什么是生物氧化?生物氧化中二氧化碳、水和能量是怎样产生的?
有机物质在生物体细胞内氧化分解产生二氧化碳、水,并释放出大量能量的过程称为生物氧化(biological oxidation),又称细胞呼吸或组织呼吸。CO2: 生物氧化中CO2的生成是代谢中有机酸的脱羧反应所致。有直接脱羧和氧化脱羧两种类型。按脱羧基的位置又有α-脱羧和β-脱羧之分。水: 代谢物上的氢原子被脱氢酶激活脱落后,经过一系列的传递体,最后与激活的氧结合生成水的全部体系,此过程与细胞呼吸有关,所以将此传递链称为呼吸链(respiratory chain)或电子传递链(electron transfer chain)。ATP :氧化磷酸化(oxidative phosphorylation)是指在生物氧化中伴随着ATP生成的作用。有代谢物连接的磷酸化和呼吸链连接的磷酸化两种类型。即ATP生成方式有两种。一种是代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成ATP。这称为底物水平磷酸化。如3-磷酸甘油醛氧化生成1,3-二磷酸甘油酸,再降解为3-磷酸甘油酸。另一种是在呼吸链电子传递过程中偶联ATP的生成。生物体内95%的ATP来自这种方式。
含五个碳原子的有机物,分子中最多可形成四个碳碳单键
其实D也错了。环戊烷就有5个碳碳单键……
一碳单位是嘌呤和嘧啶核苷酸从头合成均需要的原料吗?
是的1.从头合成原料:天冬氨酸、谷氨酰胺、甘氨酸、一碳单位、CO2磷酸核糖简要途径:反应从5 磷酸核糖开始,生成PRPP(磷酸核糖焦磷酸),再生成5 磷酸核糖胺(FRA),多步反应后生成IMP。再转转变为AMP和GMP关键酶:PRPP合成酶,酰胺转移酶2.补救合成利用现成的嘌呤碱或嘌呤核苷合成嘌呤核苷酸,称为补救合成。腺嘌呤 + PRPP → AMP + PPi次黄嘌呤 + PRPP→ IMP + PPi鸟嘌呤 + PRPP → GMP + PPi二、嘌呤核苷酸的分解代谢产物嘌呤碱的分解产物是尿酸,体内尿酸过多可引起痛风症。三、嘧啶核苷酸合成1.从头合成原料:天冬氨酸、谷氨酰胺,CO2磷酸核糖简要途径:CO2与谷氨酰胺先合成氨基甲酰磷酸, 多步反应合成UMP;UTP转变成CTP;dUMP转变成dTMP关键酶:氨基甲酰磷酸合成酶Ⅱ;天冬氨酸转氨甲酰酶2.补救合成嘧啶 + PRPP → 嘧啶核苷酸 + PPi嘧啶分解代谢产物:β-氨基异丁酸(T)、β-丙氨酸(U、C)、NH3和CO2
胞嘧啶核苷酸的合成需要一碳单位吗
是的需要1.从头合成原料:天冬氨酸、谷氨酰胺、甘氨酸、一碳单位、co2磷酸核糖简要途径:反应从5磷酸核糖开始,生成prpp(磷酸核糖焦磷酸),再生成5磷酸核糖胺(fra),多步反应后生成imp。再转转变为amp和gmp关键酶:prpp合成酶,酰胺转移酶2.补救合成利用现成的嘌呤碱或嘌呤核苷合成嘌呤核苷酸,称为补救合成。腺嘌呤+prpp→amp+ppi次黄嘌呤+prpp→imp+ppi鸟嘌呤+prpp→gmp+ppi二、嘌呤核苷酸的分解代谢产物嘌呤碱的分解产物是尿酸,体内尿酸过多可引起痛风症。三、嘧啶核苷酸合成1.从头合成原料:天冬氨酸、谷氨酰胺,co2磷酸核糖简要途径:co2与谷氨酰胺先合成氨基甲酰磷酸,多步反应合成ump;utp转变成ctp;dump转变成dtmp关键酶:氨基甲酰磷酸合成酶ⅱ;天冬氨酸转氨甲酰酶2.补救合成嘧啶+prpp→嘧啶核苷酸+ppi嘧啶分解代谢产物:β-氨基异丁酸(t)、β-丙氨酸(u、c)、nh3和co2
成人和60岁以上的老人,一顿午餐歌应摄入的蛋白质、脂肪、碳水化合物是多少?
老年人如果体内缺乏蛋白质分解较多而合成减慢。因此一般来说,老年人比青壮年需要蛋白质数量多,而且对蛋氨酸、赖氨酸的需求量也高于青壮年。60岁以上老人每天应摄入70克左右的蛋白质,而且要求蛋白质所含必需氨基酸种类齐全且配比适当的,这样优质蛋白,延年益寿。 余传隆(中国医药科技出版) 氨基酸与老年健康 美国“发现”号航天飞机把世界上年龄最大的宇航员(77岁)格伦送入太空。这天对老年人来说,称为最伟大的一天,最引人瞩目。暮年再征太空的格伦,他要帮助医学进行科学实验。老人蛋白质分解、人体氨基酸的生物学试验就是一项重要的研究。氨基酸与老人健康,不仅在地球上要研究,在太空的也要研究。因为氨基酸与老年人的寿命、衰老相关太重要了。为什么重要,下面的分述便可知道。 1.老年的生理变化与氨基酸 一般认为人们进入60岁以上是进入了老年。老年的生理与营养状态随着老年的进程而改变。蛋白质在老年人体的变化归纳起来有二:一是合成,合成组织蛋白质及各种活性物质;二是分解,组织蛋白质的分解、产生能量、产生废物。对于生长发育期的婴儿及青少年合成大于分解,因而身体逐渐成长;对于一般成年人是合成等于分解,因而体重相对稳定。对于老年来说,人体衰老的过程中蛋白质代谢以分解为主,合成代谢逐渐缓慢,身体内的蛋白质逐渐被消耗,往往呈负氮平衡。如血红蛋白质合成减少,因此贫血为常患的老年性疾病;由于酶的作用及小肠功能衰退,蛋白质吸收过程中分解不充分,体内肽类增多,游离氨基酸减少。因老年人肾功能低下而影响氨基酸再吸收,因肝功能下降,对肽的利用也减少。近年研究报告,老年人与中青年人给予相同营养条件,但老年人其血浆氨基酸(缬、亮、酪、赖、蛋、丝、丙氨酸)含量减低,特别支链氨基酸(缬、亮、异亮氨酸)显示不足。有人认为,高浓度支链氨基酸有提供合成的作用,当补给支链氨基酸时,能通过产生三磷酸腺苷(ATP)供能源,降低蛋白质分解作用,并通过促进胰岛素分泌量加强蛋白质的合成。现国外已将支链氨基酸用于临床维持氮平衡,促进蛋白质合成。国内已有用于肝病、肾病及儿童的特殊氨基酸。 由于氨基酸的吸收或利用。因老年化而影响到免疫功能,免疫活性的变化也影响其他器官的功能,如感染、癌症、免疫复合病、自身免疫病、淀粉状蛋白变性的发病率在老年均增高,易致衰老病死。 2.氨基酸与长寿 为了促进老年人的健康,如抗衰老、提高身体抵抗力、促进免疫机制的功能,需要食品富含微量元素或糖类。但免疫的物质基础是蛋白质,人体免疫物质没有一样不是由蛋白质组成。如免疫球蛋白、抗体、抗原、补体等,即使白细胞、淋巴细胞与吞噬细胞等细胞内蛋白质的含量也在90%以上。因此人体若不缺乏蛋白质或氨基酸,上述的微量元素与多糖会起作用。如果缺乏,则无论用多少都不起作用。随着营养学与生物化学的进展,新的研究表明补给某种非必需氨基酸虽然人体能够合成,但在严重应激的状态(包括精神紧张、焦虑、思想负担)或某些疾病的情况下容易发生缺乏。如果缺乏,则对人体会发生有害的影响,这些氨基酸称之为条件性必需氨基酸。如牛磺酸、精氨酸和谷氨酰胺。 在正常条件下缺乏必需氨基酸可以减低体液的免疫反应。例如色氨酸缺乏的大鼠,其IgG及IgM受体抑制,而当重新加入色氨酸能维持正常的抗体生成;苯丙氨酸和酪氨酸均缺乏,可以抑制大鼠的免疫细胞对肿瘤细胞作出反应;蛋氨酸与胱氨酸的缺乏,还可引起抗体的合成障碍。已证明,氨基酸的平衡也有这种不利作用。因此必需氨基酸在免疫中起着重要的作用,要延长老年人寿命,必须提高免疫力,重视必需氨基酸的供给。当前与寿命相关的正是热门研究的必需氨基酸有: 牛磺酸:人体牛磺酸的来源一是自身合成,二是从膳食中摄取。牛磺酸的生物合成由蛋氨酸经硫化作用转化成胱氨酸,并由胱氨酸合成,其中经过一系列的酶促反应,许多高等动物包括人已失去了合成足够牛磺酸以维持体内牛磺酸整体水平的能力,需从膳食中摄取牛磺酸以满足机体的需要。有报道,牛磺酸在中枢神经系统衰老中的作用;老年期神经系统退行性变化是全身各系统最复杂而深奥的过程之一,中枢神经系统衰老在形态上或生化水平上都有明显的改变,单胺类和氨基酸类神经递质的合成、释放、重吸收及运输机制方面出现增年性变化。脂褐质是衰老过程中具有特征性物质,大脑脂褐质增加是神经衰老变化标志之一,当神经元胞浆蓄积较大量的脂褐质时,细胞核、细胞质受压变形,影响神经元的正常代谢功能。衰老时,组织中脂褐质含量明显增高,而牛磺酸可使下降、且使超氧化物歧化酶(SOD)活性增加,并且能抑制脂质过氧化产物丙二醛(MDA)对低密度脂质蛋白(LDL)的修饰。同时牛磺酸与葡萄糖的反应产物表现出较强抗氧化作用,能够阻止蛋黄卵磷脂氧化成脂质过氧化物,因而有显著抗衰老的作用。 精氨酸:精氨酸虽然不是必需氨基酸,但在严重应激情况下(如发生疾病或受伤)、或当缺乏了精氨酸便不能维持氮平衡与正常生理功能,因此它又是条件性必需氨基酸。最新提出的理论,精氨酸是一氧化氮(NO)与瓜氨酸反应的酶系统代谢途径中的必要物质。NO或内皮细胞衍生的松弛因子的主要生化作用是刺激机体提高吞噬细胞中环鸟苷酸的水平,并能刺激白介素的产生来调节巨噬细胞的吞噬细菌作用。与精氨酸有关的NO酶系统,也在血管的内皮细胞、脑组织与肝脏的枯否(kupffer)细胞中发现,它能导致这些器官与组织的激素分泌、从而起到免疫功能的作用。为了提高老年人的免疫也可用氨基酸注射液。 谷氨酰胺:在正常情况下,它是一非必需氨基酸,但在剧烈运动、受伤、感染等应激情况下,谷氨酰胺的需要量大大超过了机体合成谷氨酰胺的能力,使体内的谷氨酰胺含量降低,而这一降低,便会使蛋白质合成减少、小肠粘膜萎缩及免疫功能低下,因此它又称条件性必需氨基酸。 最近发现肠道是人体中最大的免疫器官,也是人体的第三种屏障。前两种屏障是血脑屏障和胎盘屏障。如果肠内没有营养供应,肠道就会营养不良,使肠道的免疫功能减弱与发生细菌相互移位。动物试验证明若动物用无谷氨酰胺的全静脉输液或要素膳补充营养,则动物小肠的绒毛发生萎缩,肠壁变薄,肠免疫功能降低。在静脉输液中提供2%的谷氨酰酶(约氨基酸总量的25%)对恢复肠绒毛萎缩与免疫功能有显著作用。谷氨酰胺在维持肠粘膜功能中的作用对提高免疫能力有一定作用,特别老年人是不可缺少的。 3、老年人如何科学补充氨基酸 老年人对氨基酸的需要量随年龄增长,机体蛋白质总量下降,一位健康老人蛋白质总量为青壮年的60%~70%。这可能与骨骼肌的减少有关,但不能由此认为老年人蛋白质需要减少。老年人体内以分解代谢为主,胃液及胃蛋白酶分泌减少、胃液酸度下降、对蛋白质消化吸收下降,此外热能摄入低、饮食氮存留下降,所以老人蛋白质需要不比成年人的少。一般在正常膳食时,蛋白质摄入0.7~1.0g/kg体重可维持氮平衡,1.0~1.2g/kg体重可达平衡。据此定出每日蛋白质供给量大致为60~75g,其中1/3为动物性蛋白质。如按蛋白质供热比考虑,以12%~14%为宜。在氨基酸代谢方面研究,提示苏氨酸、色氨酸、蛋氨酸等的需要与青年不同,故必需氨基酸的适宜模式可随年龄变化。因此,老年人的蛋白质供给质量更重要。一般来说,饮品及食品中富含必需氨基酸才利于机体合成蛋白质。 现推荐老龄人每日膳食合理结构为: 1.一个鸡蛋; 2.一碗牛奶(可不一定加糖); 3.500克水果及青菜(可用多种品种); 4.100克的净肉类,包括畜、禽、鱼等类; 5.50克的豆制品(包括豆腐、腐竹、千张、豆糕以及各种豆类本身的加工制 品,例如豆泥、豆沙和煮烂的整豆); 6.500克左右的粮食(包括米、面、杂粮、块茎和砂糖在内); 7.每天都有汤饮用,每餐一碗; 8.若是身体衰弱多病者,每天服用氨基酸口服液,早晚各50毫升,快速补充 营养。 这八项都是以“一”数值,目的是为概括和模糊化,所有项目都有一个大的自由度。如蔬菜品种可以挑选、变换;肉类可以多种或一种、放在饭菜及汤等中,制作当然可以更多形式;肉与豆类可以相互转换、补充,又如牛奶可用奶制品取代,或用酸牛乳和奶粉取代。夕阳美八峰氨基酸口服液是用结晶的L型氨基酸,按人乳、FAO/WHO模式配制的,人体可直接吸收和利用的,是营养补给佳品。 能满足机体蛋白质和氨基酸的需要,抗衰延老是有保障。
一碳单位直接参与合成的是( )。
【答案】:C一碳单位是指某些氨基酸在分解代谢过程中产生的含有一个碳原子的有机基团,包括甲基(—CH3)、亚甲基(—CH2—)、次甲基(=CH—)、甲酰基(—CHO)及亚氨甲基(—CH=NH)等。A项,胞嘧啶(dCMP)中不含一碳单位。BD两项,dAMP、dGMP均是由ADP、GDP脱氧后再脱去磷酸生成。C项,dTMP是由dUMP在胸苷酸合酶的催化下经甲基化直接生成,甲基属于一碳单位。因此答案选C。
可以作为一碳单位原料的氨基酸是
【答案】:D本题考核“氨基酸的代谢”。一碳单位是指在某些氨基酸在分解代谢过程中可以产生含有一个碳原子的基团的总称。一碳单位主要来源于丝氨酸、甘氨酸、组氨酸和色氨酸。鸟氨酸循环是肝利用氨生成尿素的过程,其中瓜氨酸参与了鸟氨酸循环,瓜氨酸是由氨基甲酰磷酸与鸟氨酸缩合而成。
何谓一碳单位?其来源?转运载体?生理作用如何?
一碳单位指甲基、亚甲基、甲酰基等基团. 一碳单位的来源是一些氨基酸. 它的转运载体是四氢叶酸. 一碳单位在体内的作用主要是合成嘌呤等物质.
果实碳氮代谢
作物最基本的代谢过程。果实碳氮代谢其在作物生育期间的变化动态直接影响光合产物的形成、转化以及矿质营养的吸收、蛋融质翡合成等,是作物最基本的代谢过程。碳通量向氮代谢的转移是高氮条件下碳水化合物减少的重要因素,这反映在果实中氨基酸和总氮含量的显著增加上。
一碳单位的定义
一碳单位定义:指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲炔基、甲酚基及亚氨甲基等.一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体....
植物光合碳代谢多样性的意义
植物光合碳代谢多样性对于人类和整个生物界都具有非常重要的意义。它的价值包括较易察觉和衡量的直接价值及难以用货币形式表现的间接价值,人类的衣食住行都离不开植物。人类食物绝大多数取自植物资源,人类的医疗保键也离不开植物,许多植物可以作为纤维原料用以制衣等。
一碳单位的载体是二氢叶酸
一碳单位的载体是二氢叶酸这句话的说法是正确的。一碳单位的基本定义的扩展:一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位具有特点的扩展:能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。是含一个碳原子的基团,如甲基(-CH3)、羟甲基(-CH2OH)、甲酰基(-CHO)、亚氨甲基(-CH=NH)、甲烯基(-CH2-)、甲炔基(-CH=)。它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。
一碳单位的主要形式有
一碳单位的载体是四氢叶酸。一碳单位的来源是一些氨基酸,一碳单位在体内的作用主要是合成嘌呤等物质。一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基,亚甲基,次甲基,羟甲基,甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料,在体内主要以四氢叶酸为载体。一碳单位具有以下两个特点:1、不能在生物体内以游离形式存在。2、必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位(one caron unit)指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲快基、甲酚基及亚氨甲基等。一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。
脱氨基作业、一碳单位名词解释
脱氨基是指移除分子上的一个氨基。人类的肝脏经由脱氨作用将氨基酸分解,当氨基酸的氨基被去除之后,会转变成氨。由碳及氢所组成的残余部分,则回收或氧化产生能量。对人体而言,氨具有毒性,因此某些酵素将会在尿素循环中将二氧化碳分子附加其上,使氨转变成尿素或尿酸。一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。扩展资料氧化脱氨基作用:氨基酸在酶促作用下进行伴有氧化的脱氨反应。在体内有L-谷氨酸脱氢酶及氨基酸氧化酶类所催化的反应,其中以L-谷氨酸脱氢酶的作用最为重要。L-谷氨酸脱氢酶是以NAD+或NADP+为辅酶的不需氧脱氢酶,它催化L-谷氨酸生成α-酮戊二酸和NH3。L-谷氨酸脱氢酶仅能参与L-谷氨酸的氧化脱氨基作用,而不能完成其他氨基酸的脱氨基作用,故体内还需要其他的脱氨基方式。参考资料来源:百度百科——脱氨基参考资料来源:百度百科——一碳单位
一碳单位的主要形式有
一碳单位的载体是四氢叶酸。一碳单位的来源是一些氨基酸,一碳单位在体内的作用主要是合成嘌呤等物质。一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基,亚甲基,次甲基,羟甲基,甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料,在体内主要以四氢叶酸为载体。一碳单位具有以下两个特点:1、不能在生物体内以游离形式存在。2、必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。
一碳单位的载体是什么?
一碳单位的载体是四氢叶酸。一碳单位的来源是一些氨基酸。一碳单位在体内的作用主要是合成嘌呤等物质。生理意义:合成嘌呤和嘧啶的原料;氨基酸与核苷酸代谢的枢纽 ;参与S-腺苷蛋氨酸(SAM)生物合成;生物体各种化合物甲基化的甲基来源。一碳单位的生理意义某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。
转移一碳单位的辅基是什么
四氢叶酸。四氢叶酸是一碳单位的运载体,人体内四氢叶酸可由叶酸经二氢叶酸还原酶催化先转变为二氢叶酸,后者继续经此酶作用转变生成四氢叶酸。生物素、维生素B12可参与构成某些酶的辅酶,但这些辅酶与一碳单位代谢无关。所以体内转运碳单位的是四氢叶酸
碳水化合物在动物体内代谢方式有哪两种
葡萄糖代谢和挥发性脂肪酸代谢。根据查询相关公开信息显示,碳水化合物代谢方式有两种:一是葡萄糖代谢,二是挥发性脂肪酸代谢,对猫和犬来说以前者为主,后者的作用十分有限。碳水化合物是由碳、氢和氧三种元素组成,自然界存在最多、具有广谱化学结构和生物功能的有机化合物。
一碳单位的载体
一碳单位的转运载体是四氢叶酸。四氢叶酸是一种还原型叶酸,亦称辅酶F,是辅酶形式的叶酸的母体化合物。当叶酸缺乏或某些药物抑制了叶酸还原酶,使叶酸不能转变为四氢叶酸,都可影响血细胞的发育和成熟,造成巨幼红细胞性贫血。叶酸是一种水溶性维生素,因绿叶中含量十分丰富而得名,又名喋酰谷氨酸。在自然界中有几种存在形式,其母体化合物是由喋啶、对氨基苯甲酸和谷氨酸3种成分结合而成。一碳单位生理意义:合成嘌呤和嘧啶的原料;氨基酸与核苷酸代谢的枢纽;参与S-腺苷蛋氨酸(SAM)生物合成;生物体各种化合物甲基化的甲基来源。某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。
一碳单位的载体是什么?
一碳单位是合成核苷酸的重要材料,那么,它的载体是什么呢? 1、 一碳单位的转运载体是四氢叶酸。 2、 一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。 3、 能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。 关于一碳单位的载体是什么的相关内容就介绍到这里了。
节约一支笔、一个文具盒能减少多少碳排放
减排不光可以通过节约的方式来实现,还能通过植树等方法,把CO2通过光合作用产生O2来实现。笔跟文具盒有大小,材料之分。例如是铅笔,有自动铅笔,有木制需要削的铅笔,文具盒有塑料的,有铁皮的,还有大小之分,这些都很难估算,只能假设一个值,然后按照这个来计算。
一碳单位的定义
一碳单位定义:指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲炔基、甲酚基及亚氨甲基等。 一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。 能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。 一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:红细胞,导致巨幼性贫血。 是含一个碳原子的基团,如甲基(-CH3)、羟甲基(-CH2OH)、甲酰基(-CHO)、亚氨甲酰基(-CH=NH)、甲烯基(-CH2-)、甲炔基(-CH=)。它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。
可产生一碳单位的氨基酸有哪些
能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。扩展资料:是含一个碳原子的基团,不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。
一碳单位有哪些 什么是一碳单位
1. 一个碳单元包括甲基、亚甲基、亚甲基、羟甲基、甲酰基和亚甲基。一个碳单位是指某些氨基酸分解代谢产生的含有一个碳原子的基团。一个碳单元是合成核苷酸的重要材料。体内主要以四氢叶酸为载体。 2. 一个碳单元具有以下两个特点:它不能以自由形式存在于生物体中;2. 必须使用四氢叶酸作为载体。 3.能产生一个碳单位的氨基酸有丝氨酸、色氨酸、组氨酸和甘氨酸。此外,蛋氨酸(methionine)可以通过s -腺苷蛋氨酸(SAM)提供“活性甲基”(1个碳单位),因此蛋氨酸也可以生成1个碳单位。 4. 一个碳单元的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸之间的纽带。因此,缺乏一个碳单位对代谢能力强的组织,如巨幼细胞贫血(megaloblastic贫血)的影响更大。
简述一碳单位的定义、来源和生理意义。
【答案】:①概念:某些氨基酸在分解代谢过程中所产生的含有一个碳原子基团(除CO2外)的总称;②来源:丝氨酸、甘氨酸、组氨酸和色氨酸(记忆:丝甘组色);③功能:参与嘌呤嘧啶核苷酸的合成。
碳化是微生物对什么的代谢
碳代谢。植物在光合作用中将无机物二氧化碳同化为有机物碳水化合物等以及在呼吸、光呼吸作用中有机碳异化为二氧化碳的一系列生理生化过程的通称。
一碳单位有哪些 什么是一碳单位
1、一碳单位有甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。 2、一碳单位具有一下两个特点:1、不能在生物体内以游离形式存在;2、必须以四氢叶酸为载体。 3、能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。 4、一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。
氮素代谢和碳素代谢之间有什么关联?
树体的氮素代谢和碳素代谢是互为基础,互相促进的。只有具备了前期的旺盛氮素代谢和相应的营养生长,才会有后期旺盛的碳素代谢和相应的营养物质的积累。同时也只有上年进行了旺盛的碳素代谢和积累了丰富的营养物质,才会促进翌年的旺盛的营养生长和开花结果。所以春季的氮素代谢主要是以上年后期贮藏代谢的营养贮备为基础的。如果树体营养贮备充足,能满足早春萌芽、枝叶生长和开花、结实对营养的大量需要,这样既促进早春枝叶的迅速生长,加速形成叶幕,增强光合作用,促进氮素代谢,又有利于性器官的发育、授粉、受精以及胚和胚乳细胞的迅速分裂和果实肥大。如果留果过多,当年营养消耗过量、贮备营养不足,会使这两类代谢之间失去平衡,从而影响翌年的营养生长,进而加剧生长与结果的矛盾,导致大小年结果和树势衰弱。若果园管理不善,造成营养生长过旺,则会导致花少、果少、枝叶徒长、虽积累多但经济效益低。因此,为使果树早果、高产、稳产,其关键是前期必须满足肥水,特别是果树对氮肥的需求,以促进枝叶迅速生长成熟。在停长后期,特别是采果期,也应大量施肥,尤其是重施磷、钾肥,以加强树体光合作用,增加营养积累,促进翌年的正常生长和结果。
碳水化合物代谢过程
碳水化合物是由碳、氢和氧三种元素组成,自然界存在最多、具有广谱化学结构和生物功能的有机化合物。可用通式Cx(H2O)y来表示。由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它可以为人体提供热能。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物和人不能消化的无效碳水化合物。糖类化合物是一切生物体维持生命活动所需能量的主要来源。它不仅是营养物质,而且有些还具有特殊的生理活性。碳水化合物根据其能否水解和水解后的生成物可分为下述三类。单糖类单糖是糖的基本单位,不能再行水解。自然界中的单糖以四个、五个或六个碳原子最为普遍,食品中以戊糖和已糖较多,尤以已糖分布最广。戊糖在自然界中大都以形成多糖的成分而存在,如阿拉伯糖存在于半纤维素中,稻草、木材中含有木糖的成分。戊糖不能被人体吸收。己糖中最重要的有三种:葡萄糖、果糖、半乳糖。(1)葡萄糖除了构成水果与蔬菜类甜味的成分,还以结合状态构成各种多糖及低聚糖,如淀粉、纤维素、半纤维素、麦芽糖、肝糖原等。葡萄糖的甜度相对来说不高,约为蔗糖的0.6倍。(2)果糖是葡萄糖的异构糖,主要存在于水果中而得名,是甜度最高的糖,约为蔗糖的1.5倍。果糖吸湿性强。果糖与葡萄糖结合构成蔗糖,多数果糖结合成为多糖类的菊糖。果糖也是蜂蜜的糖分组成之一。
弄懂碳水化合物代谢,让你事半功倍!
糖代谢主要指葡萄糖在体内的一系列复杂的化学反应,包括分解代谢与合成代谢。碳水化合物在体内分解过程中,首先经糖酵解途径降解为丙酮酸,在无氧情况下,丙酮酸在胞浆内还原为乳酸,这一过程称为碳水化合物的无氧氧化。由于缺氧时葡萄糖降解为乳酸的情况与酵母菌内葡萄糖“发酵”生成乙酸的过程相似,因而碳水化合物的无氧分解也称为“糖酵解”。在有氧的情况下,丙酮酸进入线粒体,氧化脱羧后进入三羧酸循环,最终被彻底氧化成二氧化碳及水,这个过程称为碳水化合物的有氧氧化。 1.糖酵解过程 由于葡萄糖降解到丙酮酸阶段的反应过程对于有氧氧化和糖酵解是共同的,因此把葡萄糖降解成丙酮酸阶段的具体反应过程单独地称为糖酵解途径。整个过程可分为2个阶段。第1阶段由1分子葡萄糖转变为2分子磷酸丙糖,第2阶段由磷酸丙糖生成丙酮酸。第1阶段反应是一个耗能过程,消耗2分子ATP;第2阶段反应是产能过程,1分子葡萄糖可生成4分子的ATP,整个过程净生成2分子ATP。2.糖酵解作用的生理意义糖酵解产生的可利用能量虽然有限,但在某些特殊情况下具有重要的生理意义。例如,重体力劳动或剧烈运动时,肌肉可因氧供应不足处于严重相对缺氧状态,这时需要通过糖酵解作用补充急需的能量。 葡萄糖的有氧氧化反应过程可归纳为3个阶段:第1阶段是葡萄糖降解为丙酮酸,此阶段的化学反应与糖酵解途径完全相同。第2阶段是丙酮酸转变成乙酰辅酶A。第3阶段是乙酰辅酶A进入三羧酸循环被彻底氧化成CO2和H20,并释放出能量。三羧酸循环由一连串的反应组成。这些反应从有4个碳原子的草酰乙酸与2个碳原子的乙酰CoA的乙酰基缩合成6个碳原子的柠檬酸开始,反复地脱氢氧化。通过三羧酸循环,葡萄糖被完全彻底分解。糖有氧氧化的生理意义:有氧氧化是机体获取能量的主要方式。1分子葡萄糖彻底氧化可净生成36~38个ATP,是无氧酵解生成量的18~19倍。有氧氧化不但释放能量的效率高,而且逐步释放的能量储存于ATP分子中,因此能量的利用率也很高。糖的氧化过程中生成的CO2并非都是代谢废物,有相当部分被固定于体内某些物质上,进行许多重要物质的合成代谢。例如在丙酮酸羧化酶及其辅酶生物素的催化下,丙酮酸分子可以固定CO2生成草酰乙酸。其他一些重要物质,如嘌呤、嘧啶、脂肪酸、尿素等化合物的合成,均需以CO2作为必不可少的原料之一。有氧氧化过程中的多种中间产物可以使糖、脂类、蛋白质及其他许多物质发生广泛的代谢联系和互变。 糖的氧化过程需要多种维生素和金属离子作为辅酶,如维生素B1、维生素B2、维生素PP、铁、镁、锰等,这些物质严重缺乏时,可造成糖代谢障碍,糖代谢还受机体的摄氧量、代谢中间产物、激素和神经体液等多种因素的影响。
一碳单位的主要形式有
一碳单位的主要形式有―CH3、―CH=、―CH=NH。一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位具有一下两个特点:不能在生物体内以游离形式存在;必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。是含一个碳原子的基团,如甲基、羟甲基、甲酰基、亚氨甲基、甲烯基、甲炔基。它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。
光合碳代谢的概念和机理
光合碳代谢的概念和机理是碳代谢。据公开信息显示碳代谢,是植物在光合作用中将无机物二氧化碳同化为有机物碳水化合物等以及在呼吸、光呼吸作用中有机碳异化为二氧化碳的一系列生理生化过程的通称,是光合碳代谢的概念和机理。包括光合产物淀粉和蔗糖的合成、降解与转化,也包括呼吸过程中的糖酵解、三羧酸循环。
请问人体对一氧化碳的代谢速度?一氧化碳中毒未死,有无可能在中毒者血液内无法检测出一氧化碳?
只要是一氧化碳中毒,血液就一定能检查出血氧含量的,靠自然代谢很慢,需要配合高压氧治疗,按疗程做,效果很好。如果治疗不及时彻底,迟发脑病很可怕的。
一碳单位的概念
一碳单位定义:指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲炔基、甲酚基及亚氨甲基等。 一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。 能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。 一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:红细胞,导致巨幼性贫血。 是含一个碳原子的基团,如甲基(-CH3)、羟甲基(-CH2OH)、甲酰基(-CHO)、亚氨甲酰基(-CH=NH)、甲烯基(-CH2-)、甲炔基(-CH=)。它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。
氨基酸代谢的一碳单位主要由_供给,核苷酸生物合成中的一碳单位主要由 供给.
核苷酸生物合成中的一碳单位主要由THF供给.AA的应该是甘氨酸主要的吧,苏氨酸、丝氨酸和组氨酸也能供给。另外,胆碱、肌酸、肾上腺素什么的是S-腺苷甲硫氨酸提供的。我觉得是这样。^_^
谁能详细讲讲一碳单位的相互转化
一碳单位(one caron unit) 指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲快基、甲酚基及亚氨甲基等. 一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在; 2.必须以四氢叶酸为载体. 能生成一碳单位
淀粉是氮代谢还是碳代谢呢
碳代谢。根据相关资料查询,淀粉属于碳水化合物,也就是属于碳代谢。碳代谢,植物在光合作用中将无机物二氧化碳同化为有机物碳水化合物等以及在呼吸、光呼吸作用中有机碳异化为二氧化碳的一系列生理生化过程的通称。包括光合产物淀粉和蔗糖的合成、降解与转化,也包括呼吸过程中的糖酵解、三羧酸循环、戊糖磷酸途径和乙醇酸氧化途径以及乙醛酸循环等。
一碳单位名词解释
一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团。包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。
一碳单位的生理功能是
【答案】:C一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。是含一个碳原子的基团,如甲基(-CH)、羟甲基(-CH0H)、甲酰基(-CHO)、亚氨甲酰基(-CH=NH)、甲烯基(-CH-)、甲炔基(-CH=)。它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。故本题答案为C。
体内转运一碳单位的载体是
【答案】:D四氢叶酸是体内转运一碳单位的载体,实际上可认为是一碳单位代谢的辅酶。在哺乳动物体内,四氢叶酸可由叶酸经二氢叶酸还原酶催化,先还原为二氢叶酸,然后再还原为四氢叶酸。其他4个选项均与一碳单位代谢无关。
丝氨酸代谢时可产生一碳单位,一碳单位的载体是叶酸对还是错
对。丝氨酸代谢时可产生一碳单位,一碳单位的载体是四氢叶酸,是一种还原叶酸也称为辅酶F。四氢叶酸(Tetrahydrogenfolicacid,代号为FH4或THFA)是叶酸在体内的主要存在形式,又称辅酶F(CoF),分子式为C19H23N7O6,它是叶酸分子中蝶啶的5、6、7、8位各加一个氢形成的,是辅酶形式的叶酸的母体化合物。接触空气容易氧化。当叶酸缺乏或某些药物抑制了叶酸还原酶,使叶酸不能转变为四氢叶酸,都可影响血细胞的发育和成熟,造成巨幼红细胞性贫血。
体内转运一碳单位的载体是什么
一碳单位的载体是四氢叶酸。一碳单位的来源是一些氨基酸,一碳单位在体内的作用主要是合成嘌呤等物质。一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基,亚甲基,次甲基,羟甲基,甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料,在体内主要以四氢叶酸为载体。一碳单位具有以下两个特点:1、不能在生物体内以游离形式存在。2、必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的载体是脂质。根据查询相关公开信息显示,脂质是一类无机物,它们是由高度结构化的脂肪酸组成的有机化合物。它们可以用作能量储备,也可以作为细胞膜的结构组分,并参与脂质的运输,调节和保护细胞的功能。四氢叶酸。四氢叶酸是一碳单位的运载体,人体内四氢叶酸可由叶酸经二氢叶酸还原酶催化先转变为二氢叶酸,后者继续经此酶作用转变生成四氢叶酸。生物素、维生素B12可参与构成某些酶的辅酶,但这些辅酶与一碳单位代谢无关。所以体内转运碳单位的是四氢叶酸。
一碳单位为哪种嘧啶核苷酸的生成提供甲基?
一碳单位(one carbon unit)是指某些氨基酸分解代谢中产生的含有一个碳原子的基团,包括甲基(-CH3)、亚甲基/甲烯基(-CH2-)、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位具有以下两个特点:1. 不能在生物体内以游离形式存在;2. 必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。SAM:活性甲硫氨酸,英文名S-adenosyl methionine .又称S-腺苷甲硫氨酸,是体内甲基的最重要的直接供体。在生物体内由ATP与甲硫氨酸在甲硫氨酸活化酶的作用下合成。甲硫键是高能键,另外其丙基胺部分也加入到多胺化合物中。当胆碱、肌酸及其它甲基化合物生成时它作为甲基供体而起作用。认为甲硫氨酸的分解也经过此物质。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。打开APP查看高清大图嘌呤核苷酸的元素来源嘧啶核苷酸的从头合成打开APP查看高清大图嘧啶核苷酸的元素来源嘌呤核苷酸的元素来源嘧啶核苷酸的补救合成嘌呤核苷酸的补救合成总之,碳单位是含一个碳原子的基团,如甲基(-CH3)、羟甲基(-CH2OH)、甲酰基(-CHO)、亚氨甲基(-CH=NH)、甲烯基(-CH2-)、甲炔基(-CH=)。它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。
一碳单位名词解释
一碳单位指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位具有一下两个特点:1、不能在生物体内以游离形式存在;2、必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。详细解释:它是含一个碳原子的基团,如甲基(-CH3)、羟甲基(-CH2OH)、甲酰基(-CHO)、亚氨甲基(-CH=NH)、甲烯基(-CH2-)、甲炔基(-CH=)。它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。
一碳单位包括
一、一碳单位包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。二、一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。代谢过程一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。是含一个碳原子的基团,如甲基(-CH3)、羟甲基(-CH2OH)、甲酰基(-CHO)、亚氨甲基(-CH=NH)、甲烯基(-CH2-)、甲炔基(-CH=)。它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。一碳单位的载体
一碳基团由什么产生
一碳基团由某些氨基酸在分解代谢中产生的含有一个碳原子的基团。一碳单位(onecaronunit)指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲快基、甲酚基及亚氨甲基等。
泰医一碳单位的类型.载体及生理功用
一碳单位的类型:一碳单位是某些氨基酸在分解代谢过程中产生的含有一个碳原子的基团,包括:甲基,甲烯基,甲炔基,甲酰基和亚氨甲基。 一碳单位的载体:一碳单位又不能游离存在,常与其载体四氢叶酸结合而转运和参加代谢。一碳单位的生理功用: (1) 一碳单位是嘌呤和嘧啶合成的原料 (2) 一碳单位代谢将氨基酸代谢和核苷酸代谢联系起来
一碳单位名词解释
一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团。包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。
可产生一碳单位的氨基酸有哪些
能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。扩展资料:是含一个碳原子的基团,不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。
一碳单位名词解释生物化学
一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼红细胞性贫血)。
一碳单位的载体指的是什么
一碳单位的载体指的是四氢叶酸,体内的一碳单位有:甲基(-CH3,methyl)、甲烯基(-CH2ue011,methylene),甲炔基(-CH=,methenyl)等。 对一碳单位的介绍如下: 一碳单位的类型:一碳单位是某些氨基酸在分解代谢过程中产生的含有一个碳原子的基团,包括:甲基,甲烯基,甲炔基,甲酰基和亚氨甲基。 一碳单位的载体:一碳单位又不能游离存在,常与其载体四氢叶酸结合而转运和参加代谢。 一碳单位的生理功用: (1)一碳单位是嘌呤和嘧啶合成的原料 (2)一碳单位代谢将氨基酸代谢和核苷酸代谢联系起来
一碳单位的来源,种类及重要生理功能
一碳单位(one caron unit)指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲快基、甲酚基及亚氨甲基等。一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在; 2.必须以四氢叶酸为载体。 能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。
哪些氨基酸在代谢过程中可产生一碳单位
必需氨基酸是人体不能合成而必须靠膳食摄入的氨基酸。酮体(ketone body):在肝脏中,脂肪酸氧化分解的中间产物乙酰乙酸、β-羟基丁酸及丙酮,三者统称为酮体一碳单位就是在某些氨基酸在分解代谢过程中产生一个碳原子的基团。指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲炔基、甲酰基及亚氨甲酰基等。 一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体
一碳单位的载体是fh4和什么
fh4是四氢叶酸(FH4或THFA)是携带一碳单位的载体。四氢叶酸(Tetrahydrogen folic acid,代号为FH4或THFA)是叶酸在体内的主要存在形式,又称辅酶F(CoF),分子式为C19H23N7O6,它是叶酸分子中蝶啶的5、6、7、8位各加一个氢形成的,是辅酶形式的叶酸的母体化合物。接触空气容易氧化。当叶酸缺乏或某些药物抑制了叶酸还原酶,使叶酸不能转变为四氢叶酸,都可影响血细胞的发育和成熟,造成巨幼红细胞性贫血。定义四氢叶酸是体内一碳单位转移酶系统中的辅酶,是由叶酸在维生素C和NADH+存在下,经叶酸还原酶作用下生成二氢叶酸,然后由二氢叶酸还原酶催化生成四氢叶酸。四氢叶酸是一碳基团的载体,可传递一碳单位,参与嘌呤、嘧啶的合成,对正常血细胞的生成具有促进作用。所以当叶酸缺乏或某些药物抑制了叶酸还原酶,使叶酸不能转变为四氢叶酸,都可影响血细胞的发育和成熟,造成巨幼红细胞性贫血
代谢时能直接生成一碳单位的化合物是
正确答案:E解析:体内最广泛存在,活性最高的转氨酶是将氨基转移给α-酮戊二酸。代谢时能直接生成一碳单位的化合物是甘氨酸。
一碳的概念
一碳单位定义:指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲炔基、甲酚基及亚氨甲基等.一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体.能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸.另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位.一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带.所以一碳单位缺乏时对代谢较强的组织影响较大,例如:红细胞,导致巨幼性贫血.是含一个碳原子的基团,如甲基(-CH3)、羟甲基(-CH2OH)、甲酰基(-CHO)、亚氨甲酰基(-CH=NH)、甲烯基(-CH2-)、甲炔基(-CH=).它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子.丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸.
代谢时能直接生成一碳单位的化合物是
【答案】:E体内最广泛存在,活性最高的转氨酶是将氨基转移给α-酮戊二酸。代谢时能直接生成一碳单位的化合物是甘氨酸。
“一碳基团”代谢的生物学意义?
1.四氢叶酸“一碳基团” 参与体内嘌呤和嘧啶碱的生物合成,这些碱基是合成核酸的基本成分。2. S-腺苷蛋氨酸与“一碳基团”,是参与体内甲基化反应的主要甲基来源。3. “一碳基团”代谢与新药设计: 叶酸分子中含对氨基苯甲酸(PABA),叶酸是合成核酸和蛋白质的必需物质,甲基苄氨嘧啶TMP是细菌二氢叶酸还原酶的强烈抑制剂。
何谓"一碳单位"?一碳单位有何生理功能
一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。SAM提供甲基可参与体内多种物质合成。例如肾上腺素、胆碱、胆酸等。一碳单位代谢将氨基酸代谢与核苷酸及一些重要物质的生物合成联系起来。一碳单位代谢的障碍可造成某些病理情况,如巨幼红细胞贫血等。磺胺药及某抗癌药(氨甲喋呤等)正是分别通过干扰细菌及瘤细胞的叶酸、四氢叶酸合成,进而影响核酸合成而发挥药理作用的。扩展资料一碳单位具有不能在生物体内以游离形式存在、必须以四氢叶酸为载体的特点。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位是含一个碳原子的基团。它们不能独立存在,必须以四氢叶酸为载体,从一碳单位的供体转移给一碳单位的受体,使后者增加一个碳原子。丝氨酸、甘氨酸、色氨酸和组氨酸在代谢过程中可生成一碳单位,作为供体,主要用于嘌呤核苷酸从头合成、脱氧尿苷酸5位甲基化合成胸苷酸以及同型半胱氨酸甲基化再生蛋氨酸。参考资料来源:百度百科——一碳单位参考资料来源:百度百科——一碳代谢
“一碳基团”代谢的生物学意义?
某些氨基酸在代谢过程中能生成含一个碳原子的基团,经过转移参与生物合成过程。这些含一个碳原子的基团称为一碳基团(one carbon unit)或一碳单位(C1 unit或one carbon unit)。有关一碳单位生成和转移的代谢称为一碳单位代谢。一碳单位是合成嘌呤和嘧啶的原料,在核酸生物合成中有重要作用。如N5-N10-CH=FH4直接提供甲基用于脱氧核苷酸dUMP向dTMP的转化。N10-CHO-FH4和N5N10-CH=FH4分别参与嘌呤碱中C2,C3原子的生成。S-腺苷蛋氨酸提供的甲基可参与体内多种物质合成。例如肾上腺素、胆碱、胆酸等。一碳单位代谢将氨基酸代谢与核苷酸及一些重要物质的生物合成联系起来。一碳单位代谢的障碍可造成某些病理情况,如巨幼红细胞贫血等。磺胺药及某抗癌药(氨甲喋呤等)正是分别通过干扰细菌及瘤细胞的叶酸、四氢叶酸合成,进而影响核酸合成而发挥药理作用的。
能转移一碳单位的是
四氢叶酸。四氢叶酸是一碳单位的运载体,人体内四氢叶酸可由叶酸经二氢叶酸还原酶催化先转变为二氢叶酸,后者继续经此酶作用转变生成四氢叶酸。生物素、维生素B12可参与构成某些酶的辅酶,但这些辅酶与一碳单位代谢无关。所以体内转运碳单位的是四氢叶酸。
一碳单位的载体是什么?
一碳单位的载体是四氢叶酸。一碳单位的来源是一些氨基酸,一碳单位在体内的作用主要是合成嘌呤等物质。一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基,亚甲基,次甲基,羟甲基,甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料,在体内主要以四氢叶酸为载体。一碳单位具有以下两个特点:1、不能在生物体内以游离形式存在。2、必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。以上内容参考:百度百科-一碳单位
参与一碳单位的维生素是
正确答案:D解析:4.叶酸是B族维生素。其辅酶形式是四氢叶酸的一些衍生物,在一碳单位的代谢中起作用。1小题选D。烟酸也称作维生素B[XB3.gif],或维生素PP,在人体内转化为烟酰胺,是辅酶Ⅰ和辅酶Ⅱ的组成部分,参与体内脂质代谢,组织呼吸的氧化过程和糖类无氧分解的过程。2小题选C。维生素B[XB6.gif]又称吡哆素,主要是吡哆醛、吡哆胺和吡哆醇,其磷酸化形式是氨基酸代谢过程的辅酶,如转氨酶的辅酶。3小题选B。维生素B[XB5.gif]也称作泛酸,活性形式是辅酶A。4小题选E。
碳和能量代谢
木霉能够降解多种多糖类物质(纤维素和半纤维素)和相关的其他聚合物如几丁质已众所周知。参与这些降解过程的酶类,具有重要的商业价值。虽然认为多数木霉种类是这类酶的良好产生菌,但从没有人对此做过深入调查。Danielson等(1973c)发现,来自土壤的木霉种类之间对不同植物材料的降解能力表现不一,它们对木材的分解能力特别弱。因此,文献中常常将其错误地归类为软腐类型真菌,但木霉实际上只是通过降解非定型碳水化合物而生长在木材上。木霉在火炬松材上生长,只破坏其中的放射状薄壁组织细胞和具缘纹孔(Hulme et al.,1970)。在纯培养中,一些木霉种类对山茱萸(Cornus officinalis)叶片和火炬松(Pinus taeda)针叶(Danielson et al.,1973c)、山毛榉(Fagaceae fagus)木材(Butcher,1968)、桦木(Betulaceae betula)木材和松木(Pinus Linn)木材(Bergman et al.,1971)基本没有分解能力。因此,更准确的说法应该是:木霉是一类腐生性真菌。Kubicek等(1996)研究了长枝组木霉的纤维素酶产生能力,发现长枝木霉(T.longibrachiatum)、橘绿木霉(T.citrinoviride)和红褐肉座菌(H.jecorina)(T.reesei的有性阶段)比该组的其他种类,例如假康宁木霉(T.Pseudokoningii)和T.citrinoviride,纤维素酶产量高;还发现来自热带地区的木霉纤维素酶产量也明显高于来自温带地区的木霉。纤维素酶是由木霉菌产生的主要酶系之一,里氏木霉、绿色木霉、哈茨木霉、康氏木霉都是纤维素酶的良好生产菌株,因此,能够很好地利用经过处理的纤维类材料作为营养物质。Hiroyuki等1999年报道,从绿色木霉的纤维素酶复合物中,分离纯化得到了一种能水解β-糖苷键的新β-葡糖苷酶。该酶催化纤维二糖的转糖苷作用,并且具有区域选择性,经进一步研究发现该酶还可以用于低聚糖的合成。Kwon等(2002)发现绿色木霉HK275的β糖苷内切葡聚糖酶,它不但具有水解酶活性,还具有转糖苷作用。赵玉萍(2006)的研究表明,用去掉蛋白和淀粉的麸皮作为底物,康氏木霉的转化率可达28.5%。阿拉伯木聚糖(Arabinoxylan)是一种多聚五碳糖,大多存在于木质素中,是一类以β-1,4-木糖苷键连接的异多聚碳水化合物,约占木材和农业有机废料重量的20%~35%。张晓晖等(2007)运用平板初筛和发酵复筛的方法,筛选2株高产木聚糖酶的木霉菌种康氏木霉和里氏木霉,其中,康氏木霉产木聚糖酶活力最高可达40.78IU/mL。绿色木霉产生的木聚糖酶对木聚糖具有酸化作用,而内切葡聚糖酶可将马铃薯中的木聚糖降解。里氏木霉木聚糖酶具有多样性,已报道的有4种内切木聚糖酶(Arja et al.,2000;Xu et al.,1998;Tenkanen et al.,2002)。几丁质是自然界中产量仅次于纤维素的有机聚合物,广泛存在于虾、蟹等甲壳动物的外壳及真菌的细胞壁中。哈茨木霉、绿色木霉及钩状木霉均能产生几丁质酶(王治伟等,2006)。Kashmiri等(2006)报道了能够产生脂肪酶的绿色木霉,其脂肪酶活力为7.3U/mL,说明木霉也能够利用脂肪类物质作为营养。Manczinger等(1985)根据木霉对碳源的利用特性,将木霉种类进行了分组研究。研究发现,如下碳源可为所有测试木霉菌株利用:D-葡萄糖、D-半乳糖、D-果糖、D-甘露糖、纤维二糖、海藻糖、D-木糖、L-阿拉伯糖、D-甘露醇、D-阿拉伯醇、甘油、水杨苷、七叶灵、熊果苷、甘油-1-单乙酸酯、β-甲基-D-葡糖苷及 N-乙酰基-β-D-葡糖胺。整体上说,最适合的碳源是葡萄糖、果糖、甘露糖、半乳糖、木糖、海藻糖和纤维二糖(Danielson et al.,1973c)。木霉一般不利用以下碳源:a-甲基-D-木糖苷、a-甲基-D-甘露糖苷、甲醇、乙醇、正丙醇、乙胺、5-酮基葡萄糖酸、L-酒石酸、丙酸、丁酸、草酸、乙醛酸、DL-异柠檬酸、己二酸、DL-乳酸、丙二酸、3-羟基丁酮、麦芽糖醇、右旋糖酐、尿嘧啶、氧氨嘧啶、胞苷、L-赖氨酸、L-组氨酸、L-蛋氨酸、L-半胱氨酸、a-DL-氨基己二酸、β-丙氨酸、乙醇胺、各种D-氨基酸、安息香酸、阿魏酸及氨基苯甲酸。T.reesei(=H.jecorina)比较特别,该菌由于缺乏转化酶而不能利用蔗糖,这一特性被用来通过互补实验从A.niger中克隆转化酶基因(Berges et al.,1993)。木霉对某些碳源(例如菊糖、淀粉、木聚糖、果胶、乳糖、蔗糖、麦芽糖,某些多元醇、糖酸,大多数氨基酸及一些五碳糖类)的利用具有种类特异性(Manczinger et al.,1985),可用于进行化学分类研究。Nelson等(1988)研究了多种碳素化合物对康宁木霉(T.koningii)和T.harzianum防治腐病效果的影响,两种木霉对添加的不同化合物表现出不同的反应,有机酸(特别是脂肪酸)对 T.koningii的促进作用最大,而多糖类(例如淀粉、菊糖和核糖)和多元醇(例如阿拉伯醇)则对T.harzianum有益。与其他真菌一样,基于酶活性分析,可以认为木霉对碳水化合物的降解主要通过糖酵解和戊糖磷酸途径来进行。葡萄糖或者其他单糖的胞外氧化,在其他真菌中常有报道,但在木霉和粘帚霉方面还未见。T.reesei和T.atroviride肯定没有葡萄糖氧化酶,但是黑曲霉菌(A.niger)的葡萄糖氧化酶能够在 T.atroviride 中表达并具有活性。有报道发现,在T.viride和T.hamatum 中有抗坏血酸氧化酶(Hatsutori et al.,1994;Nakanishi,1995)。葡萄糖的转运由一活跃的转运系统进行,该系统需要质子的同向转移。有趣的是,T.reesei的突变体RUT C-30,由于cre1 基因功能的缺失,碳降解物阻遏得到解除(Ilmen et al.,1996),而葡萄糖透过酶活性非常低。目前还不清楚这种现象的深层原因,是透过酶由碳降解物解阻遏所调节造成的,还是基因多效性所造成的,这需要进一步探索。对于S.cerevisiae的葡萄糖控制来说,糖分解代谢的最初几个步骤很重要(Gancedo et al.,1986)。有人研究了T.reesei中己糖激酶和葡糖激酶及它们在碳分解代谢控制中的可能作用(Kubicek-Pranz et al.,1991),发现在不同碳源基质上培养时,能够检测到对葡萄糖或果糖具有活性的酶,表明该菌至少能够产生一种己糖激酶和一种葡萄糖激酶。相反,Samuels等(1994)利用电泳技术检测了几种木霉和肉座菌的同工酶,只发现了一个己糖激酶。这种分歧还需要进一步澄清,但两种酶在分解物解阻遏的突变株T.reesei RUT C-30及F4或F5中活性没有改变(Labudova et al.,1983),在两个2-脱氧葡萄糖抗性突变株中也没有改变,表明己糖激酶或者葡萄糖激酶在木霉的葡萄糖控制(即葡萄糖在细胞内的磷酸化作用)中没有作用,后来利用构巢曲霉(A.nidulans)进行的研究也得出了类似结论(Ruyter et al.,1996)。已知真菌对葡萄糖-6磷酸的分解代谢涉及糖酵解和戊糖磷酸途径,两者所起作用的比例依细胞需要而异。对戊糖磷酸途径来说,在长枝组的木霉种类中发现了至少2种葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶的同工酶(Samuels et al.,1994),但Stasz等(1988a)在 T.viride,T.harzianum,T.virens,T.koningii,T.hamatum和T.polysporum的菌株中仅检测到单一酶。Stasz等(1988 a)检测的是不同菌株的同工酶,在方法上是能够发现同工酶差异的,因此,他们与Samuels等(1994)结果的差别,很可能是由所使用的菌株不同造成的。Neto(1993)分离纯化并研究了糖酵解途径的磷酸果糖激酶2,该酶在调控方面具有重要意义,发现它不受环腺苷依赖型的磷酸化所调节控制,只受底物的可利用性所调控,这种现象与酵母不同,但与早期关于A.niger的报道一致(Harmsen et al.,1992)。对其他糖酵解酶类在基因水平上进行了研究,结果表明,由于这些酶类理论上的表达很强,对表达工具的构建具有潜在的应用价值。甘油醛-3-磷酸脱氢酶已经从T.koningii分离纯化,其编码基因也已克隆得到(Watanabe et al.,1993)。该酶有两种同工酶,它们的区别在于对康宁酸(koningic acid)的敏感性不同,两者对康宁酸的I0.5分别是1mM和6.8μM,康宁酸是由T.koningii产生的一种抗生性代谢产物。氨基酸残基的差别是造成酶对康宁酸敏感性不同的原因,敏感型同工酶在174和181位置上的氨基酸残基分别是丙氨酸和丝氨酸,而不是苏氨酸和苏氨酸。甘油醛-3-磷酸脱氢酶编码基因也已经从T.harzianum克隆得到(Puyesky et al.,1997)。研究人员发现,在光诱导的产孢过程中,甘油醛-3-磷酸脱氢酶(gpd)转录子存在下调现象。Vanhanen等(1989)和Goldman等(1992c)分别从T.reesei和T.viride中克隆到了编码3-磷酸甘油酸激酶的基因,其5′-端序列含有共有序列结合位点(consensus binding sites),该位点可结合环腺苷控制因子、一种催化蛋白质2和碳分解物阻遏抑制因子Cre1。T.reesei的pgk1基因还包含一个热激共有序列,其功能还未明确,但是已经发现pgk1 对热胁迫没有反应(Vanhanen et al.,1991)。丙酮酸激酶的编码基因也已经从T.reesei克隆到(Schindler et al.,1993),其理论蛋白质结构与A.niger和A.nidulans的丙酮酸激酶高度相似(De Graaff et al.,1988),果糖-1,6-二磷酸活化位点的特征序列也存在于该序列上。5′-端上游序列中含有结合糖酵解调控因子基因RAP1和GCR1的共有序列,表明在木霉中,糖酵解有关基因的表达方式和途径与酵母相似。在T.reesei中,同工酶电泳结果发现了2~3个丙酮酸激酶条带(Samuels et al.,1994),但点杂交却只发现了一个基因(Schindler et al.,1993)。有证据表明,丙酮酸激酶存在磷酸化现象,这可能就是发现两个电泳迁移条带的原因。对糖酵解之后的代谢途径,还没有进行过详细研究。Jackson(1973)研究了T.lignorum(=viride)对丙烯基乙醇的降解代谢途径,发现进一步的产物为丙烯酸和乙酸,后者进一步代谢为丙酮酸酯,可累积到原始底物量的50%(w/w)。Sakaguchi等(1975 a,b)研究了G.deliquescens对一碳化合物例如甲醇的同化作用,通过测量酶的活性及14C-放射性标记,发现同化作用通过丝氨酸途径来实现。Tye等(1977)通过在甲醇培养基上连续培养,研究了T.lignorum的生长情况,发现最适生长速率较低(μ=0.026),而且只在低浓度甲醇条件下(0.16%)才能生长。
一碳单位的辅助因子是
四氢叶酸。氢叶酸则是一种维生素B族的营养物质,是一碳代谢的重要辅助因子,在生物体内,一碳单位能够参与到多种生化反应中,包括核苷酸合成、氨基酸代谢等过程。
碳元素的降解与合成代谢有哪些共性特征,其氧化还原能力有什么区别
碳元素的代谢:自然生态演化中的碳循环火山喷发脱钙作用风化作用 大气碳库主要为CO2 , 还有CH4和CO 4.1 .2海洋碳库主要HCO3-CO3-H2CO3新陈代谢是体内所有化学反应的总和.合成代谢是合成体内需要的物质,要吸收能量;分解则是分解物质产生能量维持生命活动或者产生合成代谢的原料,可以放出能量.分解代谢可以为合成代谢提供能量与原材料.合成代谢和分解代谢,合成代谢取的营养物质转变成自身的组成物质, 并且储存能量的变化过程。 分解代谢是指生物体能够把自身的一部分组成物质加以分解, 这些代谢反应共同作用,通过维持正常的细胞活动来维持生命。 虽然没有另一个就不能存在,但两者之间存在很大差异。
什么是植物的碳氮代谢
同化、异化和排泄是植物的碳氮代谢。氮素及含氮的活体物质的同化、异化和排泄,总称为氮素代谢。碳代谢,植物在光合作用中将无机物二氧化碳同化为有机物碳水化合物等以及在呼吸、光呼吸作用中有机碳异化为二氧化碳的一系列生理生化过程的通称。
人体正常代谢会不会产生一氧化碳
可以救命的一氧化碳 上世纪60年代,人们就知道身体组织受毒素、紫外线辐射、激素和药物等侵害时,血红素加氧酶-1(简称HO-1)会及时对抗相应的受伤和感染,此时体内会自然地产生少量的一氧化碳。不过,当时人们都认为一氧化碳是组织代谢的副产品。 然而,美国科学家所罗门61辛德在1993年提出,一氧化碳在人体中扮演了一个有意义的角色。它有协助一氧化氮管理人体内部器官的功能,例如大肠的收缩、胃的排空等。但是,研究人员作了很多的努力之后,还是没有检查出一氧化碳在人体中的准确作用。 由于一氧化碳对人体有益,一些科学家想把它用于临床治疗。然而,一氧化碳是有毒气体,使用稍有不当,就会对人类造成危害。一氧化碳能紧紧结合红细胞中的血红蛋白,形成羧化血红蛋白,使氧气无法载运到全身。当人体内20%左右的血红蛋白转变成羧化血红蛋白时,就会出现恶心、呕吐和晕倒的情况;当人体内40%左右的血红蛋白转变成羧化血红蛋白时,就会夺人性命。因此,有科学家反对把一氧化碳引入对人类的临床治疗。但美国的奥古斯丁61乔和弗里茨61贝奇称,医药界不该这么快拒绝一氧化碳的治疗潜力,一氧化碳疗法是紧急情况下最好的方法。 2001年上半年,乔和贝奇领导的研究小组指出,患者吸入微量一氧化碳有助于防止器官的排斥反应。他们在进行老鼠心脏移植时,用一种叫“卟啉”的化学药品将HO-1封闭,一星期内老鼠有排斥移植的反应产生。但如果将老鼠置于含微量一氧化碳的空气中,则可以幸存。也就是说,吸入动物体内的微量一氧化碳可以完成H0-1所能完成的任务。这个实验也说明,20世纪60年代人们在研究HO-1时发现的一氧化碳不是代谢废物,而是在HO-1的作用下,人体为生理防御反应所产生的气体。 2001年年底,美国的大卫61平斯基的实验表明,一氧化碳对肺移植手术也大有帮助。平斯基改变了一些老鼠的遗传特性,使它们缺少制造HO-1的基因,然后让它们和正常的老鼠一起进行模拟的肺移植手术。平斯基用夹子截断供应到老鼠左肺的血流,一小时后让它们重新恢复流动。结果正常老鼠的生存率为90%,而所有改变过基因的老鼠皆死于产生在肺中的血块。在进一步的实验中,当平斯基给改变过基因的老鼠呼吸微量的一氧化碳后,只有一半老鼠死于非命。目前,每年有数千人进行肺移植手术,失败率为30%,比其他器官移植的失败率要高,比如,肾移植的失败率只有10%。因此,医药学家希望把一氧化碳的治疗作用引入到肺移植手术中。目前也有一些医生把一氧化碳用于临床手术中,取得了一定效果。
物质代谢过程中催化 一碳单位 转移反应的辅酶组成成分是
【答案】:D叶酸作为体内生化反应中一碳单位转移酶系的辅酶,起着一碳单位传递体的作用。
碳水化合物代谢过程
碳水化合物代谢过程:由于食物在口腔停留时间短暂,以致口腔唾液淀粉酶对碳水化合物的消化作用不大。胃液不含任何能水解碳水化合物的酶,其所含的胃酸对碳水化合物只可能有微小或极局限的水解,故碳水化合物在胃中几乎完全没有消化。碳水化合物的消化主要在小肠中进行。极少部分非淀粉多糖可在结肠内通过发酵消化。肠腔中的主要水解酶是来自胰液的α-淀粉酶,称胰淀粉酶,可使淀粉变成麦芽糖、麦芽三糖、异麦芽糖、α-临界糊精及少量葡萄糖等。淀粉在口腔及肠腔中消化后的上述各种中间产物,可以在小肠黏膜上皮细胞表面进一步彻底消化,最后消化成大量的葡萄糖及少量的果糖及半乳糖。小肠内不被消化的碳水化合物到达结肠后,被结肠菌群分解,产生氢气、甲烷、二氧化碳和短链脂肪酸等,这一系列过程称为发酵。发酵也是消化的一种方式。所产生的气体经体循环转运,再经呼气和直肠排出体外,其他产物如短链脂肪酸被肠壁吸收并被机体代谢。
物质代谢过程中催化“一碳单位”转移反应的辅酶组成成分是
【答案】:D叶酸是物质代谢过程中催化“一碳单位”转移反应的辅酶组成成分,在叶酸还原酶的催化下,经过还原反应,形成四氢叶酸。
回答以下有关一碳单位的问题:
【答案】:某些氨基酸在代谢过程中可以产生含有一个碳原子的基团,称为一碳单位。体内的一碳单位有:甲基(—CH,),亚甲基(—CH2—),次甲基(—CHo=),甲酰基(—CHO),亚氨甲基(—CH=NH)。$四氢叶酸是一碳单位的载体,即四氢叶酸是一碳单位代谢的辅酶。一碳单位通常结合在FH4分子的N5、N10位。$一碳单位主要来源于丝氨酸、甘氨酸、组氨酸和色氨酸的代谢。$一碳单位的生理功能。作为合成嘌呤和嘧啶的原料:如:N10-CHO-FH4、N5N10-CH-FH4提供嘌呤环C2、C8的来源。N5N10-CH2-FH4提供胸苷酸的甲基来源。把氨基酸代谢和核酸代谢联系起来。药理作用:磺胺药通过干扰细菌、恶性肿瘤细胞的叶酸、四氢叶酸的合成,进一步影响一碳单位代谢与核酸合成。
什么是一碳单位?常见的一碳单位有哪些?说明甲硫氨酸和一碳单位的关系。
【答案】:氨基酸在分解代谢中产生具有一个碳原子的活泼有机基团,叫一碳单位,由四氢叶酸所携带。甲硫氨酸在一碳单位代谢中主要作用是为转甲基作用提供甲基。甲硫氨酸首先活化为S-腺苷甲硫氨酸,此时其上的甲基高度活化,可为生物体内合成具有甲基的活性甲基化物,如肾上腺素、肌酸、胆碱等提供甲基。S-腺苷甲硫氨酸提供甲基后转变为s一腺苷同型半胱氨酸,同型半胱氨酸接受N5-CH3FH4上的甲基又生成甲硫氨酸。
代谢时能直接生成一碳单位的是
正确答案:B解析:谷氨酸脱氢酶是体内广泛存在且活性强的转氨酶,它只能催化谷氨酸脱氨基生成α-酮戊二酸和氨。能直接生成一碳单位的氨基酸有甘氨酸、丝氨酸、色氨酸和组氨酸。
一碳单位主要由什么 氨基酸代谢生成哪个氨基酸过程产生?
核苷酸生物合成中的一碳单位主要由thf供给.aa的应该是甘氨酸主要的吧,苏氨酸、丝氨酸和组氨酸也能供给。另外,胆碱、肌酸、肾上腺素什么的是s-腺苷甲硫氨酸提供的。我觉得是这样。^_^
一碳单位代谢障碍产生巨幼红细胞贫血的系生化机理是什么?
一碳单位的主要生理功用是作为合成嘌呤和嘧啶的原材料。(生化书的)由于之前2者是合成DNA以及RNA的重要材料,缺乏这些材料,RBC在复制之后没有办法利用嘌呤和嘧啶合成模板,从而可以复制,但是无法分裂,所以RBC就越来越大,但是还是没有办法形成成熟的RBC,形成巨大的未成熟RBC,但是不具有成熟RBC功能,造成巨幼贫。
一碳单位的载体指的是什么
一碳单位的载体指的是四氢叶酸,体内的一碳单位有:甲基(-CH3,methyl)、甲烯基(-CH2ue011,methylene),甲炔基(-CH=,methenyl)等。 对一碳单位的介绍如下: 一碳单位的类型:一碳单位是某些氨基酸在分解代谢过程中产生的含有一个碳原子的基团,包括:甲基,甲烯基,甲炔基,甲酰基和亚氨甲基。 一碳单位的载体:一碳单位又不能游离存在,常与其载体四氢叶酸结合而转运和参加代谢。 一碳单位的生理功用: (1)一碳单位是嘌呤和嘧啶合成的原料 (2)一碳单位代谢将氨基酸代谢和核苷酸代谢联系起来
生化选择 参与一碳单位代谢的维生素AB2 B 叶酸 C 泛酸 急
选A,维生素B2. 维生素B2叫核黄素,为有氧呼吸第三步中重要电子传递物黄体蛋白的辅酶.参与一碳单位的代谢. 因此选A.
一碳单位名词解释
一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位具有一下两个特点:不能在生物体内以游离形式存在;必须以四氢叶酸为载体。一碳单位是合成嘌呤和嘧啶的原料,在核酸生物合成中有重要作用。如N5-N10-CH=FH4直接提供甲基用于脱氧核苷酸dUMP向dTMP的转化。SAM提供甲基可参与体内多种物质合成。例如肾上腺素、胆碱、胆酸等。一碳单位代谢将氨基酸代谢与核苷酸及一些重要物质的生物合成联系起来。一碳单位代谢的障碍可造成某些病理情况,如巨幼红细胞贫血等。磺胺药及某抗癌药(氨甲喋呤等)正是分别通过干扰细菌及瘤细胞的叶酸、四氢叶酸合成,进而影响核酸合成而发挥药理作用的。
一碳单位有什么重要的生理意义?
生理意义:合成嘌呤和嘧啶的原料;氨基酸与核苷酸代谢的枢纽 ;参与S-腺苷蛋氨酸(SAM)生物合成;生物体各种化合物甲基化的甲基来源。某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。扩展资料:能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼性贫血)。参考资料来源:百度百科——一碳单位