈;⑥可获得一些新的生理特性(4)简述病毒的结构、组成。结构:病毒粒子:核衣壳 (有的 有囊膜 囊膜上有刺突) 结构有对称性:螺旋对称壳体 二十面体对称壳体复合对称结构组成:由蛋白质和核酸构成
某微生物发酵厂的发酵液出现疑似噬菌体感染的异常情况,设计一简便快速实验证实
噬菌体有烈性的和非烈性噬菌体。烈性的噬菌体侵染细菌后会快速造成细菌菌体裂解,培养液呈现清凉透明有破碎残渣。非裂解性的可以铺顶层琼脂板(可以查阅噬菌体滴度的测试实验方案),培养后看顶层琼脂层中有没有噬菌斑,也可以在底层培养基中加些IPTG/X-gal若噬菌体带有lacZ的还有蓝白斑筛选的作用(如M13KE的噬菌斑显现蓝斑)。不知道你的菌是否是抗性菌,可以找些XL1-blue(Tet抗性)加抗性培养一段时间到对数期再接种你认为有噬菌体污染的样品(非Tet抗性)后铺顶层琼脂培养查看噬菌斑。M13噬菌体侵染细菌一般需要细菌带有F-pilus(性菌毛)才可以介导噬菌体的侵染过程。这一类的雄性菌比如TG1、XL1-blue等。
空气中的微生物种类?以及针对不同种类的培养基
没用的东西贴那么多……太不敬业了事实上,自然环境中的微生物有99%是不可以人工培养的,要获得尽量多的空气微生物的培养,就要尽量选择丰富培养基,而不是人工培养基。肉汤培养基也可以。另外LB培养基,牛肉膏蛋白胨培养基都可以的。
生物学 重组DNA都包括什么?
重组DNA是目的基因与DNA载体连接而成的。如果该DNA载体是质粒,则重组DNA就是重组质粒。如果该DNA载体不是质粒而是噬菌体的遗传物质或者其他的,就有别的说法,具体我也不清楚。因为基因工程中经常用大肠杆菌质粒作为DNA载体,所以通常称重组质粒为重组DNA。
高中生物外源DNA必须位于重组质粒的启动子和终止子之间才能进行复制
启动子和终止子是帮助外源DNA表达的,就是控制转录过程的,要想进行复制,需要的是复制原点
是否可以根据基因组大小或基因数量判断生物体的复杂程度,请举例说明
不可以。根据基因组的大小或基因的数量来判断生物体的复杂程度。基因组是指一个生物体内所有遗传信息的总和,人是自然界进化的最复杂的动物,人的基因组最大,但人的基因数量并不是最多的。他们之间可能有关系,但并不能直接用来判断。一些研究人员曾经预测人类约有14万个基因,但最终科学家将人类基因总数定在3万左右,不超过4万,只是线虫或果蝇基因数量的两倍,人有而鼠没有的基因只有300个。如此少的基因数目,却能产生如此复杂的功能,说明基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义;也说明人类的基因较其他生物体而言,更有强大的作用,人类某些基因的功能和控制蛋白质产生的能力与其他生物的不同。
下列哪些基因组特性随生物的复杂程度增加而上升?()
下列哪些基因组特性随生物的复杂程度增加而上升?() A.基因组大小B.基因数量C.基因组中基因的密度D.单个基因的平均大小正确答案:基因组大小;基因数量;单个基因的平均大小
基因组的大小与生物的复杂程度是否有关系
基因组的大小与生物的复杂程度是否有关系基因组大小(size of genome)是指单倍体细胞核中的所含的DNA的总量.在可以进行基因组测序之前,生物学家是用质量来衡量不同生物之间基因组的大小.通常使用的单位为pg(10e-12),这个值简称为C-value.通过简单的换算就可以知道大概的碱基的数量.不过,对于已经测序的基因组,直接数数就可以了,如 vihole所述.不过对于目前测序的基因组还是很少,估计在1千左右,而现存物种按照最保守的估计也有200万种(Ref 1),因此C-value在估计基因含量和生物复杂度方面还是有非常大的应用潜力.
基因组大小与生物体的复杂性直接相关吗
全部人类基因组约有2.91Gbp,约有39000多个基因;平均的基因大小有27kbp目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能基因数量少得惊人:一些研究人员曾经预测人类约有14万个基因,但Celera公司将人类基因总数定在2.6383万到3.9114万个之间,不超过40,000,只是线虫或果蝇基因数量的两倍,人有而鼠没有的基因只有300个。如此少的基因数目,而能产生如此复杂的功能,说明基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义,也说明人类的基因较其他生物体更"有效",人类某些基因的功能和控制蛋白质产生的能力与其他生物的不同。
生物克隆技术 综述
克隆一词是由clone音译而来,在音译名出现以前曾有一个意译名--无性繁殖系,指由单一细胞或共同祖先经有丝分裂得到的细胞群体或有机群体。我们通过细胞培养可以得到一个细胞克隆。 克隆技术简史(小资料) 1938年,第一位现代胚胎学家、德国的汉斯u2022斯皮曼博士建议用成熟的细胞核植入卵子的办法进行哺乳动物克隆。 1952年,运用斯皮曼的构想,出现世界上第一只克隆青蛙。 1962年,约翰u2022格登宣布他用一个成熟细胞克隆出一只蝌蚪,从而引发了关于克隆的第一轮辩论。 1984年,斯蒂恩u2022威拉德森用胚胎细胞克隆出一只羊。这是第一例得到证实的克隆哺乳动物。 1995年10月,美国麻省麻醉学家维坎蒂博士利用改良组织工程,令老鼠背上长出人耳,从而使人类能在实验室培育出可向人类移植的皮肤和软骨。 1996年7月,英国苏格兰罗斯林研究所成功地用羊乳腺细胞克隆出小绵羊"多利"。 1997年10月,英国专家研制出一个无头的青蛙胚胎,令其有关技术可以制造人类器官以便作为医学移植用途。 1999年7月,日本科学家克隆出多头牛,并将其肉类推向市场出售。 2000年4月,美国先进细胞工程公司克隆出6头比它们本身实际年龄年轻的小牛。 2000年,美国科学家用无性繁殖技术成功克隆出一只猴子"泰特拉",这意味着克隆人本身已没有技术障碍。 2001年11月25日,美国马萨诸塞州的生物技术公司成功克隆出人类胚胎,在克隆技术上迈出了重要一步。不过该公司表示其目的不是为了克隆人,而是为了获得能够用于治疗帕金森综合征和青少年糖尿病等各种疾病的干细胞。 克隆是什么? 克隆一词是由clone音译而来,在音译名出现以前曾有一个意译名--无性繁殖系,指由单一细胞或共同祖先经有丝分裂得到的细胞群体或有机群体。我们通过细胞培养可以得到一个细胞克隆。在微生物实验时,通过倒平皿,我们可以得到一个个的菌落,这些菌落其实就是细菌的克隆。可见克隆原来是个名词,指一群细胞或一群个体。随着分子生物学的发展,出现了核移植与基因工程之类的操作。核移植操作可以得到重建细胞,重建细胞可以繁殖成一个无性系;基因工程操作可以将某一被选定的基因拼接到质粒的复制子上,随着复制子的复制也能得到DNA分子的无性系。于是,有人就把这类操作称作克隆,即将clone一词由名词转化成动词,并将核移植称为 nuclear cloning(核克隆),通过基因工程得到DNA分子的无性系称为molecular cloning(分子克隆)。在这里克隆是一种实现无性繁殖(asexual reproduction)的操作,是一种显微操作或分子生物学操作,而不是一般意义上的无性繁殖(或无性繁殖操作)。这也许正是克隆一词能够存在而不被无性繁殖替代的原因。 克隆羊 多利羊又称克隆羊,其实是用核克隆技术产生的羊。有人说,只有多利羊才是真正的克隆羊,其他报导,如克隆猪、克隆牛等,由于它们是由胚胎细胞发育而成的,而胚胎细胞是有性繁殖产生的,所以,不是真正意义上的克隆。这是一种误解,是由于对有性过程在时间上把握不准所造成的。有性过程到受精卵、即合子形成时即告结束,合子分裂一旦开始即与有性过程无关了。如果说分裂后的胚胎细胞是有性繁殖产生的,那么,体细胞追究下去也是有性繁殖产生的。但事实上它们都是由合子经有丝分裂逐渐产生的。这就是说,有性繁殖实际上是经过一次有性过程和许多次无性过程,最后产生一个成活的后代而实现的。从胚胎中取出一个细胞使之发育成一个个体,这显然应属于无性繁殖。所以,从这个意义上讲,杜里舒是克隆技术(细胞克隆技术)的创始人,他的将两分裂球时期的细胞分开,使之发育成两个海胆的实验,是最早的克隆实验。而人类的同卵双生双胞胎,就是经天然细胞克隆化产生的。而克隆猪、克隆牛,如果是经核移植育成的,则不管供核细胞是来自早期胚胎细胞,还是已分化细胞,均属于真正意义上的克隆技术,而且是比杜里舒的水平高得多的克隆技术。 走近"基因药物 人们为了实现某种目的,将克隆的外源目的基因(一般是人的DNA ),整合到动物受精卵的染色体内,使之在动物体内得到表达并能稳定地遗传给后代,这种含有外源基因的动物就叫做转基因动物。从事这项研究的科学家们说,一头转基因动物就是一座天然基因药物制造厂,不仅可以大大降低成本,而且还能够扩大生产,获得更多的基因药物。 利用转基因动物来生产基因药物是一种全新的生产模式,与传统的制药技术相比具有无可比拟的优越性。以美国为例,凝血因子Ⅷ的年需要量约为120 克。过去,这120克凝血因子Ⅷ需要120万升血浆提取,以每人献血200 毫升计,需600 名献血员提供血浆才能满足。而用转基因牛来生产,一头牛每年的奶产量是1万公斤,如每公斤乳汁中可制造10毫克凝血因子Ⅷ的话,那就只需1.2头这种牛即可满足需要。再以白蛋白为例,美国的年需要量为10万克,过去需从200 万升血浆中提取,而用转基因牛来生产,以每公斤乳汁制造2 克的蛋白计算,就只需5000头牛即可解决。此外,从人血中提取血清蛋白质可能产生的肝炎、艾滋病等传染性疾病,也可因此而得以避免。 生物技术是当今最为活跃的一门技术。1971年,诺贝尔奖获得者保罗u2022伯格首次成功地把两种不同的基因拼接在一起,使生物技术发展到基因重组与移植的新阶段。 此后,基因重组技术取得了一个个丰硕成果。1978年合成了人工胰岛素,1979年实现了生长激素基因在大肠杆菌中的表达,1982年研制成功了人工干扰素,基因制药从此走上了产业化道路。但是,目前的基因药物是通过基因重组技术培育大肠杆菌和动物细胞来制造的,而大肠杆菌这类低等生物是不可能生产出结构复杂的药物,动物细胞培养的成本又太高。所以,利用基因重组与移植技术来培育转基因动物生产药物便应运而生了在利用转基因动物提取药物方面,英国科学家首开先河。1997年年底,英国PPL治疗学公司率先利用克隆"多利"所采用的"细胞核转变"法,培育出200头携带人体基因的绵羊,并成功地从奶汁中提取了α-1抗胰蛋白酶。这是科学家首次从遗传工程培育的绵羊的奶中,提取可用于治疗人类疾病的药物成分,为建立"动物药厂" 打下了基础。随后,芬兰科学家将人体的促红细胞生长素基因,植入乳牛的受精卵中,创造了一种能生产出促红细胞生长素的乳牛。从理论上说,这种乳牛一年可提取60-80千克促红生长素,比目前全世界的使用量还多。 假如你是足球迷,你肯定希望世上再多一个罗纳尔多;假如你是音乐爱好者,你当然愿意再拥有一个贝多芬;再有一个爱迪生、爱因斯坦也是许多人所梦想的。古希腊有位哲学家曾经说过"世上不可能有两片完全相同的叶子",换句话,以上的梦想都只能是空想,没有实现的可能。但是,现在情况却有了变化,有一种新兴生物技术"克隆",或许可以做到这一点。那么克隆是什么呢?它奇妙在哪里呢?今天,就让我们一起走近——"奇妙的克隆"。 我们身边哪些动、植物先天具有克隆的本领?具有克隆能力的动植物有:土豆、蚯蚓、桑树,丝瓜藤,吊兰.水母,海参、仙人掌。水母在遭到伤害后,伤口会自动补好。章鱼的触手可以再生。龙虾的大钳子掉了 ,还会再长出来。还有秋海棠、富贵竹,它们插枝即活。壁虎。它遇到危险时,就将自己的尾巴断掉,然后再长出来。 能不能找出这些天生具有克隆本领的动植物的共同点,用自己的话说说克隆是什么?不由生殖细胞结合产生的后代。 克隆技术可以造福于人类:能使不具备繁殖能力的动物诸如骡扩大繁殖,还能挽救濒危动物。 假如你也掌握了克隆技术,你想克隆什么呢?为什么要克隆它?要求:1、想法要奇妙;2、想法要有益于人类;3、表达要有条理,语气、语调适当。 如果让我克隆,我会克隆无数对明澈的眼睛。许多人认为有一双好眼睛是理所当然的事,而我并不这么认为。当你看到那毫无光芒的双眼,听到期盼光明的心灵的呼唤,难道你的心灵没有震动吗?上天对他们不公,就让科学来为他们创造光明,就让社会让他们体会真爱。我坚信"科技以人为本"并不是空话。所以我要克隆眼睛,让更多的人重见光明. 我想克隆恐龙。因为我喜欢恐龙,想再现恐龙时代的盛景。而且具备克隆恐龙的条件,因为恐龙时代的南极有可能处在温带地区,当恐龙死后尸体藏在南极中,而此时的南极很可能已在冰天雪地中,由于寒冷可防止身体的腐化,所以可以提取恐龙的DNA,从而克隆恐龙,这样也可以使后代开阔眼界。 我不主张象他那样去克隆一些史前生物,如恐龙、猛蚂等。因为任何生物的生存与灭绝都不是人类所能控制的,人类应该严格遵守"自然法则",让生物的发展顺其自然。如果再回到从前,就可能破坏生态平衡。 我想克隆水,目前世界上的淡水资源严重缺乏,已无法维持人类生存,而人类仍在无限制地浪费水,所以我想克隆水。 我要克隆粮食,拯救非洲正在挨苦受饿的人们,使他们过上温饱的日子。 我们都知道,热带雨林是地球之肺。而亚马逊平原是世界上最大的热带雨林,占地球上热带雨林总面积的50%,达650万平方公里。这里自然资源丰富,物种繁多,被称为"生物学家的天堂"。然而,亚马逊却没有因为它的富有得到人们的厚爱。70年代以来,人们的滥砍滥伐使其三分之一的面容消失在我们眼前,这将意味着维持人类生存的氧气将减少五分之一。所以,我想克隆亚马逊热带雨林,将其安放在撒哈拉沙漠上,使之净化环境。 我反对刚才三位同学的说法。他们的想法很好,表达了他们忧国忧民之心,表达了他们的美好愿望。可是水、热带雨林、粮食没有细胞,如何克隆?(众笑)(有人小声插话):水可以的,有水分子。 如果我有克隆的技术,我会克隆孙悟空,因为他无所不能,可以实现我们很多改变社会的理想。(众大笑) 师:感谢这些同学给大家带来的大胆的、新奇的"克隆理想",不管它们符不符和科学原理,但都表现了大家的美好愿望,希望科技能来社会的进步,使人类的生活更幸福!围绕"克隆技术造福人类?!"的辩题展开讨论。) 师:辩论要求:(1)语言清晰、流畅,声音洪亮;(2)观点鲜明,论据充足;(3)驳斥对方观点时既要有"理",又要有"礼"。 (以"克隆技术能造福人类"为正方,"克隆技术不能造福人类"为反方展开辩论) 正方:我认为"克隆技术能造福人类",课文的第四章节不是非常详细地介绍了克隆对人类的作用吗?如能使不具备繁殖能力的动物扩大繁殖,据有关报道,公驴和母马所生出来的杂种动物——骡,如何繁殖这些优良品种呢?只能用克隆。还能挽救如熊猫这类繁殖能力低的濒危动物。 反方:我觉得克隆无益于人类。你别不相信,请听我慢慢道来。(停顿,由于太激动,又重复了一遍,众笑)首先克隆正如正方辩友所说,的确可以挽救濒危动物,但你可曾想到,这样的克隆会破坏动物种群的正常发展,使动物走向衰弱,就算可以救一时,难道可以救一世吗?我想不可能。有人说克隆可以使动植物再生,有没有想过,只要人类不刻意破坏,这样的生态平衡已维持了千万年,你这样无限制的克隆,是否破坏了它的食物链,又是另一种生态平衡的破坏呢? 正方:我听说在亚马逊的热带雨林中每天都要消失近百种植物,所以克隆能挽救一部分植物,虽然不是全部,但仍能部分保存。现在的克隆技术虽然不是十分发达,但我相信今后克隆水平会更好,这时克隆就有它的用武之地了,总不能等到地球全部荒芜才研究克隆吧? 反方(冷笑):对方辩友真是对未来充满希望啊!可是这也证明了这只是你的美好想象,寄希望于克隆技术的提高,而事实上呢,经过了247次失败后,才得到了"多利"克隆小绵羊。在这个过程中需要伤害多少动物啊,这与我们克隆的初衷不是背道而驰吗? 正方:失败乃成功之母嘛!(众笑)现在的克隆技术或许不发达,但在今后我相信人类的克隆水平会越来越好,克隆出来的动植物会越来越优异,象失败247次这样的事将不再发生,它最终会造福于人类。而且克隆对于研究有些疾病和研究人的寿命有不可低估的作用。当某一天我们自身的某个器官出了问题,就可以从先前克隆的胚胎中取出这个器官进行培养,然后替换自己病变的器官。我们就再也不必害怕疾病了。所以克隆对人类还是有益的。 反方:你还嫌世界上的人口不多吗?如果一有严重的疾病就换器官,人不是都可以长生不老?如果这样,地球人口增长率岂不达到极点,地球不就要出现危机了吗? 正方:或许那时人们可以到其他星球中生活了!(众笑) 反方:我想说说克隆人有哪些危害。(反方同学鼓掌)比如,如果克隆的供体细胞发生变异,或者培养胚胎的培养基因与科学家开了小小的玩笑,克隆出一个废品,我们能象对待阿狗阿猫那样处置他们吗?器官移植,供体匮乏,能不能未雨绸缪,为自己克隆一个器官仓库,以供将来不测之需?如果能,人们能够坦然从与我们一样五官齐全,表情丰富的克隆人身上摘下一只肾,挖走有一只眼吗?人类早就期望借助机器人,从繁重或危险的劳动中解脱,但再灵巧的机器人也是笨拙难如人意。能不能克隆一个"我"的替代品,赋予他灵巧的四肢和绝对服从的意志?如果那样,是不是有一天觉醒的克隆人会向我们呐喊:"王侯将相,宁有种乎?"(反方同学热烈鼓掌,并大声叫好) 依样画葫芦克隆出的一个新生命,他们是儿子,还是弟弟?如果面对一群面貌、体态、风姿一样的克隆人,我们如何确认他们的身份?如果他们犯罪,我们又有什么手段缉拿真凶?再说,人类居住的地球早已因为人口爆炸难堪重荷,我们还有什么理由用另一种方法生产自身?(再次响起掌声) 正方(激动地):事物总有它的两面性,你不能十分果断地判断它是好是坏。我认为一个技术存在就一定有它存在的理由。你不能否认它有对人类造福的一面,不能将它一棍子打死。克隆技术能否为人类造福是要看它克隆的对象是什么,在什么领域,它固然有坏处,是因为任何事都有它的双面性,不能是纯粹的好与坏,所以不能说克隆技术是绝无益处的。 师(做暂停的动作,学生依然激动万分):同学们各抒己见,对此提出了不少看法,或许不够深刻,却是朴素而真实的。坦白地说,我在这方面的知识未必比你们高深,你们的发言给了我启发。克隆技术取得突破性进展,世界为之轰动,它对我们人类究竟是利大于弊,还是弊大于利呢?现在下结论还为时过早,这篇课文里引用了诺贝尔奖获得者、著名分子生物学家J.D.沃森的话作结束语: "许多生物学家,特别是那些从事无性繁殖研究的科学家,将会严肃地考虑它的含义,并展开科学讨论,用以教育世界人民。",这也正是我们所期待的,我们希望"克隆技术造福人类"。
高中生物基因工程问题:在获取目的基因时,既然可以制作基因探针,为什么不将此作为目的基因
目的基因应为所需的基因完整片段,而基因探针可以是该目的基因中的一个小片段
真核生物基因转录前水平的调节主要有哪些方式如题 谢谢了
1.基因丢失:体细胞分化过程必须将某些基因永久性的关闭,最简单有效的方式就是将其丢失。2.基因扩增:发育分化、环境条件的改变,对某些产物的需要量急剧增加--增加该基因的拷贝数。3、基因重排:某些基因片段改变原来的书顺序重新排列。4、甲基化修饰,脊椎动物,DNA上特定的CpG序列的C处可发生甲基化修饰。5、染色质结构的修饰。采纳哦
以大肠杆菌为例,详细阐述原核生物的转录过程
乳糖(lac)操纵子由调节基因,启动基因、操纵基因和三个结构基因lacZ、lacY、lacA组成。 调节基因lacI组成型表达,编码阻遏蛋白,既有与操纵基因lacO结合的位点,也有与诱导物结合的位点。当诱导物与阻遏蛋白结合时,可改变阻遏蛋白的构象,使其无法与lacO结合。阻遏蛋白具有阻止转录和识别小分子诱导物的双重性,因此它的活性状态直接决定启动基因是开启或关闭。 当缺乏乳糖时,阻遏蛋白以活性状态结合在lacO上,这就影响了RNA聚合酶与lacP的结合,并阻碍RNA聚合酶通过lacO,这样结构基因就无法转录;当乳糖存在时,因作为诱导物的乳糖与阻遏蛋白结合,改变了它的构象,成为失活构象而脱离lacO,于是RNA聚合酶就可以与启动基因结合并开始转录。
高中生物里讲的探针到底是什么东西
基因探针,即核酸探针,是一段带有检测标记,且顺序已知的,与目的基因互补的核酸序列(DNA或RNA)。基因探针通过分子杂交与目的基因结合,产生杂交信号,能从浩翰的基因组中把目的基因显示出来。根据杂交原理,作为探针的核酸序列至少必须具备以下两个条件:①应是单链,若为双链,必须先行变性处理。②应带有容易被检测的标记。它可以包括整个基因,也可以仅仅是基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。
高中生物里讲的探针到底是什么东西用于检测什么,原理
你好,很高兴回答你的问题。探针就是DNA弹针。用于检测特定的DNA片段。基因探针,即核酸探针,是一段带有检测标记,且顺序已知的,与目的基因互补的核酸序列(DNA或RNA)。基因探针通过分子杂交与目的基因结合,产生杂交信号,能从浩翰的基因组中把目的基因显示出来。根据杂交原理,作为探针的核酸序列至少必须具备以下两个条件:①应是单链,若为双链,必须先行变性处理。②应带有容易被检测的标记。它可以包括整个基因,也可以仅仅是基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。进行分子突变需要大量的探针拷贝,后者一般是通过分子克隆(molecular cloning)获得的。克隆是指用无性繁殖方法获得同一个体、细胞或分子的大量复制品。当制备基因组DNA探针进,应先制备基因组文库,即把基因组DNA打断,或用限制性酶作不完全水解,得到许多大小不等的随机片段,将这些片段体外重组到运载体(噬菌体、质粒等)中去,再将后者转染适当的宿主细胞如大肠肝菌,这时在固体培养基上可以得到许多携带有不同DNA片段的克隆噬菌斑,通过原位杂交,从中可筛出含有目的基因片段的克隆,然后通过细胞扩增,制备出大量的探针。为了制备cDNA 探针,首先需分离纯化相应mRNA,这从含有大量mRNA的组织、细胞中比较容易做到,如从造血细胞中制备α或β珠蛋白mRNA。有了mRNA作模板后,在逆转录酶的作用下,就可以合成与之互补的DNA(即cDNA),cDNA与待测基因的编码区有完全相同的碱基顺序,但内含子已在加工过程中切除。寡核苷酸探针是人工合成的,与已知基因DNA互补的,长度可从十几到几十个核苷酸的片段。如仅知蛋白质的氨基酸顺序量,也可以按氨基酸的密码推导出核苷酸序列,并用化学方法合成。
什么叫生物探针
定义1:分子生物学和生物化学实验中用于指示特定物质(如核酸、蛋白质、细胞结构等)的性质或物理状态的一类标记分子。 所属学科:生物化学与分子生物学定义2:在分子杂交中用来检测互补序列的带有标记的单链DNA或RNA片段。 所属学科:细胞生物学、遗传学探针是一小段单链DNA或者RNA片段(大约是20到500bp),用于检测与其互补的核酸序列。双链DNA加热变性成为单链,随后用放射性同位素(通常用磷-32)、萤光染料或者酶(如辣根过氧化物酶)标记成为探针。磷-32通常被掺入组成DNA的四种核苷酸之一的磷酸基团中,而荧光染料和酶与核酸序列以共价键相连。 当将探针与样品杂交时,探针和与其互补的核酸(DNA或RNA)序列通过氢键紧密相连,随后,未被杂交的多余探针被洗去。最后,根据探针的种类,可进行放射自显影、萤光显微镜、酶联放大等方法来判断样品中是否,或者何位置含有被测序列(即与探针互补的序列)。
高中生物DNA探针含义是什么?运行原理?
DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获得DNA探针数量很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针。这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类Alu探针。这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,目前分子杂交技术用于细菌的分类和菌种鉴定比之G+C百分比值要准确的多,是细菌分类学的一个发展方向。加之分子杂交技术的高敏感性,分子杂交在临床微生物诊断上具有广阔的前景。细菌的基因组大小约5×106bp,约含3000个基因。各种细菌之间绝大部分DNA是相同的,要获得某细菌特异的核酸探针,通常要采取建立细菌基因组DNA文库的办法,即将细菌DNA切成小片段后分别克隆得到包含基因组的全信息的克隆库。然后用多种其它菌种的DNA作探针来筛选,产生杂交信号的克隆被剔除,最后剩下的不与任何其它细菌杂交的克隆则可能含有该细菌特异性DNA片段。将此重组质粒标记后作探针进一步鉴定,亦可经DNA序列分析鉴定其基因来源和功能。因此要得到一种特异性DNA探针,常常是比较繁琐的。探针DNA克隆的筛选也可采用血清学方法,所不同的是所建DNA文库为可表达性,克隆菌落或噬斑经裂解后释放出表达抗原,然后用来源细菌的多克隆抗血清筛选阳性克隆,所得到多个阳性克隆再经其它细菌的抗血清筛选,最后只与本细菌抗血清反应的表达克隆即含有此细菌的特异性基因片段,它所编码的蛋白是该菌种所特有的。用这种表达文库筛选得到的显然只是特定基因探针。 对于基因探针的克隆尚有更快捷的途径。这也是许多重要蛋白质的编码基因的克隆方法。该方法的第一步是分离纯化蛋白质,然后测定该蛋白的氨基或羟基末端的部分氨基酸序列,然后根据这一序列合成一套寡核苷酸探针。用此探针在DNA文库中筛选,阳性克隆即是目标蛋白的编码基因。值得一提的是真核细胞和原核细胞DNA组织有所不同。真核基因中含有非编码的内含子序列,而原核则没有。因此,真核基因组DNA探针用于检测基因表达时杂交效率要明显低于cDNA探针。 DNA探针(包括cDNA探针)的主要优点有下面三点:①这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备方法简便。②DNA探针不易降解(相对RNA而言),一般能有效抑制DNA酶活性。③DNA探针的标记方法较成熟,有多种方法可供选择,如缺口平移,随机引物法,PCR标记法等,能用于同位素和非同位素标记. DNA探针可以用来诊断寄生虫病,现场调查及虫种鉴定,可用于病毒性肝炎的诊断,遗传性疾病的诊断,可用于改造变异的基因,可用于检测饮用水病毒含量。具体方法:用一个特定的DNA片段制成探针,与被测的病毒DNA杂交,从而把病毒检测出来。与传统方法相比具有快速、灵敏的特点。传统的检测一次,需几天或几个星期的时间,精确度不高,而用DNA探针只需一天。据报道,能从1t水中检测出 10个病毒来,精确度大大提高。 DNA探针是一个单链的RNA,通过这条特定的RNA,让RNA上的碱基和目标DNA的碱基配对(目标DNA已经解旋,并分成两条链),
生物学的探针是什么概念?
基因探针(probe)就是一段与目的基因或DNA互补的特异核苷酸序列,它可以包括整个基因,也可以仅仅是/基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。1.探针的来源DNA探针根据其来源有3种:一种来自基因组中有关的基因本身,称为基因组探针(genomicprobe);另一种是从相应的基因转录获得了mRNA,再通过逆转录得到的探针,称为cDNa探针(cDNaprobe)。与基因组探针不同的是,cDNA探针不含有内含子序列。此外,还可在体外人工合成碱基数不多的与基因序列互补的DNA片段,称为寡核苷酸探针。2.探针的制备进行分子突变需要大量的探针拷贝,后者一般是通过分子克隆(molecularcloning)获得的。克隆是指用无性繁殖方法获得同一个体、细胞或分子的大量复制品。当制备基因组DNA探针进,应先制备基因组文库,即把基因组DNA打断,或用限制性酶作不完全水解,得到许多大小不等的随机片段,将这些片段体外重组到运载体(噬菌体、质粒等)中去,再将后者转染适当的宿主细胞如大肠肝菌,这时在固体培养基上可以得到许多携带有不同DNA片段的克隆噬菌斑,通过原位杂交,从中可筛出含有目的基因片段的克隆,然后通过细胞扩增,制备出大量的探针。为了制备cDNA探针,首先需分离纯化相应mRNA,这从含有大量mRNA的组织、细胞中比较容易做到,如从造血细胞中制备α或β珠蛋白mRNA。有了mRNA作模板后,在逆转录酶的作用下,就可以合成与之互补的DNA(即cDNA),cDNA与待测基因的编码区有完全相同的碱基顺序,但内含子已在加工过程中切除。
生物上基因诊断的步骤是什么?
1、核酸杂交:酸杂交是从核酸分子混合液中检测特定大小的核酸分子的传统方法。其原理是核酸变性和复性理论。即双链的核酸分子在某些理化因素作用下双链解开,而在条件恢复后又可依碱基配对规律形成双边结构。杂交通常在一支持膜上进行,因此又称为核酸印迹杂交。根据检测样品的不同又被分为DNA印迹交(Southern blot hybridization )和RNA印迹杂交(Northern blot hybridization)。其基本过程包括下列几个步骤。(1)制备样品:首先需要从待检测组织样品提取DNA或RNA。DNA应先用限制性内切酶消化以产生特定长度的片段,然后通过凝胶电泳将消化产物按分子大小进行分离。一般来说DNA分子有其独特的限制性内切酶图谱,所以经酶切消化和电泳分离后可在凝胶上形成特定的区带。再将含有DNA片段的凝胶进行变性处理后,直接转印到支持膜上并使其牢固结合。这样等检测片段在凝胶上的位置就直接反映在了转印在膜上。RNA样品则可直接在变性条件下电泳分离,然后转印并交联固定。(2)制备探针:探针是指一段能和待检测核酸分子依碱基配对原则而结合的核酸片段。它可以是一段DNA、RNA或合成的寡核苷酸。在核酸杂交实验中,探针需要被标记上可直接检测的元素或分子。这样,通过检疫与恩印膜上的核酸分子结合上的探针分子,既可知道被检测的核酸片段在膜上的位置,也就是在电泳凝胶上的位置,也就知道了它的分子大小。(3)杂交:首先要进行预杂交,即用非特异的核酸溶液封闭膜上的非特异性结合位点。由于转印在膜上的核酸分子已经是变性的分子,所以杂交过程中只需变性标记好的探针,再让探针与膜在特定的温度下反应,然后洗去未结合的探针分子即可。(4)检测:检测的方法依标记探针的方法而异。用放射性同位素标记的探针需要用放射自显影来检测其在膜上的位置;而如果是用生物素等非同位素方法标记的探针则需要用相应的免疫组织化学的方法进行检测。
什么叫做生物探针
生物学意义的探针(probe)是指能与特定靶DNA分子发生特异性作用、并能被特定方法探知的分子.DNA指纹技术应用的核酸分子探针是指经示踪物(即标记物)标记的、能与互补靶核酸序列实现退火杂交的已知核昔酸片段.核酸分子探针可分为基因组DNA探针、cDNA探针、RNA探针和人工合成的寡核苷酸探针等.DNA指纹检测多用基因组DNA探针,另有一部分是参照VNTR位点的核心序列由人工合成.制备DNA指纹图时选择探针与选择限制酶同样重要,探针选择的基本原则是:探针必须具备高度特异性,探针制备与标记容易,以及探针的杂交必须稳定等因素.
真核生物基因表达的dna水平调控包括什么方式
1、转录起始水平。这一环节是调控的最主要环节,由对基因转录活性的调控来完成,包括基因的空间结构、折叠状态、DNA上的调控序列、与调控因子的相互作用等。a.活化染色质:在真核生物体内,RNApol与启动子的结合受染色质结构的限制,需通过染色质重塑来活化转录。常态下,组蛋白可使DNA链形成核小体结构而抑制其转录,转录因子若与转录区结合则基因具有转录活性。因而基础水平的转录是限制性的,核小体的解散时必要前提,组蛋白与转录因子之间的竞争结果可以决定是否转录。组蛋白的抑制能力可因其乙酰化而降低。另外,由于端粒位置效应或中心粒的缘故,抑或是收到一些蛋白的调控,真核生物细胞可能出现10%的异染色质,异染色质空间上压缩紧密,不利于转录。b.活化基因:真核生物编码蛋白的基因含启动子元件和增强子元件(启动子:在DNA分子中,RNA聚合酶能够识别、结合并导致转录起始的序列。增强子:指能使与它连锁的基因转录频率明显增加的DNA序列。),转录因子与启动子元件相互作用调节基因表达;转录激活因子与增强子元件相互作用,再通过与结合在启动子元件上的转录因子相互作用来激活转录。两种元件以相同的机制作用于转录。真核生物RNApol对启动子亲和力很小或没有,转录起始依赖于多个转变路激活因子的作用,而若干个调节蛋白与特定DNA序列的结合大大提高了活化的精确度,无疑是这一作用机制的一大优势。在这一作用中,增强子与适当的调节蛋白作用以增加临近启动子的转录是没有方向性的,典型的增强子可以出现在转录起始位点上游或下游。RNApol与启动子的结合一般需要三种蛋白质的作用,即基础转录因子(又名通用转录因子)、转录激活因子和辅激活因子。能直接或间接地识别或结合在各类顺式作用元件上,参与调控靶基因转录的蛋白质又名转录因子。基础转录因子与RNApol结合成全酶复合物并结合到启动子上,转录激活因子可以以二聚体或多聚体的形式结合到DNA靶位点上,远距离或近距离作用域启动子。在远距离作用时,往往还会有绝缘子参与,以阻断邻近的增强子对非想关基因的激活;在近距离作用时,结构转录因子可以改变DNA调控区的形状,使其他蛋白质相互作用、激活转录。2、转录后水平。真核生物mRNA前体须经过5"-加帽、3"-加尾以及拼接过程、内部碱基修饰才能成为成熟度的mRNA,加帽位点与加尾位点、拼接点的选择就成了调控的手段。a.5"-加帽:几乎所有的真核生物和病毒mRNA的5"端都具有帽子结构,其作用为保护mRNA免遭5"外切酶降解、为mRNA的核输出提供转运信号和提高翻译模板的稳定性和翻译效率。实验证实,对于通过滑动搜索起始的转录过程来说,mRNA的翻译活性依赖于5"端的帽子结构。b.3"-加尾:3"UTR序列及结构调节mRNA稳定性和寿命
真核生物转录前的基因调节主要有哪些方式
1.借助甲基化修饰DNA,可关闭基因活性。2,核心组蛋白乙酰化对核小体结构的影响,组蛋白被修饰后相信核 小体的聚合受阴,3,染色质的异染色质化可关闭基因的活性。
通过基因调节机制而发挥生物学效应的激素有哪些
通过基因调节机制而发挥生物学效应的激素有哪些 激素(Hormone)音译为荷尔蒙。它是我们生命中的重要物质。 激素是内分泌细胞制造的。 人体内分泌细胞有群居和散住两种。 群居的形成了内分泌腺,如脑壳里的脑垂体,脖子前面的甲状腺、甲状旁腺,肚子里的肾上腺、胰岛、卵巢及阴囊里的睾丸。 散住的如胃肠粘膜中有胃肠激素细胞,丘脑下部分泌肽类激素细胞等。 每一个内分泌细胞都是制造激素的小作坊。 大量内分泌细胞制造的激素集中起来,便成为不可小看的力量。 激素是化学物质。 目前对各种激素的化学结构基本都搞清楚了。 按化学结构大体分为四类。 第一类为类固醇,如肾上腺皮质激素、性激素。 第二类为氨基酸衍生物,有甲状腺素、肾上腺髓质激素、松果体激素等。 第三类激素的结构为肽与蛋白质,如下丘脑激素、垂体激素、胃肠激素、降钙素等。 第四类为脂肪酸衍生物,如前列腺素。 激素是调节机体正常活动的重要物质。它们中的任何一种都不能在体内发动一个新的代谢过程。它们也不直接参与物质或能量的转换,只是直接或间接地促进或减慢体内原有的代谢过程。如生长和发育都是人体原有的代谢过程,生长激素或其他相关激素增加,可加快这一进程,减少则使生长发育迟缓。激素对人类的繁殖、生长、发育、各种其他生理功能、行为变化以及适应内外环境等,都能发挥重要的调节作用。一旦激素分泌失衡,便会带来疾病。 激素只对一定的组织或细胞(称为靶组织或靶细胞)发挥特有的作用。人体的每一种组织、细胞,都可成为这种或那种激素的靶组织或靶细胞。而每一种激素,又可以选择一种或几种组织、细胞作为本激素的靶组织或靶细胞。如生长激素可以在骨骼、肌肉、结缔组织和内脏上发挥特有作用,使人体长得高大粗壮。但肌肉也充当了雄激素、甲状腺素的靶组织。 生长激素 我们通常所说的激素是指糖皮质激素。它是肾上腺分泌的几种类固醇物质的总称,医生处方中的”强的松”,”考的松”,氢化考的松”,”地塞米松”等即为其人工合成物。这旨一种维持生命所必需的激素,能够升高血糖,促进蛋白质分解,促进脂肪动员以提供热量,并有增强心脏功能,促进食欲,退热,抑制机体的免疫过程等作用,所以常用于哮喘,肾病综合症和许多自身免疫性疾病的治疗,也常用于危重病人的抢救,对肾上腺皮质功能低下者更是必需。 糖皮质激素对维持体内脂肪组织的正常分布起着重要作用。长期服用激素会导致头颈部及躯干部(尤其是腹部)脂肪聚积,而四肢脂肪减少,体内总脂肪量增加,外形上呈”向心性肥胖”,即面如满月,躯干肥胖,而四肢相对瘦小。但激素的这种副作用与其种类,疗程,总剂量等因素有关,如地塞米松引起食欲亢进,向心性肥胖的作用较为明显,而氟羟强的松龙使食欲减退,故而较少出现向心性肥胖,但可引肌软弱,神经系统抑制等。一般疗程越长,剂量越大,肥胖也越明显。停用激素后,体重会逐渐下降,体型也逐渐恢复。 释放激素 参考资料: 激素的调节 为了保持机体内主要激素间的平衡,在中枢神经系统的作用下,有一套复杂系统。激素一般以相对恒定速度(如甲状腺素)或一定节律(如皮质醇,性激素)释放,生理或病理因素可影响激素的基础性分泌,也由传感器监测和调节激素水平。反馈调节系统是内分泌系统中的重要自我调节机制,中枢神经系统的信息经过下丘脑,垂体到达外周腺体,由靶细胞发挥生理效应,其中任何一段均受正或负反馈调节的控制。 激素的传输 肽类激素在循环中主要呈游离形式,固醇激素和甲状腺激素(除醛固醇酮外)均与高亲和力的特异血浆蛋白结合,仅少量(约1-10%)呈有生物活笥的游离状态。这种对结合与游离比例控制可以辅助性地调节腺体功能,既可以调节生物活性,又可以调节半衰期。 激素与受体 激素需与特异的受体结合以启动其生理活性。不同激素可有不同的过程;多肽激素和儿茶酚胺与细胞表面受体结合,通过对基因的影响发挥其生物效应;胰岛素与细胞表面受体结合后共同进入细胞内形成胰体素-受体复合物,再与第二受体结合产生生物效应,激素与受体的结合为特异性的,并且是可逆性的,符合质量与作用定律。
原核生物基因表达调控大的调节机制有哪些类型
上述问题决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用,在转录调控中,现已搞清楚了细菌的几个操纵子模型,现以乳糖操纵子和色氨酸操纵子为例予以说明。 法国巴斯德研究所著名的科学家Jacob和Monod在实验的基础上于1961年建立了乳糖操纵子学说。大肠杆菌乳糖操纵子包括4类基因:①结构基因,能通过转录、翻译使细胞产生一定的酶系统和结构蛋白,这是与生物性状的发育和表型直接相关的基因。乳糖操纵子包含3个结构基因:lacZ、lacY、lacA。LacZ合成β—半乳糖苷酶,lacY合成透过酶,lacA合成乙酰基转移酶。②操纵基因O,控制结构基因的转录速度,位于结构基因的附近,本身不能转录成mRNA。③启动基因P,位于操纵基因的附近,它的作用是发出信号,mRNA合成开始,该基因也不能转录成mRNA。④调节基因i:可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白。操纵基因、启动基因和结构基因共同组成一个单位——操纵子(operon)。
真核生物基因转录前水平的调节主要有哪些方式如题
真核生物基因表达调控与原核生物有很大的差异。原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征时能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过程,并使生物的组织和器官在一定的环境条件范围内保持正常的生理功能。真核生物基因表达调控据其性质可分为两大类:第一类是瞬时调控或叫可逆调控,相当于原核生物对环境条件变化所做出的反应。瞬时调控包括某种代谢底物浓度或激素水平升降时及细胞周期在不同阶段中酶活性和浓度调节。第二类是发育调节或称不可逆调控,这是真核生物基因表达调控的精髓,因为它决定了真核生物细胞分化,生长,和发育的全过程。据基因调控在同一时间中发生的先后次序,又可将其分为转录水平调控,转录后的水平调控,翻译水平调控及蛋白质加工水平的调控,研究基因调控应回答下面三个主要问题:①什么是诱发基因转录的信号?②基因调控主要是在那个环节(模板DNA转录,mRNA的成熟或蛋白质合成)实现的?③不同水平基因调控的分子机制是什么? 回答上述这三个问题是相当困难的,这是因为真核细胞基因组DNA含量比原核细胞多,而且在染色体上除DNA外还含有蛋白质,RNA等,在真核细胞中,转录和翻译两个过程分别是在两个彼此分开的区域:细胞核和细胞质中进行。一条成熟的mRNA链只能翻译出一条多肽链;真核细胞DNA与组蛋白及大量非组蛋白相结合,只有小部分DNA是裸露的;而且高等真核细胞内DNA中很大部分是不转录的;真核生物能够有序的根据生长发育阶段的需要进行DNA片段重排,并能根据需要增加细胞内某些基因的拷贝数等。尽管难度很大,科学家们还是建立起多个调控模型。 转录水平的调控 Britten和Davidson于1969年提出的真核生物单拷贝基因转录调控的模型——Britten—Davidson模型。该模型认为在整合基因的5"端连接着一段具有高度专一性的DNA序列,称之为传感基因。在传感基因上有该基因编码的传感蛋白。外来信号分子和传感蛋白结合相互作用形成复合物。该复合物作用于和它相邻的综合基因组,亦称受体基因,而转录产生mRNA,后者翻译成激活蛋白。这些激活蛋白能识别位于结构基因(SG)前面的受体序列并作用于受体序列,从而使结构基因转录翻译。 若许多结构基因的临近位置上同时具有相同的受体基因,那么这些基因就会受某种激活因子的控制而表达,这些基因即属于一个组(set),如果有几个不同的受体基因与一个结构基因相邻接,他们能被不同的因子所激活,那么该结构基因就会在不同的情况下表达,若一个传感基因可以控制几个整合基因,那么一种信号分子即可通过一个相应的传感基因激活几组的基因。故可把一个传感基因所控制的全部基因归属为一套。如果一种整合基因重复出现在不同的套中,那么同一组基因也可以属于不同套。 染色质结构对转录调控的影响 真核细胞中染色质分为两部分,一部分为固缩状态,如间期细胞着丝粒区、端粒、次溢痕,染色体臂的某些节段部分的重复序列和巴氏小体均不能表达,通常把该部分称为异染色质。与异染色质相反的是活化的常染色质。真核基因的活跃转录是在常染色质进行的。转录发生之前,常染色质往往在特定区域被解旋或松弛,形成自由DNA,这种变化可能包括核小体结构的消除或改变,DNA本身局部结构的变化,如双螺旋的局部去超螺旋或松弛、DNA从右旋变为左旋,这些变化可导致结构基因暴露,RNA聚合酶能够发生作用,促进了这些转录因子与启动区DNA的结合,导致基因转录,实验证明,这些活跃的DNA首先释放出两种非组蛋白,(这两种非组蛋白与染色质结合较松弛),非组蛋白是造成活跃表达基因对核算酶高度敏感的因素之一。 的科学家已经认识到,转录水平调控是大多数功能蛋白编码基因表达调控的主要步骤。关于这一调控机制,现有两种假说。一种假说认为,真核基因与原核基因相同,均拥有直接作用在RNA聚合酶上或聚合酶竞争DNA结合区的转录因子,第二种假说认为,转录调控是通过各种转录因子及反式作用蛋白对特定DNA位点的结合与脱离引起染色质构象的变化来实现的。真核生物DNA严密的染色质结构及其在核小体上的超螺旋结构,决定了真核基因表达与DNA高级结构变化之间的必然联系。DNA链的松弛和解旋是真核基因起始mRNA合成的先决条件。 转录后水平的调控 真核生物基因转录在细胞核内进行,而翻译则在细胞质中进行。在转录过程中真核基因有插入序列,结构基因被分割成不同的片段,因此转录后的基因调控是真核生物基因表达调控的一个重要方面,首要的是RNA的加工、成熟。各种基因转录产物RNA,无论rRNA、tRNA还是mRNA,必须经过转录后的加工才能成为有活性的分子。 翻译水平上的调控 蛋白质合成翻译阶段的基因调控有三个方面:①蛋白质合成起始速率的调控;②MRNA的识别;③激素等外界因素的影响。蛋白质合成起始反应中要涉及到核糖体、mRNA蛋白质合成起始因子可溶性蛋白及tRNA,这些结构和谐统一才能完成蛋白质的生物合成。mRNA则起着重要的调控功能。 真核生物mRNA的“扫描模式”与蛋白质合成的起始。真核生物蛋白合成起始时,40S核糖体亚基及有关合成起始因子首先与mRNA模板近5"端处结合,然后向3"方向移行,发现AUG起始密码时,与60S亚基形成80S起始复合物,即真核生物蛋白质合成的“扫描模式”。 mRNA5"末端的帽子与蛋白质合成的关系。真核生物5"末端可以有3种不同帽子:0型、I型和II型。不同生物的mRAN可有不同的帽子,其差异在于帽子的碱基甲基化程度不同。帽子的结构与mRNA的蛋白质合成速率之间关系密切:①帽子结构是mRNA前体在细胞核内的稳定因素,也是mRNA在细胞质内的稳定因素,没有帽子的转录产物会很快被核酸酶降解;②帽子可以促进蛋白质生物合成过程中起始复合物的形成,因此提高了翻译强度;③没有甲基化(m7G)的帽子(如GPPPN-)以及用化学或酶学方法脱去帽子的mRNA,其翻译活性明显下降。 mRNA的先导序列可能是翻译起始调控中的识别机制。可溶性蛋白因子的修饰对翻译也起着重要的调控作用。
原核生物基因表达调控大的调节机制有哪些类型?
上述问题决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用,在转录调控中,现已搞清楚了细菌的几个操纵子模型,现以乳糖操纵子和色氨酸操纵子为例予以说明。法国巴斯德研究所著名的科学家Jacob和Monod在实验的基础上于1961年建立了乳糖操纵子学说。大肠杆菌乳糖操纵子包括4类基因:①结构基因,能通过转录、翻译使细胞产生一定的酶系统和结构蛋白,这是与生物性状的发育和表型直接相关的基因。乳糖操纵子包含3个结构基因:lacZ、lacY、lacA。LacZ合成β—半乳糖苷酶,lacY合成透过酶,lacA合成乙酰基转移酶。②操纵基因O,控制结构基因的转录速度,位于结构基因的附近,本身不能转录成mRNA。③启动基因P,位于操纵基因的附近,它的作用是发出信号,mRNA合成开始,该基因也不能转录成mRNA。④调节基因i:可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白。操纵基因、启动基因和结构基因共同组成一个单位——操纵子(operon)。
生物体调节基因表达的最根本目的是()
生物体调节基因表达的最根本目的是() A.调节物资代谢B.维持生长发育C.适应生存环境D.促使生物进化E.以上均不是正确答案:C
原核生物和真核生物的主要差别是什么呢?
大肠杆菌无细胞核;基因组DNA为环状双链DNA,在细胞内折叠成脚手架状;结合有少量蛋白质。大肠杆菌染色体由单个环状双链DNA分子组成,在细胞内被多层折叠成类核体。真核染色体DNA是单个线形双链DNA分子、与组蛋白结合形成核蛋白纤丝,经螺旋折叠后成为染色体二真核生物的基因组分散包含在细胞核的多条染色体中。染色体数目是随物种不同而有差异。转录时,细胞通过碱基互补的原则来生成一条带有互补碱基的mRNA,通过它携带密码子到核糖体中可以实现蛋白质的合成。与DNA的复制相比,转录有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取并复制为mRNA。就是说,以特定的DNA片段作为模板,以DNA依赖的RNA合成酶作为催化剂,合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物,在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。被选为模板的单链叫模板链,又称信息链、无义链;另一条单链叫非模板链,又称编码链,有义链。DNA上的转录区域称为转录单位。扩展资料:在原核生物基因或操纵子的末端通常有一段终止序列即终止子;RNA合成就在这里终止。真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同:1、真核生物RNA的转录是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。所以,RNA转录后首先必须从核内运输到细胞质内,才能指导蛋白质的合成。2、真核生物一个mRNA分子一般只含有一个基因,原核生物的一个mRNA分子通常含有多个基因,而除少数较低等真核生物外,一个mRNA分子一般只含有一个基因,编码一条多肽链。参考资料来源:百度百科——转录参考资料来源:百度百科——染色体DNA
生物的转录和逆转录是什么意思啊
转录是蛋白质生物合成的第一步,也是tRNA和rRNA的合成步骤。转录 (transcription)是以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。与DNA的复制相比,有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取被复制为mRNA,就是说一特定的DNA片断作为模板,以DNA依赖的RNA合成酶作为催化剂的合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物。在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。DNA上的转录区域称为转录单位(transcription unit)。RNA聚合酶合成RNA时不需引物,但无校正功能。逆转录reverse transcription:也称反转录以RNA为模板合成DNA的过程,是RNA病毒的复制形式,需逆转录酶的催化。其过程先以经剪切作用除去内含子的成熟mRNA为模板,合成RNA/DNA杂化双链,然后水解RNA链,再以剩下的DNA单链为模板合成DNA双链。多次复制后形成多个DNA双链,然后以这些DNA双链中的每双链的其中的单条(该条与原始病毒RNA链互补)为模板,复制出RNA(该RNA与原始病毒RNA相同,不考虑遗传变异) 艾滋病病毒(HIV)就是一种逆转录病毒.
原核生物基因表达调控大的调节机制有哪些类型?
染色体到DNA的表观遗传学调控 DNA到mRNA前体的转录调控 mRNA前体到mRNA的调控 mRNA到蛋白的翻译调控 蛋白自身的活性调控
真核生物基因表达调控有哪些环节
真核生物基因表达调控与原核生物有很大的差异。原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征时能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过程,并使生物的组织和器官在一定的环境条件范围内保持正常的生理功能。真核生物基因表达调控据其性质可分为两大类:第一类是瞬时调控或叫可逆调控,相当于原核生物对环境条件变化所做出的反应。瞬时调控包括某种代谢底物浓度或激素水平升降时及细胞周期在不同阶段中酶活性和浓度调节。第二类是发育调节或称不可逆调控,这是真核生物基因表达调控的精髓,因为它决定了真核生物细胞分化,生长,和发育的全过程。据基因调控在同一时间中发生的先后次序,又可将其分为转录水平调控,转录后的水平调控,翻译水平调控及蛋白质加工水平的调控,研究基因调控应回答下面三个主要问题:①什么是诱发基因转录的信号? ②基因调控主要是在那个环节(模板DNA转录,mRNA的成熟或蛋白质合成)实现的?③不同水平基因调控的分子机制是什么? 回答上述这三个问题是相当困难的,这是因为真核细胞基因组DNA含量比原核细胞多,而且在染色体上除DNA外还含有蛋白质,RNA等,在真核细胞中,转录和翻译两个过程分别是在两个彼此分开的区域:细胞核和细胞质中进行。 一条成熟的mRNA链只能翻译出一条多肽链;真核细胞DNA与组蛋白及大量非组蛋白相结合,只有小部分DNA是裸露的;而且高等真核细胞内DNA中很大部分是不转录的;真核生物能够有序的根据生长发育阶段的需要进行DNA片段重排,并能根据需要增加细胞内某些基因的拷贝数等。尽管难度很大,科学家们还是建立起多个调控模型。 转录水平的调控 Britten和Davidson于1969年提出的真核生物单拷贝基因转录调控的模型——Britten—Davidson模型。该模型认为在整合基因的5"端连接着一段具有高度专一性的DNA序列,称之为传感基因。在传感基因上有该基因编码的传感蛋白。外来信号分子和传感蛋白结合相互作用形成复合物。该复合物作用于和它相邻的综合基因组,亦称受体基因,而转录产生mRNA,后者翻译成激活蛋白。这些激活蛋白能识别位于结构基因(SG) 前面的受体序列并作用于受体序列,从而使结构基因转录翻译。 若许多结构基因的临近位置上同时具有相同的受体基因,那么这些基因就会受某种激活因子的控制而表达,这些基因即属于一个组(set),如果有几个不同的受体基因与一个结构基因相邻接,他们能被不同的因子所激活,那么该结构基因就会在不同的情况下表达,若一个传感基因可以控制几个整合基因,那么一种信号分子即可通过一个相应的传感基因激活几组的基因。故可把一个传感基因所控制的全部基因归属为一套。如果一种整合基因重复出现在不同的套中,那么同一组基因也可以属于不同套。 染色质结构对转录调控的影响 真核细胞中染色质分为两部分,一部分为固缩状态,如间期细胞着丝粒区、端粒、次溢痕,染色体臂的某些节段部分的重复序列和巴氏小体均不能表达,通常把该部分称为异染色质。与异染色质相反的是活化的常染色质。真核基因的活跃转录是在常染色质进行的。转录发生之前,常染色质往往在特定区域被解旋或松弛,形成自由DNA,这种变化可能包括核小体结构的消除或改变,DNA本身局部结构的变化,如双螺旋的局部去超螺旋或松弛、DNA从右旋变为左旋,这些变化可导致结构基因暴露,RNA聚合酶能够发生作用,促进了这些转录因子与启动区DNA的结合,导致基因转录,实验证明,这些活跃的DNA首先释放出两种非组蛋白,(这两种非组蛋白与染色质结合较松弛),非组蛋白是造成活跃表达基因对核算酶高度敏感的因素之一。 更多的科学家已经认识到,转录水平调控是大多数功能蛋白编码基因表达调控的主要步骤。关于这一调控机制,现有两种假说。一种假说认为,真核基因与原核基因相同,均拥有直接作用在RNA聚合酶上或聚合酶竞争DNA结合区的转录因子,第二种假说认为,转录调控是通过各种转录因子及反式作用蛋白对特定DNA位点的结合与脱离引起染色质构象的变化来实现的。真核生物DNA严密的染色质结构及其在核小体上的超螺旋结构,决定了真核基因表达与DNA高级结构变化之间的必然联系。DNA链的松弛和解旋是真核基因起始mRNA合成的先决条件。 转录后水平的调控 真核生物基因转录在细胞核内进行,而翻译则在细胞质中进行。在转录过程中真核基因有插入序列,结构基因被分割成不同的片段,因此转录后的基因调控是真核生物基因表达调控的一个重要方面,首要的是RNA的加工、成熟。各种基因转录产物RNA,无论
基因调控的真核生物
真核生物的基因调控比原核生物复杂得多。这是因为这两类生物在三个不同水平上存在着重大的差别:①在遗传物质的分子水平上,真核细胞基因组的DNA含量和基因的总数都远高于原核生物,而且 DNA不是染色体中的唯一成分,DNA和蛋白质以及少量的RNA构成以核小体为基本单位的染色质;②在细胞水平上,真核细胞的染色体包在核膜里面,转录和翻译分别发生在细胞核和细胞质中,这两个过程在时间上和空间上都是分开的,而且在转录和翻译之间存在着一个相当复杂的 RNA加工过程;③在个体水平上,真核生物是由不同的组织细胞构成的,从受精卵到完整个体要经过复杂的分化发育过程,除了那些为了维持细胞的基本生命活动所必需的基因之外,其他不同组织的细胞中的基因总是在不同的时空序列中被活化或受阻遏。与分化发育有关的基因调控机制是发生遗传学研究的主要内容。染色体DNA水平上的基因调控 通过改变基因组中有关基因的数量和顺序结构而实现的基因调控。 在发育过程中一些体细胞失去了某些基因,这些基因便永不表达,这是一种极端形式的不可逆的基因调控。在某些线虫、原生动物、甲壳动物发育过程中的体细胞有遗传物质丢失现象。在这些生物中,只有生殖细胞才保留着该种生物基因组的全套基因。例如在马副蛔虫(Ascaris megacephala)卵裂的早期就发现有染色体的丢失现象。蜜蜂的工蜂和蜂后是二倍体,而单倍体则发育成为雄蜂。这也可以认为是一种通过染色体丢失的基因调控。 另一种改变基因数量而调节基因表达的方式称为基因扩增。基因扩增是细胞短期内大量产生出某一基因拷贝的一种非常手段。某些脊椎动物和昆虫的卵母细胞能够专一性地增加编码核糖体RNA的DNA(rDNA)序列。例如非洲爪蟾(Xenopus laevis)的卵母细胞中的rDNA的拷贝数可由平时的 1500急剧增加至2000000。这一基因扩增仅发生在卵母细胞中,它适应于胚胎发育中对于大量核糖体的需要。当胚胎期开始时这些染色体外的rDNA拷贝即失去功能并逐渐消失。除了rDNA的专一性扩增以外,还发现果蝇的卵巢囊泡细胞中的绒毛膜蛋白质基因在转录之前也先进行专一性的扩增。通过这一手段,细胞在很短的时间内积累起大量的基因拷贝,从而合成出大量的绒毛膜蛋白质。 改变基因组中有关基因顺序结构的基因调控方式。哺乳动物的免疫球蛋白的可变区与恒定区的顺序分别由不同的基因片段编码。它们处于同一染色体上但是相距较远,中间还有一些编码连接区的DNA顺序。在产生抗体的浆细胞成熟过程中,这三个序列通过染色体重排而成为一个完整的转录单位。由于可变区基因片段为数众多,而且不同的连接方式又带来相应的核苷酸顺序的变化,所以通过这种形式的 DNA重排可以产生种类繁多的免疫球蛋白基因(见免疫遗传学)。在啤酒酵母(Saccharomyces cerevisiae)的细胞中有关接合型的两个基因a和 α究竟哪一个表达取决于一种特殊的转座因子的移位。但就大多数已经发现的真核生物的转座因子来讲,它们是否参与正常的基因调控还没有定论。转录水平上的基因调控 真核生物的基因调控主要表现在对基因转录活性的控制上而不涉及 DNA序列在数量和结构上的改变。转录水平上的基因调控可以通过不同的途径实现。 染色质处在固缩的状态称为异染色质化。在异染色质化部位的基因的转录活性显著降低。真核生物可以改变染色体某一区域的异染色质化的程度而控制基因的表达。雌性哺乳动物细胞中的一个 X染色体的失活便是高度异染色质化的结果(见剂量补偿效应)。基因由于改变位置而处在异染色质区附近时,转录作用也会受到阻碍(见位置效应)。粉蚧科的一种介壳虫有两类个体,一类个体的细胞中的10个染色体都没有异染色质化,因而都是有功能的;另一类个体细胞的 10个染色体中有5个高度异染色质化,因而是没有功能的。这就造成了和蜜蜂相似的情况,蜜蜂的二倍体是雌性的,单倍体是雄性的;在这里则前一类个体是雌性的,而后一类个体是雄性的。与异染色质化相反的情况是染色质的活化。在活化的染色质中,基因DNA以某种不同的方式装配到染色质的核小体中,使RNA多聚酶能够转录染色质中的DNA。研究结果表明凡有基因表达活性的染色质 DNA对核酸内切限制酶的降解作用比没有转录活性的染色质要敏感得多。例如鸡的网织细胞能大量合成珠蛋白,从这种细胞中分离的含珠蛋白基因的染色质DNA易遭受DNA酶I的降解作用,而大多数其他的染色质DNA则不被降解,在不合成珠蛋白的鸡输卵管细胞中含珠蛋白基因的染色质 DNA也不被这种酶降解。在活化的染色质中 DNA的超螺旋状态有所改变,这是基因活化的前提。 真核细胞修饰 DNA的主要途径是胞嘧啶(c)在5位上的甲基化反应。5-甲基胞嘧啶通常位于鸟嘌呤(G)的旁边。可见 GC顺序最容易被甲基化。在刚刚完成复制的 DNA分子中只有母链(模板链)是甲基化的。新生 DNA链的甲基化在母链的指导下进行。用限制酶进行分析的结果表明在不转录的DNA中的GC有 70%以上是甲基化的,而在表达活性高的DNA中,GC顺序只有20~30%是甲基化的。这意味着DNA甲基化的作用也是一种基因调控手段。蛋白质也可以被修饰,修饰作用包括乙酰化、磷酸化等。除了组蛋白和染色体DNA牢固结合以外,许多非组蛋白也可以和 DNA相结合,对这些蛋白质的修饰作用同样能改变它们与 DNA的结合方式,并改变染色质和核小体的结构,从而影响基因的转录活性。某些非组蛋白成分还能和激素相结合而激活某些基因。此外,RNA聚合酶也可以由于被修饰而改变活性。 细菌的代谢作用直接受环境的影响,它的基因调控的信号常来自环境因素。多细胞的高等生物的代谢作用较少为环境所影响,它的基因调控的信号常来自体内的激素。在摇蚊(Chironomus)和果蝇(Drosophila)等双翅目昆虫的唾腺中的巨大的多线染色体上可以看到一条条各有特征的横纹。在幼虫和蛹期的各个发育时期可以看到某些横纹变得疏松膨大,这膨大处称为疏松区。疏松区的出现有一定的时间表,而且各个疏松区出现以后隔一定时间又消失。这些部位是合成大量RNA的部位,而且通过分子杂交可以证明疏松区的成分具有mRNA的性质。用蜕皮激素处理幼虫或离体的唾腺细胞,可以诱发某些横纹形成疏松区,意味着某些基因被激活。这是激素诱发特定基因的转录的最为直观的证据。在高等动物中,注射雌性激素能促使公鸡或小鸡的肝脏细胞中产生卵黄蛋白原mRNA并合成卵黄蛋白原;注射孕酮能促使爬行动物或鸟类的输卵管细胞产生卵清蛋白mRNA并合成卵清蛋白;脑垂体前叶的促乳腺激素能促使哺乳动物的乳腺细胞合成酪蛋白。甾体激素作用的机制一般认为是这样的,它首先和靶细胞的细胞质中的受体蛋白结合成为激素和受体的复合物,然后这一复合物进入细胞核,在染色体上有某些非组蛋白存在的情况下,复合物便能结合在染色体的特定位置上,从而促使特定基因转录。 与原核生物不同,真核生物有三种不同的 RNA多聚酶,它们各自负责不同类型的基因的转录。从表中不难看出由RNA多聚酶Ⅰ和Ⅲ转录的RNA都与所有细胞的生命活动的基本功能──翻译有关,而只有 RNA多聚酶Ⅱ才能转录结构基因而进一步产生蛋白质。显然这种分工反映了这三类基因在表达机制上的重大差别(见表)。在转录启动时,不同的RNA多聚酶能识别不同类型的基因,识别的机制在于每种类型的基因都有共同或类似的调控顺序。在活体和离体的实验中已经证明在 RNA多聚酶Ⅱ的离转录起点的上游(5′方向)约 25~30个核苷酸处,有一段长约 8~10个核苷酸的相当保守的、富含A(腺嘌呤核苷酸)和T(胸腺嘧啶核苷酸)的核苷酸顺序,称为TATA框。有证据表明在转录起始的上游更远的部位,还有其他核苷酸顺序也与 RNA多聚酶Ⅱ的正常活动有关。在由RNA多聚酶Ⅲ转录的5SRNA基因的内部(而不是在它的转录起点的上游)有一段与转录控制有关的顺序,长约30碱基对,它的存在对该基因转录的起始起着控制作用。已经证明这段顺序能专一性地结合一种蛋白质因子,后者可以指导 RNA多聚酶Ⅲ从它的结合位置的上游约50碱基对处开始转录。RNA加工过程中的调控 真核生物的RNA加工过程主要包括三个步骤:①在新生RNA的5′端加上一个甲基化的鸟嘌呤核苷酸,形成一个所谓的帽子(cap)即m7GpppN(m7G是7-甲基鸟嘌呤核苷,P是磷酸,N是 RNA的5′端第一个核苷酸)这一过程通常发生在新生链完成之前。②在转录后的RNA3′部位上加上多聚腺嘌呤核苷酸(多聚A)尾部。这种加尾作用一般不直接发生在转录初产物的3′末端上,而另外需要核酸内切酶的作用产生一个新的3′末端,然后再加上多聚A。③对于具有内含子的那部分RNA顺序必须被切除,接着两边的外显子再重新连起来,这一过程称为拼接。拼接是个十分精确的过程,它的机制还没有阐明,但几乎所有的内含子在5′边界处都有CT顺序,在3′边界处都有AG顺序。多聚A加尾作用一般发生在拼接之前,但不总是如此。还不清楚影响这个过程的各种因素,但已经知道同一种基因的转录产物前体mRNA可以被加工成几种不同的mRNA。几乎所有的真核生物的 mRNA都有一个5′帽端,但并不是所有基因的mRNA都有3′多聚A尾部,也不是所有基因的mRNA都必须经过拼接。根据这后两种加工过程的有无和复杂程度,可将真核基因的转录单位分为两大类型:一类是简单的只编码产生一种蛋白质的基因,另一类是复杂的编码两种或更多种蛋白质的转录单位(图2)。在3′端加尾部位或拼接部位上的变化都会使同一基因最终形成不同的蛋白质产物。图2a是表示多聚 A加尾部位不同而使基因终产物不同的模式,属于这种情况的有腺病毒的晚期基因、小鼠免疫球蛋白的重链基因和一种多肽激素降血钙素基因。图2b是表示拼接部位不同而使基因终末产物不同的模式,迄今为止仅在哺乳动物细胞的病毒(如腺病毒、SV40病毒、多瘤病毒和反转录病毒等)中发现有这种形式的加工调控。 翻译后控制的事例不多。一般认为脑垂体后叶细胞产生的促肾上腺皮质激素和脂肪酸释放激素是由同一原始翻译产物经不同的加工而形成的。迄今为止对于真核生物基因调控作用的了解仍然处在探索的阶段,特别是对于高等动植物的基因调控过程了解得更少,还不能形成一个完整的模式。1972年美国学者E.戴维森和R.J.布里顿在实验事实还不充分的情况下提出了一个真核生物的基因调控模型,这一模型也可以用来解释真核生物中大量的脱氧核糖核酸重复顺序的功用。按照这一模型,外来的信号物质和感应蛋白结合后作用于感应基因,于是综合基因组转录产生激活蛋白的mRNA,并进一步合成激活蛋白,这些激活蛋白又作用于结构基因前面的接受顺序,于是结构基因转录而产生一系列的酶或其他蛋白质。在这模型中假定感应基因便是一些重复顺序,又假定各个结构基因分布在染色体的不同位置上。这一模型企图解释重复顺序的功能以及分布在不同位置上的基因怎样能被协调控制。曾经发现在真核生物的细胞核中存在着大量与结构基因无关的RNA,这一事实是和这一模型符合的。这一模型还是一个有待充分验证的假说。这一模型提出以后,又出现了一些修改这一模型的假说,它们都可以作为进一步研究的出发点。
分子生物学的转录调控中,什么是cis element 什么是trans element
cis-elements (顺式作用元件)指对基因调节起作用的DNA上的序列.由于一般都处于其所调控基因的上游,因此称为cis-.比如你说的enhancer,还有attenuator、operator等,都被称为cis-elements.而trans-elements(反式作用因子)则是对基因起调节作用的蛋白质.由于这些蛋白质由其他基因转录产生,不位于其所调节基因的上下游,并且其作用的时候要和cis-elements结合才能发挥作用,因此称为trans-.各种转录因子都属于trans-elements.
生物和多细胞生物有哪些
单细胞生物:细菌,大肠杆菌,双歧杆菌等,真菌,酵母菌,青霉菌等,植物,蓝藻,动物,草履虫,变形虫。多细胞生物:所有哺乳动物,人,猪,牛羊,等等
多细胞生物有哪些
世界上绝大多数都是多细胞生物,比如人。而单细胞生物主要分有核和无核的单细胞. 有核的如草履虫就是典型的有核单细胞生物.有核单细胞生物主要由细胞核、细胞质、还有细胞器.它包括:线粒体、高尔基体、核糖体、细胞膜、这是动物型单细胞.如果是植物型单细胞比如红藻,就是细胞壁、细胞核、细胞质,它的细胞器就包括线粒体、高尔基体、核糖体、叶绿体、细胞膜. 无核的单细胞生物,虽称无核细胞,但并不是把核除掉了的细胞,而是假定的在进化道路发展过程中存在的一种无核细胞质团,称为无核原生质团.以后P.J.vanBeneden(1875)把极体出现前一如在胚胞消失的(卵母)细胞,以及L.Auerbach(1876)对一般细胞分裂对细胞核消失的细胞团,也都应用了这一名称.所以,除了单细胞,多数都是多细胞生物。望采纳~
单细胞生物和多细胞生物最主要的区别
单细胞生物和多细胞生物最主要的区别是细胞是否有分工(或分化)现象。单细胞生物实现营养、呼吸、排泄、运动、生殖和调节等生命活动的各种功能都是通过一个细胞来实现的。多细胞生物的细胞出现了分化,一个细胞不能实现所有的功能,而是不同种类细胞相互配合协调来完成。
多细胞生物有哪些
问题一:生物和多细胞生物有哪些 单细胞生物:细菌,大肠杆菌,双歧杆菌等,真菌,酵母菌,青霉菌等,植物,蓝藻,动物,草履虫,变形虫。 多细胞生物:所有哺乳动物,人,猪,牛羊,等等 问题二:多细胞生物具备哪些特性 1、生物体具有严整的结构。 稍微解释一下什么叫严整的结构,也就是说细胞是生物体结构和功能的基本单位。 2、生物体能进行新陈代谢。 3、生物体能生长。 4、生物体具有应激性。 5、生物体能生殖和发育。 6、生物体具有遗传和变异的特性。 7、生物体能在一定程度上适应环境并影响环境。
单细胞生物是怎样进化成多细胞生物
单细胞生物进化为多细胞生物的问题,有很多推测,比较著名的有以下几种学说 (一)群体学说 1.赫克尔的原肠虫学说 。认为多细胞动物最早的祖先是由类似团藻的球形群体,一面内陷形成多细胞动物的祖先。这样的祖先,因为和原肠胚很相似,有两胚层和原口,所以赫克尔称之为原肠虫。 2.梅契尼柯夫的吞噬虫学说。该学说认为多细胞动物的祖先是由一层细胞构成的单细胞动物的群体,后来个别细胞摄取食物后进入群体之内形成内胚层,结果就形成为二胚层的动物,起初为实心的,后来才逐渐地形成消化腔,所以梅契尼柯夫便把这种假想的多细胞动物的祖先叫做吞噬虫。 3.Barnes(1987)认为,团藻样动物虽被作为鞭毛虫群体祖先的原型,但是这些具有似植物细胞的自养有机体不可能是后生动物的祖先,超微结构的证据表明,领鞭毛虫类原生动物更可能是后生动物的祖先。领鞭毛虫有些是单体的,有些是群体的。 (二)合胞体学说 这一学说主要是由 Hadzi(1953)和 Harsan(1977)提出的,认为多细胞动物来源于多核纤毛虫的原始类群。后生动物的祖先开始是合胞体结构,即多核的细胞,后来每个核获得一部分细胞质和细胞膜形成了多细胞结构。对该学说,持反对意见者较多。 (三)共生学说 该学说认为不同种的原生生物共生在一起,发属成为多细胞动物。但对于不同遗传基础的单细胞生物如何聚在一起形成能繁殖的多细胞动物?在遗传学上难以解释。
真核生物都是多细胞生物吗
不对,酵母是真核,但是是单细胞,原生动物都是真核,也是单细胞。
多细胞生物的组织和组织系统
更复杂的生物不但拥有分化的细胞和组织,而且也拥有器官,器官是由多个组织组成的、完成特别功能的结构。原始的器官包括扁形动物门动物的脑(由一组神经节细胞组成),大的器官比如加州红木的茎(可达90米高),复杂和多功能的器官包括脊椎动物的肝。最复杂的生物拥有器官系统,一个器官系统是由多个器官组织在一起来完成相关的功能,而每个器官则集中于一个特定的任务。比如脊椎动物的消化系统由口和食道进食、胃来揉烂和液化事物、胰和胆囊产生和分泌消化酶、肠来将营养吸收入血液。