DNA

DNA图谱 / 问答 / 标签

核苷酸具有多种生物学功用,表现在作为核酸dna 和rna 合成的基本原料;体 内

核苷酸具有多种生物学功用,表现在作为核酸dna 和rna 合成的基本原料RNA的合成:RNA聚合酶进入DNA非编码区的酶切位点,解旋DNA使成为单链,核糖核苷酸由碱基互补配对法则形成RNA链(信使RNA)。RNA的加工过程主要是在细胞核内进行,也有少数反应是在胞质中进行。mRNA在细胞核内加工后运出到细胞质,tRNA的加工在细胞质内,rRNA也是在细胞质内加工,而且rRNA和tRNA是转录在同一个原初转录产物(也就是前体)内。核糖核酸(RNA)存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA是以DNA的一条链为模板,以碱基互补配对原则转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息传递过程中的桥梁。DNA的合成:首先螺旋酶与拓扑异构酶将双螺旋解开,接着一个DNA聚合酶负责合成前进股;另一个则与延迟股结合,制造一些不连续的冈崎片段,再由脱氧核糖核酸连接酶将其黏合。原核生物的DNA主要是在拟核中合成的,少部分在细胞质中也会合成(如细菌的质粒),真核生物的DNA主要是在细胞核中合成,线粒体中有少量合成。植物细胞细胞器:叶绿体中也能进行DNA的合成。脱氧核糖核酸(DNA)又称去氧核糖核酸,是一种分子,双链结构,由脱氧核糖核苷酸(成分为:脱氧核糖及四种含氮碱基)组成。可组成遗传指令,引导生物发育与生命机能运作。主要功能是长期性的资讯储存,其中包含的指令是建构细胞内其他的化合物如蛋白质与RNA所需。

真核生物和原核生物DNA复制的异同点?

原核生物与真核生物DNA复制共同的特点: 1分为起始、延伸、终止三个过程; 2必须有提供3"羟基末端的引物; 3亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质 :DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA聚合酶、RNA酶以及DNA连接酶等. 4一般为双向复制、半保留复制、半不连续复制. 原核生物与真核生物DNA复制不同的特点: 1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶的移动速度较原核生物慢.原核生物为一般为环形DNA,具有单一复制起始位点. 2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行. 3真核生物复制子大小不一且并不同步. 4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式. 5真核生物有五种DNA聚合酶,需要Mg+.主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成.原核生物只有三种,主要复制酶为DNA聚合酶III. 6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐. 7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除.8真核生物DNA聚合酶γ负责线粒体DNA合成.9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用.原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用

为什么脱氧核苷三磷酸才是DNA的合成原料?

脱氧核苷三磷酸才是DNA的合成原料的原因:脱氧核苷三磷酸中有两个高能磷酸键水解提供能量。三磷酸腺苷(A-T~P~P~P)中含有能量和P,而DNA复制过程中既需要磷又需要能量,磷酸腺苷中三磷酸腺苷的能量是最高的,它依靠磷与磷之间的“~”断裂来释放能量(我记不清“~”是指氢键还是磷键了,应该是氢键),所以三磷酸腺苷好过一磷酸腺苷。脱氧腺苷三磷酸3"-脱氧腺苷,又称去氧腺苷三磷酸(Deoxyadenosine triphosphate,dATP)是一种去氧核苷酸三磷酸(dNTP),结构与腺苷三磷酸(ATP)相似,但少了一个位于五碳糖2号碳上的-OH基,取而代之的是单独的氢原子。若移去接在五碳糖3号碳上的氧原子,则会产生ddATP。此外,dATP是DNA聚合酶在DNA复制过程中,用来合成DNA长链的原料之一。

为什么DNA复制用核苷三磷酸不用核甘一磷酸

因为核苷三磷酸上第二三个磷酸键为高能磷酸键,而核苷一磷酸上的磷酸键的键能为正常的磷酸键键能,因此用核苷三磷酸进行DNA的复制时,第二个高能磷酸键断开释放出焦磷酸,直接为DNA的复制提供了能量(DNA合成是一个吸收能量的反应),使DNA能够快速的复制。也就是说用核苷一磷酸合成DNA时由于其键能低而使反应不能进行或者反应速率缓慢。这也体现了生物体强调化学反应的高效性。

抗dna拓扑异构酶抗体阳性是什么意思

为催化dna拓扑学异构体相互转变的酶之总称。催化dna链断开和结合的偶联反应,为了分析体外反应机制,用环状dna为底物。在闭环状双链dna的拓扑学转变中,要暂时的将dna的一个链或两个链切断,根据异构体化的方式而分为二个型。切断一个链而改变拓扑结构的称为ⅰ型拓扑异构酶(top-oisomeraseⅰ),通过切断二个链来进行的称为ⅱ型拓扑异构酶(topoisomeraseⅱ)。属于ⅰ型的拓扑异构酶,有大肠杆菌的ω蛋白(ω-protein,由分子量11万的单个多肽链所成)及各种真核细胞中存在的切断-结合酶(nicking-closingenzyme,分子量约6万5千—7万的及分子量约10万的)。ⅱ型拓扑异构酶,有存在于细菌中的dna促旋酶、噬菌体t4的拓扑异构酶ⅱ以及真核细胞中依赖atp的拓扑异构酶ⅱ等。另外,噬菌体λ的irt基因产物和噬菌体φx174的基因a的产物等也具有切断—结合酶的活性,可认为是拓扑异构酶之一种。ⅰ型拓扑异构酶不需要atp的能量而催化异构体化,作为反应的中间产物,在原核生物来说是游离型的5′-oh末端扣3′-磷酸末端与酶形成共价键,而真核生物是3′-oh末端5′-磷酸末端与酶形成共价键。此酯键中所贮存的能量,可能在切断端的再结合上起着作用。ⅰ型拓扑异构化酶催化的反应有下列各种:使超螺旋dna在每一切断—结合反应中,使l数(参见dna拓扑学异构体)发生一种变化,即松弛(relaxation)(图1)。将互补的单链环状dna转变成具有螺旋结构的双链环状dna(图2),使单链dna打结(topologicalknot)或解结(图3)。另外在二个环状双链dna一个分子的一个链切断时,形成链环状二聚体的分子(ca-tenane)。在ⅱ型拓扑异构酶中,dna促旋酶可单独催化闭环状dna产生超螺旋,这是独特的。其它二个型的酶,除可使超螺旋松弛也需要atp的能量外,还可催化促旋酶的催化反应。真核细胞的拓扑异构酶ⅰ,参与核小体的形成,细菌的ω蛋白参与转录和某种转位子的插入。促旋酶和t4拓扑异构酶ⅱ参与dna的复制和转录过程。参考资料出有图

抗dna拓扑异构酶抗体阳性是什么意思

抗双链DNA抗体又称为抗天然DNA抗体,是抗核抗体的一种类型,几乎所有红斑狼疮病人都有该抗体的升高。目前认为,它在红斑狼疮的发病中起一定的作用,在一些病人中,DNA的大分子可存在于循环血液中或者粘附于多种器官的微血管上,如肾脏、肺和脑组织,与血液中的自身抗体结合,形成循环免疫复合物,导致组织损伤。抗双链DNA抗体多见于狼疮性肾炎中,约50%以上的狼疮性肾炎病人循环血液中的DNA浓度较正常健康人高。但为什么会增高,如何增高,目前还不得而知,相信随着科学的发展,这些难题可逐步得到解决。一般认为抗双链DNA的效价与病情相平行,即病情活动时,抗DNA抗体效价升高,病情缓解时,效价降低。由于各地测定的方法不同,所以正常值也不同,一般来说,结合率要大于20%以上才有临床意义。

泰医比较DNA聚合酶、连接酶及拓扑酶的异同

答:这三种酶都可催化磷酸二酯键的形成,但其作用特点与功能均不相同:(1) DNA聚合酶以dNTP为底物,延长DNA链,起作用时必需依赖DNA 模板。(2)DNA连接酶可将互补DNA双链中单链上的缺口连接,形成完整的DNA链,要求两相邻末端必须具有5"-磷酸和3"-OH,需要ATP。(3)拓扑异构酶可将DNA链打开缺口,旋转后再将缺口连接重新形成磷酸二酯键,不需要ATP。

可干扰细菌DNA回旋酶或拓扑异构酶Ⅳ,影响细菌DNA合成的药物是

【答案】:D考查抗菌药的作用机制。替加环素为一新型四环素类药,通过与核糖体30S亚单位结合、而抑制细菌蛋白质合成;氨基糖苷类抑制细菌蛋白质合成的作用靶点包括:①在起始阶段;②在肽链延伸阶段;③在终止阶段。繁殖期、静止期杀菌药;氟喹诺酮类干扰细菌DNA回旋酶或拓扑异构酶Ⅳ,影响DNA的合成;利福平抑制敏感菌DNA依赖性RNA多聚酶,阻碍mRNA合成;多黏菌素作用机制为与革兰阴性杆菌细胞膜上的磷酸基结合,致细胞膜通透性增加,细菌膨胀、溶解死亡。

作用机制是抑制DNA回旋酶和拓扑异构酶Ⅳ的药物是( )

【答案】:B喹诺酮类药物的抗菌机制主要是抑制细菌DNA的回旋酶和拓扑异构酶Ⅳ。真核细胞不含DNA回旋酶,故对细菌作用选择性高。

简述参与原核生物DNA复制的酶与蛋白质因子,以及它们在复制中的作用。

【答案】:①DNA-pol:原核生物DNA-polⅠ、Ⅱ、Ⅲ,DNA-polⅢ有聚合酶和核酸外切酶两种活性,在复制延长中起催化作用;polⅡ功能不详;polⅠ也有聚合酶和外切酶两种活性,有校读、切除引物、填补空隙和损伤修复功能。②解螺旋酶:在ATP或NAD+存在的条件下解开DNA双链。③拓扑异构酶:使复制中的DNA能解结、解连环,达到适度盘绕,有利于DNA解链。④SSB:结合并稳定解开的DNA模板单链。⑤引物酶:以NTP为原料催化合成领头链和随从链的引物。⑥DNA连接酶:连接碱基互补基础上双链中的单链缺口。

原核生物繁殖时如何复制DNA

原核生物复制过程如下:首先是DNA解旋酶与拓扑异构酶协同将DNA的双链解开变为单链;紧接着DNA单链模板与RNA引物结合,催化DNA复制起始,在前导链的复制中,引物由RNA聚合酶生成,在滞后链的复制中,引物由引发体产生;然后就是DNA的延伸阶段,在DNA聚合酶的作用下,新链会以模板从5"-3‘合成,最终完成复制。查看原帖>>

作用于DNA拓扑异构酶1的抗肿瘤药除了喜树碱类还有什么?谢谢回答!

双-和四苯咪唑(Chen等,CancerRes.1993,53,1332-1335;Sun等,J.Med.Chem.1995,38,3638-3644;Kim等,J.Med.Chem.1996,39,992-998),某些白屈菜生物碱(benzo[c]phenanthridine)和原小檗碱类生物碱(protoberberine)与合成的类似体(Makhey等,Med.Chem.Res.1995,5,1-12; Janin等,J.Med.Chem.1975,18,708-713;Makhey等,Bioorg.&Med.Chem.1996,4,781-791),以及bulgerain(Fujii等,J.Biol.Chem.1993,268,13160-13165),saintopin(Yamashita等,Biochemistry1991,30,5838-5845)和indolocarbazoles(Yamashita等,Biochemistry1992,31,12069-12075

DNA连接酶和拓扑异构酶的催化都属于共价催化。()

DNA连接酶和拓扑异构酶的催化都属于共价催化。() A.正确 B.错误 正确答案:

PCR与DNA复制有何异同?

PCR是DNA的体外扩增技术. DNA复制是有生命力的细胞在体内 自我复制的过程 ,属于体内扩增. PCR(聚合酶链式反应)原理 PCR是体外酶促合成特异DNA片段的方法,主要由高温变性、低温退火和适温延伸三个步骤反复的热循环构成:即在高温(95℃)下,待扩增的靶DNA双链受热变性成为两条单链DNA模板;而后在低温(37~55℃)情况下,两条人工合成的寡核苷酸引物与互补的单链DNA模板结合,形成部分双链;在Taq酶的最适温度(72℃)下,以引物3"端为合成的起点,以单核苷酸为原料,沿模板以5"→3"方向延伸,合成DNA新链.这样,每一双链的DNA模板,经过一次解链、退火、延伸三个步骤的热循环后就成了两条双链DNA分子.如此反复进行,每一次循环所产生的DNA均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍. DNA复制过程: (一)复制的起始 1.螺旋的松弛与解链 ⑴拓扑异构酶---能改变DNA空间构像的酶 作用:DNA复制时松弛超螺旋,以利复制叉的行进及DNA合成,合成后再引向超螺旋. 功能:不清楚,可催化体外拓扑异构化反应,拓扑异构酶分两型. 拓扑异构酶I (topoisomerase-- I ) 作用:松弛超螺旋,不需ATP,作用机制:切开环状一条链、打结与解结 原核:拓扑异构酶I对负超螺旋作用>正超螺旋 真核:拓扑异构酶I对正、负超螺旋均有作用. 拓扑异构酶Ⅱ---旋转酶(gyrase) 作用:松弛超螺旋,作用机制:切开环状两条链、打结与解结、环连与解环连 ⑵解链酶 (helicase)---复制蛋白rep 作用:ATP供能时,解开DNA双链. 原核:编码解链酶的基因是dnaB.前导链结合rep蛋白,随从链结合解链酶II、Ⅲ ⑶单链结合蛋白(SSB) 作用:SSB与解开DNA单链结合,保护稳定DNA.与新复制DNA单链结合,以防其降解. 螺旋松弛与解链过程如图所示 2.引发 ⑴引物酶(primase) 作用:以DNA为模板,自5"→3"合成RNA小片段约十几到几十个核苷酸,3"末端为-OH. 原核:dnaG基因编码DnaG蛋白即引物酶. ⑵引发前体(preprimosome) 由多种蛋白因子组成复合物. 作用:合成RNA引物,沿随从链复制叉的行进方向移动,在不同部位,合成RNA引物. 小结:合成RNA引物,在引物3"-OH末段进行DNA片段合成. 二 DNA链的延长 反应体系:DNA模板,DNA聚合酶,dNTP,引物,Mg2+ 反应式:DNA+dNTP→(DNA)n+1+ppi 真核与原核中DNA聚合酶(DNA polymorase-DNApol): 有几种类型,作用方式相同,但各具特性及功能. 1.大肠杆菌DNA聚合酶(3种) ⑴pol I:催化5"→3"的聚合作用,合成20个核苷酸即离开模板,填充空隙. 3"→5"外切酶活性,去除错误碱基,有校对作用. 5"→3"外切酶活性,去除RNA引物及修正错误碱基. ⑵pol II:催化5"→3" DNA合成并具有3"→5"外切酶活性,体内功能不清楚. ⑶pol Ⅲ:DNA链延长起主要作用,细菌中以1000dNTP/秒进行聚合反应. 3"→5"外切酶活性,校对作用,与pol I配合使错误率降至10-6.如图所示 DNA复制的保真性:遵守严格的碱基配对规律.-聚合酶对碱基的选择功能.聚合酶对错误碱基的校读作用.以上三种作用确保了DNA复制的准确性. 2、真核生物DNA聚合酶 特性与大肠杆菌相似,共五种:α、β、γ、δ、ε ⑴polδ:催化前导链及随从链的合成,需增殖细胞核抗原蛋白PCNA的参与. ⑵polα:与引发酶配合,参与随从链的合成. ⑶RFA(replication factor A):DNA延长中RFA与单链结合起到SSB的作用. 三终止 连接酶(ligase):使相邻的DNA片段,以3",5"磷酸二酯键相连,需ATP供能.

DNA复制中,RNA转录和翻译中所用的所有酶以及酶的作用位置

DNA复制:DNA解旋酶、拓扑异构酶、DNA连接酶(细胞核) RNA转录:DNA解旋酶、转录酶、(细胞核) 翻译:氨基酸与tRNA结合需要氨酰tRNA合成酶;携带氨基酸的tRNA在核糖体上的位置移动需要肽基转移酶;氨基酸脱水缩合形成多肽链需要核糖体(即核酶,主要是rRNA催化生成多肽链);翻译过程还需要多种辅助因子的参与(细胞质)

DNA如何复制?

复制开始时,DNA分子首先利用细胞提供的能量,在解旋酶的作用下,把两条螺旋的双链解开,这个过程叫解旋。然后,以解开的每一段母链为模板,以周围环境中的四种脱氧核苷酸为原料,按照碱基配对互补配对原则,在DNA聚合酶的作用下,各自合成与母链互补的一段子链。随着解旋过程的进行,新合成的子链也不断地延伸,同时,每条子链与其母链盘绕成双螺旋结构,从而各形成一个新的DNA分子。1.DNA双螺旋的解旋DNA在复制时,其双链首先解开,形成复制叉,这是一种有多种蛋白质及酶参与的复杂过程。①DNA解链酶②单链DNA结合蛋白③DNA拓扑异构酶2.DNA复制的引发所有DNA的复制都是从一个固定起始点开始的。3.复制的延伸在复制的延伸过程中,前导链和后随链的合成同时进行。前导链持续合成,由全酶异二聚体中的一个亚单位和前导链模板结合,在引物RNA合成的基础上,连续合成新的DNA,其合成方向与复制叉一致。后随链的合成分段进行,形成中间产物冈崎片段,再通过共价连接成一条连续完整的新DNA链。分为4个步骤:4.复制的终止5.DNA聚合酶

真核生物与原核生物dna合成过程有何不同

(一)、原核生物DNA的复制   1.与复制有关的酶及蛋白质:   (1)拓扑异构酶:通过切断并连接DNA双链中的一股或双股,改变DNA分子拓扑构象,避免DNA分子打结、缠绕、连环,在复制的全程中都起作用。其种类有:拓扑异构酶I和拓扑异构酶II,拓扑异构酶I能切断DNA双链中一股并再连接断端,反应不需ATP供能;拓扑异构酶II能使DNA双链同时发生断裂和再连接,需ATP供能,并使DNA分子进入负超螺旋。  (2) 解螺旋酶: DNA进行复制时,需亲代DNA的双链分别作模板来指导子代DNA分子的合成,解螺旋酶可以将DNA双链解开成为单链。大肠杆菌中发现的解螺旋酶为DnaB。  (3) 单链结合蛋白(SSB):在复制中模板需处于单链状态,SSB可以模板的单链状态并保护模板不受核酸酶的降解。随着DNA双链的不断解开,SSB能不断的与之结合、解离。  (4) 引物酶: 是一种RNA聚合酶,在复制的起始点处以DNA为模板,催化合成一小段互补的RNA。DNA聚合酶不能催化两个游离的dNTP聚合反应,若没有引物就不能起始DNA合成。引物酶能直接在单链DNA模板上催化游离的NTP合成一小段RNA,并由这一小段RNA引物提供3"-OH, 经DNA聚合酶催化链的延伸。  (5) DNA聚合酶:是依赖DNA的DNA聚合酶,简称为DNA pol,以DNA为模板,dNTP为原料,催化脱氧核苷酸加到引物或DNA链的3"-OH末端,合成互补的DNA新链,即5"→3"聚合活性。原核生物的DNA聚合酶有DNA polI、DNA pol II和DNA pol III,DNA pol III是复制延长中真正起催化作用的,除具有5"→3"聚合活性,还有3"→ 5" 核酸外切酶活性和碱基选择功能,能够识别错配的碱基并切除,起即时校读的作用;DNA pol I具有5"→3"聚合活性、3"→ 5"和5"→3"核酸外切酶活性,5"→3"核酸外切酶活性可用于切除引物以及突变片段,起切除、修复作用。另外,klenow片断是DNA pol I体外经蛋白酶水解后产生的大片段,具有DNA 聚合酶和3"→ 5"外切酶活性,是分子生物学的常用工具酶。DNA pol II 在无DNA pol I和DNA pol III时起作用,也具有5"→3"和3"→ 5" 核酸外切酶活性。  (6) DNA连接酶:DNA连接酶用于连接双链中的单链缺口,使相邻两个DNA片段的3"-OH末端和5"-P末端形成3",5"磷酸二酯键。DNA连接酶在DNA复制、修复、重组、剪接中用于缝合缺口,是基因工程的重要工具酶。  2.DNA的合成过程:可将复制过程分为起始、延长和终止三个阶段。  复制起始:   (1) 辨认起始点,合成引发体:在E.coli,复制起始点称为oriC,具有特定结构能够被DnaA蛋白辨认结合,DnaB蛋白具有解螺旋作用,DnaC蛋白使DnaB蛋白结合于起始点,DNA双链局部被打开,引物酶及其他蛋白加入,形成引发体。  (2) 形成单链:DNA进行复制时,首先在拓扑异构酶作用下,使分子的超螺旋构象变化,然后在解链酶的作用下,解开双链,才能开始进行DNA的合成。解螺旋酶在蛋白因子的辅助下打开DNA双链,单链结合蛋白SSB结合于处于单链状态模板链上;拓扑异构酶使DNA分子避免打结、缠绕等,在复制全过程中起作用。  (3) 合成引物:引发体中的引物酶催化合成RNA引物,由引物提供3"-OH基,使复制开始进行。领头连和随从链均由引物酶合成引物,随从链在复制中需多次合成引物。  复制延长:   (1) 复制方向:原核生物如E.coli,只有一个起始点oriC,两个复制叉同时向两个方向进行复制,称为双向复制。  (2) 链的延长:按照与模板链碱基配对的原则,在DNA聚合酶III的作用下,逐个加入脱氧核糖核酸,使链延长。由于DNA双链走向相反,DNA聚合酶只能催化核苷酸从5"→3"方向合成,领头链的复制方向与解链方向一致,可以连续复制,而另一股模板链沿5"→3"方向解开,随从链的复制方向与解链方向相反,复制只能在模板链解开一定长度后进行,因此随从链的合成是不连续的,形成的是若干个冈崎片段。DNA聚合酶I的即时校读,DNA聚合酶III的碱基选择功能,使复制具有保真性。  复制终止:   原核生物如E.coli,他的两个复制叉的汇合点就是复制的终点。由RNA酶切去领头链和随从链中的引物,引物留下的空隙由DNA聚合酶I催化,四种脱氧核糖三磷酸为原料自5"→3"方向延长填补。最后,DNA连接酶由ATP供能,将两个不连续片段相邻的5"-P和3"-OH连接起来,成为连续的子链,复制完成。  (二)、真核生物的复制:   真核细胞的一生可以定义为一个细胞周期,细胞增殖时, DNA通过复制使其含量成倍增加,随后细胞分裂,成为两个子代细胞,DNA将亲代的特征传递到子代。细胞周期包括G1期、S期、G2期和M期, DNA的复制只发生在S期。与原核生物相比,真核生物的复制具有以下特点:  1. 多复制子:真核生物的DNA复制也是半保留复制。染色体线性分子的复制有多个起始点,每个起始点由两个反向运动的复制叉组成,进行双向复制。由一个起始点控制的DNA复制称为一个复制子。  2. 5种DNA聚合酶:与原核生物不同,真核细胞含有5种DNA聚合酶:α、β、γ、δ和ε。除了γ外,所有DNA聚合酶存在于核内。DNA聚合酶α和δ在复制延长中起催化作用,DNA聚合酶α延长随从链,DNA聚合酶δ延长领头链。DNA聚合酶β和ε在复制过程中起校读、修复和填补缺口的作用。DNA聚合酶γ在线粒体中,用于线粒体DNA的复制。  3. 端粒复制:真核生物染色体线性分子的复制,领头链可连续完整复制,而随从链3"端引物除去后的空隙无法填补,会造成缩短了的子代的双链,解决的途径是用端粒酶来复制染色体的末端(端粒)。端粒是染色体末端具有特定重复序列和蛋白质的结构,端粒酶是一种逆转录酶,由酶和含重复序列的RNA分子组成,它以自身的RNA分子为模板从随从链的3"端合成端粒的重复序列,使随从链延长,以防止随从链在每次复制时被缩短。特征 原核细胞 真核细胞DNA量(信息量) 少 多DNA分子数 1 2个以上DNA分子结构 环状 线状基因组数 1n 2n,多n基因数 几千 几万大量“多余”的“重复”的序列 无 有基因中的内含子 无 有DNA与组蛋白结合 不与或与少量数组蛋白结合 与5种组蛋白结合核小体—染色质—染色体 无 有DNA复制的明显周期性 无 有基因表达的调控 主要以操纵子方式 复杂性,多层次性转录与翻译的时空关系 转录与翻译同时同地进行 细胞核内转录,细胞质内翻译,严格的阶段性与区域性转录后与翻译后大分子的加工与修饰 无 有

RNA是由DNA合成的吗

rna的合成:rna聚合酶进入dna非编码区的酶切位点,解旋dna使成为单链,核糖核苷酸由碱基互补配对法则形成rna链(信使rna)。rna的加工过程主要是在细胞核内进行,也有少数反应是在胞质中进行。mrna在细胞核内加工后运出到细胞质,trna的加工在细胞质内,rrna也是在细胞质内加工,而且rrna和trna是转录在同一个原初转录产物(也就是前体)内。核糖核酸(rna)存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。rna由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。rna是以dna的一条链为模板,以碱基互补配对原则转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息传递过程中的桥梁。dna的合成:首先螺旋酶与拓扑异构酶将双螺旋解开,接着一个dna聚合酶负责合成前进股;另一个则与延迟股结合,制造一些不连续的冈崎片段,再由脱氧核糖核酸连接酶将其黏合。原核生物的dna主要是在拟核中合成的,少部分在细胞质中也会合成(如细菌的质粒),真核生物的dna主要是在细胞核中合成,线粒体中有少量合成。植物细胞细胞器:叶绿体中也能进行dna的合成。脱氧核糖核酸(dna)又称去氧核糖核酸,是一种分子,双链结构,由脱氧核糖核苷酸(成分为:脱氧核糖及四种含氮碱基)组成。可组成遗传指令,引导生物发育与生命机能运作。主要功能是长期性的资讯储存,其中包含的指令是建构细胞内其他的化合物如蛋白质与rna所需。

能干扰DNA拓扑异构酶I的活性,从而抑制DNA合成的药物为: A长春碱 B丝裂霉素 C喜树碱 D羟基脲 E阿糖胞苷

选C,喜树碱;很久没复习药理,刚去翻了一下药理书

DNA水解酶 什么作用

DNA水解酶为一类可以将组成DNA分子的脱氧核糖核苷酸之间的连接(3",5"-磷酸二酯键)打开的酶. 具体包括:DNA聚合酶α/引发酶(引发及后随链的部分合成),DNA聚合酶δ(DNA复制主要酶),增殖细胞核抗原(滑动夹子,与合成连接性有关),拓扑异构酶(母链DNA拓扑异构化),解(螺)旋酶(能解开DNA双螺旋),单链DNA结合蛋白及复制蛋白(单链DNA结合作用),复制因子C(参与滑动夹子的装配),DNA连接酶(连接冈崎片段及参与修复),核酸酶(去除RNA引物),侧翼核酸内切酶(去除RNA引物). 总体作用是在DNA复制过程中发挥的,在DNA复制过程中起到关键性的作用. 以上信息详见高等教育出版社《生物化学》一书第十二章:DNA的生物合成.

什么叫做拓扑?我学生物化学,学到了DNA拓扑异构酶,为什么这么命名呢?

DNA拓扑异构即“假设”每一个键都是可以极灵活的转动(方向与轴向都可以转),但是不能断,在这种情况下,如果一种分子没有办法变成另一种分子,那就是拓扑异构吧。拓扑学可不是一下子就能明白它是什么的,你有心的话看几天书才行。再看看别人怎么说的。

DNA转录的时候,RNA聚合酶在DNA链上移动的时候需不需要拓扑异构酶

不需要,拓扑异构酶是指通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来更正DNA连环数的酶。RNA转录需要的是解螺旋酶.但如果模板具有超螺旋结构,则需要拓扑异构酶解开超螺旋.

拓扑异构酶的DNA

词性及解释 Part of speech and definition【医】DNA topoisomerase例句 SentencesOne of a group of enzymes that catalyzes the conversion of one isomer into another.异构酶一种能对一种异构体转化为另一种异构体进行催化物的一组酶To become changed into an isomeric form.异构变成了一种异构形式isomerization of petroleum hydrocarbons石油烃异构化Any of various mixtures of xylidine isomers.一种二甲基苯胺同分异构体的混合物isomerism of coordination compounds配合物的异构现象

DNA回旋酶又称拓扑异构酶,其功能是( )。

【答案】:DNA回旋酶属于拓扑异构酶II,其功能为引入负超螺旋,消除复制叉前进过程中出现的扭曲张力。

能干扰DNA拓扑异构酶Ⅰ的活性,从而抑制DNA合成的药物是( )。

【答案】B【答案解析】羟喜树碱主要通过干扰DNA拓扑异构酶Ⅰ的活性,从而抑制DNA合成,使肿瘤细胞死亡。依托泊苷为DNA拓扑异构酶Ⅱ抑制剂。

DNA拓扑异构酶的作用是()

DNA拓扑异构酶的作用是() A.解开DNA双螺旋,便于复制 B.改变DNA分子拓扑构象,理顺DNA链 C.把DNA异构为RNA,因为复制需RNA引物 D.辨认复制起始点 正确答案:改变DNA分子拓扑构象,理顺DNA链

DNA拓扑异构酶1和DNA拓扑异构酶2有什么异同?

为催化DNA拓扑学异构体相互转变的酶之总称。催化DNA链断开和结合的偶联反应,为了分析体外反应机制,用环状DNA为底物。在闭环状双链DNA的拓扑学转变中,要暂时的将DNA的一个链或两个链切断,根据异构体化的方式而分为二个型。切断一个链而改变拓扑结构的称为Ⅰ型拓扑异构酶(top- oisomeraseⅠ),通过切断二个链来进行的称为Ⅱ型拓扑异构酶(topoisomeraseⅡ)。属于Ⅰ型的拓扑异构酶,有大肠杆菌的ω蛋白(ω-protein,由分子量11万的单个多肽链所成)及各种真核细胞中存在的切断-结合酶(nicking-closing enzyme,分子量约6万5千—7万的及分子量约10万的)。Ⅱ型拓扑异构酶,有存在于细菌中的DNA促旋酶、噬菌体T4的拓扑异构酶Ⅱ以及真核细胞中依赖ATP的拓扑异构酶Ⅱ等。另外,噬菌体λ的irt基因产物和噬菌体φX174的基因A的产物等也具有切断—结合酶的活性,可认为是拓扑异构酶之一种。Ⅰ型拓扑异构酶不需要ATP的能量而催化异构体化,作为反应的中间产物,在原核生物来说是游离型的5′-OH末端扣3′-磷酸末端与酶形成共价键,而真核生物是3′-OH末端5′-磷酸末端与酶形成共价键。此酯键中所贮存的能量,可能在切断端的再结合上起着作用。Ⅰ型拓扑异构化酶催化的反应有下列各种:使超螺旋DNA在每一切断—结合反应中,使L数(参见DNA拓扑学异构体)发生一种变化,即松弛(relaxation)(图1)。将互补的单链环状DNA转变成具有螺旋结构的双链环状DNA(图 2),使单链DNA打结(topological knot)或解结(图3)。另外在二个环状双链DNA一个分子的一个链切断时,形成链环状二聚体的分子(ca-tenane)。在Ⅱ型拓扑异构酶中,DNA促旋酶可单独催化闭环状DNA产生超螺旋,这是独特的。其它二个型的酶,除可使超螺旋松弛也需要ATP的能量外,还可催化促旋酶的催化反应。真核细胞的拓扑异构酶Ⅰ,参与核小体的形成,细菌的ω蛋白参与转录和某种转位子的插入。促旋酶和T4拓扑异构酶Ⅱ参与DNA的复制和转录过程。参考资料出有图

拓扑异构酶I、II沿DNA运动的机制?

拓扑异构酶II其实又称DNA旋转酶,由两个A亚基和两个B亚基组成。旋转酶B亚基中存在ATP酶区域,可以结合并水解ATP。II型酶的ATP结合和水解,产物释放,驱动着DNA双螺旋的链转移过程。不知道你明白了没有。

DNA 拓扑异构酶I 和II 是怎么改变DNA 的连环数的?如何理解?

拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接。拓扑异构酶II能同时断裂并连接双股DNA链。

在体外如何决策某种蛋白质是否具有dna拓扑异构酶活性

为催化dna拓扑学异构体相互转变的酶之总称。催化dna链断开和结合的偶联反应,为了分析体外反应机制,用环状dna为底物。在闭环状双链dna的拓扑学转变中,要暂时的将dna的一个链或两个链切断,根据异构体化的方式而分为二个型。切断一个链而改变拓扑结构的称为ⅰ型拓扑异构酶(top-oisomeraseⅰ),通过切断二个链来进行的称为ⅱ型拓扑异构酶(topoisomeraseⅱ)。属于ⅰ型的拓扑异构酶,有大肠杆菌的ω蛋白(ω-protein,由分子量11万的单个多肽链所成)及各种真核细胞中存在的切断-结合酶(nicking-closingenzyme,分子量约6万5千—7万的及分子量约10万的)。ⅱ型拓扑异构酶,有存在于细菌中的dna促旋酶、噬菌体t4的拓扑异构酶ⅱ以及真核细胞中依赖atp的拓扑异构酶ⅱ等。另外,噬菌体λ的irt基因产物和噬菌体φx174的基因a的产物等也具有切断—结合酶的活性,可认为是拓扑异构酶之一种。ⅰ型拓扑异构酶不需要atp的能量而催化异构体化,作为反应的中间产物,在原核生物来说是游离型的5′-oh末端扣3′-磷酸末端与酶形成共价键,而真核生物是3′-oh末端5′-磷酸末端与酶形成共价键。此酯键中所贮存的能量,可能在切断端的再结合上起着作用。ⅰ型拓扑异构化酶催化的反应有下列各种:使超螺旋dna在每一切断—结合反应中,使l数(参见dna拓扑学异构体)发生一种变化,即松弛(relaxation)(图1)。将互补的单链环状dna转变成具有螺旋结构的双链环状dna(图2),使单链dna打结(topologicalknot)或解结(图3)。另外在二个环状双链dna一个分子的一个链切断时,形成链环状二聚体的分子(ca-tenane)。在ⅱ型拓扑异构酶中,dna促旋酶可单独催化闭环状dna产生超螺旋,这是独特的。其它二个型的酶,除可使超螺旋松弛也需要atp的能量外,还可催化促旋酶的催化反应。真核细胞的拓扑异构酶ⅰ,参与核小体的形成,细菌的ω蛋白参与转录和某种转位子的插入。促旋酶和t4拓扑异构酶ⅱ参与dna的复制和转录过程。参考资料出有图

DNA复制的拓扑性质是什么?

DNA复制的拓扑性质是催化DNA拓扑学异构体相互转变的酶之总称。1、催化DNA链断开和结合的偶联反应,为了分析体外反应机制,用环状DNA为底物。在闭环状双链DNA的拓扑学转变中,要暂时的将DNA的一个链或两个链切断,根据异构体化的方式而分为二个型。切断一个链而改变拓扑结构的称为Ⅰ型拓扑异构酶(top-oisomeraseⅠ),通过切断二个链来进行的称为Ⅱ型拓扑异构酶(topoisomeraseⅡ)。属于Ⅰ型的拓扑异构酶,有大肠杆菌的ω蛋白(ω-protein,由分子量11万的单个多肽链所成)及各种真核细胞中存在的切断-结合酶(nicking-closingenzyme,分子量约6万5千—7万的及分子量约10万的)。2、Ⅱ型拓扑异构酶,有存在于细菌中的DNA促旋酶、噬菌体T4的拓扑异构酶Ⅱ以及真核细胞中依赖ATP的拓扑异构酶Ⅱ等。另外,噬菌体λ的irt基因产物和噬菌体φX174的基因A的产物等也具有切断—结合酶的活性,可认为是拓扑异构酶之一种。3、Ⅰ型拓扑异构酶不需要ATP的能量而催化异构体化,作为反应的中间产物,在原核生物来说是游离型的5′-OH末端扣3′-磷酸末端与酶形成共价键,而真核生物是3′-OH末端5′-磷酸末端与酶形成共价键。此酯键中所贮存的能量,可能在切断端的再结合上起着作用。4、Ⅰ型拓扑异构化酶催化的反应有下列各种:使超螺旋DNA在每一切断—结合反应中,使L数(参见DNA拓扑学异构体)发生一种变化,即松弛,使单链DNA打结(topologicalknot)或解结。另外在二个环状双链DNA一个分子的一个链切断时,形成链环状二聚体的分子(ca-tenane)。在Ⅱ型拓扑异构酶中,DNA促旋酶可单独催化闭环状DNA产生超螺旋,这是独特的。5、其它二个型的酶,除可使超螺旋松弛也需要ATP的能量外,还可催化促旋酶的催化反应。真核细胞的拓扑异构酶Ⅰ,参与核小体的形成,细菌的ω蛋白参与转录和某种转位子的插入。促旋酶和T4拓扑异构酶Ⅱ参与DNA的复制和转录过程。

下面关于DNA拓扑异构酶I和II差别的说法,其中正确的有()。

下面关于DNA拓扑异构酶I和II差别的说法,其中正确的有()。 A.I型使DNA的一条链发生断裂和再连接,而II型使DNA的两条链同时发生断裂和再连接B.I型催化反应不消耗ATP,II型需要消耗ATPC.I型主要与转录有关,II型与复制有关D.I型和II型都只能引入负超螺旋正确答案:I型使DNA的一条链发生断裂和再连接,而II型使DNA的两条链同时发生断裂和再连接;I型催化反应不消耗ATP,II型需要消耗ATP

作用于DNA拓扑异构酶I的天然来源的药物是A.喜树碱B.氟尿嘧啶C.环磷酰胺

【答案】:A本题考查的是抗肿瘤药的性质与结构。喜树碱类:作用于DNA拓扑异构酶鬼臼生物碱:DNA拓扑异构酶盐酸伊立替康:半合成,溶于水,属前药(喜树碱的酯

DNA半不连续复制的意义

DNA复制时,以3‘→5‘走向为模板的一条链合成方向为5‘→3‘,与复制叉方向一致,称为前导链;另一条以5‘→3‘走向为模板链的合成链走向与复制叉移动的方向相反,称为后随链,其合成是不连续的,先形成许多不连续的片断——冈崎片断,最后连成一条完整的DNA链。这就是半部连续复制。 前导链是顺复制叉前进方向的,而后随链是逆复制叉方向行进,而DNA的复制方向只能是5‘→3‘延长,那么后随链会有多个RNA的结合位点来结合引物RNA以复制DNA,形成不连续性,以使两条子链同时形成。可惜相见,没有半部连续复制,无法保证两条链复制到的同时性,就必然会导致内部复制紊乱。

DNA拓扑异构酶的作用是( )。

【答案】:B拓扑异构酶是一类可以改变DNA拓扑性质的酶,有Ⅰ和Ⅱ两种类型。Ⅰ型可使DNA的一股链发生断裂和再连接,反应无需供给能量。Ⅱ型又称为旋转酶,能使DNA的两股链同时发生断裂和再连接,需要由ATP提供能量。两种拓扑异构酶在DNA复制、转录和重组中都发挥着重要作用。

关于DNA拓扑异构酶的叙述,下列哪项是的?

【答案】:D拓扑异构酶对DNA分子既能水解,又能连接磷酸二酯键。拓扑酶I可切断DNA 双链中的一股,使DNA在解链旋转时不致打结,适当时候又能把切口封闭,使DNA变成松弛状态。拓扑 酶I催化的反应不需要ATP。拓扑酶II在无ATP时,切断处于正超螺旋状态的DNA分子双链某一部 位,使超螺旋松弛;在利用ATP的情况下,松弛状态的DNA又进入负超螺旋,断端在同一酶的催化下连 接恢复。DNA分子一边复制,一边解链,因此拓扑酶在复制全过程中起作用。

dna拓扑异构酶发挥作用的时期

拓扑异构酶发挥在DNA复制的整个时间。他的作用是解旋DNA,使DNA由负超螺旋结构变成部不螺旋的结构,而且是解旋,复制一段,从DNA复制的开始到结束都有他的参与。

DNA拓扑异构酶在DNA复制中有何作用

DNA拓扑异构酶(DNA topoisomerase)DNA具有拓扑性质。拓扑性质是指物体或图像作弹性移动而又保持物体不变的性质。碱基顺序相同但连环数/拓扑环绕数不同的两个双链DNA分子称为拓扑异构体。能催化DNA拓扑异构体互变的一类酶称为拓扑异构酶。

DNA复制有关酶的作用顺序,为什么拓扑异构酶在解链酶的前面?

DNA在复制前不是以简单的双螺旋状态存在的,而是处于超螺旋状态,只有先用拓扑异构酶把超螺旋消除掉,产生一段双螺旋状态的DNA,才能让解链酶发挥作用。这一段复制完成后再一次复原,复制叉向前移动。参见网页链接

拓扑异构酶I、II沿DNA运动的机制?

拓扑异构酶II其实又称DNA旋转酶,由两个A亚基和两个B亚基组成。旋转酶B亚基中存在ATP酶区域,可以结合并水解ATP。II型酶的ATP结合和水解,产物释放,驱动着DNA双螺旋的链转移过程。不知道你明白了没有。

DNA 拓扑异构酶I 和II 是怎么改变DNA 的连环数的?如何理解?

拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接。拓扑异构酶II能同时断裂并连接双股DNA链。

什么叫做拓扑?我学生物化学,学到了DNA拓扑异构酶,为什么这么命名呢?

几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。什么是拓扑学? 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。 应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。 我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。 拓扑变换的不变性、不变量还有很多,这里不在介绍。 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。 二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。 因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。 拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。 拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。http://www.ikepu.com/maths/maths_branch/topology_total.htm

叙述原核生物DNA复制的起始过程

原核生物DNA复制  1.DNA双螺旋的解旋  拓扑异构酶解开负超螺旋,并与解链酶共同作用,在复制起始点处解开双链。一旦局部解开双链,SSB蛋白稳定解开的单链。  (大部分DNA解链酶可沿后随链5'→3'方向并随着复制叉前进而移动,只有另一种解链是沿前导链3'→5'方向移动;SSB蛋白与DNA结合时表现出协同效应,以四聚体形式存在复制叉处,单链复制完成后离开)  2.DNA复制的引发与延伸  前导链的引发与延伸:引发酶(一种特殊的RNA聚合酶)在DNA模板上合成一段RNA链,提供引发末端,后DNA聚合酶从RNA引物3'端开始合成新的DNA链。  后随链的引发与延伸:引发前体把6种蛋白质n,n",n”,DnaB,C合在一起并与引发酶组装成引发体,引发体在后随链分叉方向前进,断断续续引发后随链的引物RNA短链,再DNA聚合酶Ⅲ作用合成DNA,直至遇到下一个引物或者冈崎片段。由RNaseH降解RNA引物并由DNA聚合酶Ⅰ将缺口补齐,再由DNA连接酶将两个冈崎片段连在一起形成大分子DNA。3.复制的终止  复制叉遇到约22个碱基的重复性终止子序列(Ter)时,Ter-Tus复合物能使DnaB不再将DNA解链,复制叉不能前进,等反方向的复制叉到达后,其间未被复制的50~100bp由DNA修复机制填补空缺。拓扑异构酶Ⅳ使复制叉解体,释放子链DNA。  性质DNA聚合酶ⅠDNA聚合酶ⅡDNA聚合酶Ⅲ3"→5"+++5"→3"+--新生链合成--+3"→5"核酸外切酶:从核酸的3"游离羟基端逐一水解核酸链(能辨认错配的碱基并水解)  5"→3"核酸外切酶:从5"游离磷酸基团端逐一水解核苷酸链(切除突变DNA片段)

DNA复制时,新链是怎样合成的?

连续合成的那条链的合成方向与复制叉的前进方向相同,称为前导链;不连续合成的那条链的合成方向与复制叉的前进方向相反,先合成冈崎片段,之后再形成完整的链,称为后随链;望采纳

DNA分子的复制只能沿特定方向复制。正确还是错误?

DNA分子的复制只能沿特定方向复制是正确的,下面材料仅供参考;复制过程 (1)单链DNA结合蛋白(single-stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。 (2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"-〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"-〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。 (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"-3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2-3kb的冈崎片段。 2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"-〉3"方向,另一条是3"-〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"-〉3"方向,不是3"-〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。 3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。 (四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构--端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"-OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。 在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。 端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。 至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。

高一生物 下列有关DNA复制过程的叙述中,正确的顺序是

看完你就懂了1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程 (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。 (2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。 (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。 2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。 3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。 (四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。 在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。 端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。 至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。

生物DNA双螺旋结构和DNA复制的问题!答的好有加分!

你说的第一个问题和双螺旋结构没什么关系,是DNA的一级结构。核酸是由很多单核苷酸聚合形成的多聚核苷酸(polynucleotide),DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成不分支的线性大分子,其中磷酸基和戊糖基构成DNA链的骨架,可变部分是碱基排列顺序。核酸是有方向性的分子,即核苷酸的戊糖基的5′位不再与其它核苷酸相连的5′末端,以及核苷酸的戊糖基3′位不再连有其它核苷酸的3′末端,两个末端并不相同,生物学特性也有差异。DNA的复制过程(一)DNA的半保留复制Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,他们推测,DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。(二)DNA复制的起始,方向和速度 DNA在复制时,双链DNA解旋成两股分别进行。其复制过程的复制起点呈现叉子的形式,故称复制叉。以复制叉向前移动的方向为标准,一条模板链为3"—〉 5"走向,在其上DNA能以5"—〉3"方向连续合成,称为前导链(leading strand);另一条模板链为5"—〉3"走向,在其上DNA也是5"—〉3"方向合成,但与复制叉移动的方向正好相反,故随着复制叉的移动形成许多不连续的冈崎片段,最后在连成一条完整的DNA链,该链称为后随链(lagging strand)。实验证明DNA的复制是由一个固定的起始点开始的。一般把生物体的单个复制单位称为复制子。一个复制子只含一个复制起点。一般说,细菌,病毒即线粒体DNA分子均作为单个复制子完成其复制,真核生物基因组可以同时在多个复制起点上进行双向复制,即它们的基因组包括多个复制子。多方面的实验结果表明,大多数生物内DNA的复制都是从固定的起始点以双向等速方式进行的。复制叉以DNA分子上某一特定顺序为起始点,向两个方向等速生长前进。(三)DNA复制过程 以原核生物DNA复制过程予以简要说明1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程(1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。(四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。

参与DNA复制的Dna G是什么物质,中文名字是什么?

是一种引发酶(primase),是在特定环境下发挥作用的RNA聚合酶。dna G基因的产物。它的作用主要在后随链复制时体现。后随链的引发是由引发体(primosome)来完成的,引发前体(preprimosome)把6种蛋白质(n、n"、n""、Dna B、Dna C和I)合并在一起再和引发酶进一步组装后就行成了有功效的引发体,才能引发后随链的片段复制。

线状DNA的复制5端短缩解决模式具体分析过程是什么?

由于端粒酶活性的存在。所以很简单,因为dna聚合酶不能够从头合成新链。这些rna引物存在于dna片段之间;-3"-5",所以端粒酶能够识别端粒结构。如此细胞分裂多次,染色体端粒就被恢复到原来的状态!所以当染色体末端新合成的链5",再由dna聚合酶接着延伸;聚合活性的dna聚合酶)。dna复制过程中每条新生链的方向都是5"。对于生殖细胞;-末端引物被切除之后!所以。问题就出现了,并重新合成端粒缺少的那段序列;(尚没有发现具有3",每次伴随着dna复制,还是后随链每一次冈崎片段的起始)都要由引发酶(rna聚合酶活性)从模板链上先合成一小段rna引物,最后由dna连接酶使新和成的单链连接完整,每次复制起始时(无论是先导链的连续合成起始,由dna聚合酶接着上一段dna继续复制,这条链就被缩短了(两端存在相同的情况),因为dna聚合酶不能够从头合成新链,因为端粒酶存在和端粒序列互补的序列(可提供从头合成的引物),只能够延伸已有的链,生殖的端粒是正常的,前面没有可以利用延伸的引物,端粒就越来越短,端粒结构存在于线性染色体末端(有别于闭环形染色体,最后它们被切掉,如大肠杆菌就不存在这个问题),只能够延伸已有的链

为什么DNA复制会有半不连续性

我是这样想的,因为前导链是顺复制差前进方向的,而后随链由于受dna聚合酶的限制而必须逆复制差方向行进,为了保证两者的同时性(因为dna复制是边解旋边复制的),必然会出现不连续性。你可以想象一下,如果不是以不连续性复制的话,那么就无法保证两条子链的同时形成,就必然会导致内部复制紊乱。如果要解释的话,这样想或许可以解释得通,不过事实上是因为:dna在复制时需要一小段rna作为引物,由于rna在后随链上的结合位点有多个,因此dna相应的也会由多个起始复制位,自然会出现半不连续性。

催化核内前导链合成的酶为什么不是DNApol ε?

真核生物DNA pol δ是一个复合体,结构类似于二聚化的原核生物DNA pol III,所以DNA pol δ的每一半可以各自负责前导链或者后随链的合成。DNA polymerase has a 3"→5" proofreading exonuclease activity and seems to carry out both leading and lagging strand synthesis in a complex comparable to the dimeric bacterial DNA polymerase III.

参与大肠杆菌DNA复制的主要聚合酶是________________,

参与大肠杆菌DNA复制的主要聚合酶是(DNA聚合酶Ⅲ),该酶在复制体上组装成(不对称)二聚体,分别负责(前导)链和(后随)链的合成,已有证据表明后随链的模板在复制中不断形成(环(loop))结构。

原核生物没有端粒怎样保证DNA的完整性?(线状DNA的原核生物)

多数的原核生物染色体是环状的,可“首尾”相接,故不存在末端复制问题。大多真核生物通过端粒结构解决末端复制问题。我补充一点: 用蛋白质代替RNA作为每个染色体末端最后一个冈崎片段的引物。“引物蛋白”与后随链模板结合并用一个氨基酸来提供—OH,以代替正常情况下RNA引物提供的3"—OH。通过与最后的后随链结合,引物蛋白与染色体的5‘端形成共价连接。这种在末端连接复制蛋白质的情况,在某些具线性染色体的细菌(多数细菌是环形染色体)的染色体末端以及在某些具线性染色体的细菌病毒和动物病毒的染色体末端都有发现。

dna复制如何进行?

在有丝分裂间期(s期)DNA在酶的作用下打开双链并开始复制,两链同时复制复制完后就是姐妹染色单体了转录时一条是模板链一条是配位链,那个是那个是由RNA结合位点来决定的

噬菌体dna复制酶来源于

逆转录酶原本来自病毒,是它们突破细胞防御的手段,后来却在感染时把制造这种酶的基因遗留在了细胞内,结果赋予了共祖逆转录的能力,核糖细胞因此进化成了逆转录细胞,共祖从此开始把DNA用作遗传物质。那么,当时的共祖要怎样复制DNA呢?严格地说,作为逆转录细胞的共祖还不能复制DNA,它们只是先把DNA转录成RNA,再把RNA逆转录成DNA,整个过程中都不存在中心法则最左边那个从DNA到DNA的箭头。它们甚至还不能自主地解开DNA的双螺旋,因为白烟囱里的温度波动已经足以解开双链,而且效率可能非常高,共祖没有足够的选择压力进化出一套专门的解旋酶。但是随着末祖逐渐分化成细菌和古菌,拥有了越来越独立自主的物质能量代谢,就会试探着向白烟囱里的“偏远地区”扩散,那里的氢离子梯度更小,温度波动也更不明显,所以细菌和古菌还必须各自进化出一套DNA复制系统,让中心法则也独立自主起来。这就是尤金·库宁的推测了。福泰尔是一个非常杰出的病毒学家,在他的眼中,这个推测很好,但是远远不够充分。他认为随着末祖一同探索“偏远地区”的,必然还有那些感染末祖的病毒,病毒虽然没有独立的新陈代谢,但它们传递遗传信息的需求恐怕会比末祖更加迫切。毕竟那就是它们唯一的生存之道,只有以最快的速度复制自己,才有可能继续感染更多的细胞。所以病毒面临着同样的选择压力,同样需要进化出一套独立复制DNA的酶系统。当然,病毒只是进化这套酶系统的基因出来,真正把这套基因变成酶系统的,还是那些受感染的细胞。这种“殖民关系”让病毒的进化成果随时可能转移到细胞的基因组里。所以,我们既然要揭开DNA复制系统起源之谜,如果只关注细胞而不考虑病毒,那就未免有些狭隘了。病毒自己没有新陈代谢的能力,全靠“劫持”细胞的酶系统才能复制自己,但这并不意味着病毒就完全没有自己的酶系统,恰恰相反,专门编码一些最适合自己,能够大幅提高感染后的复制效率的酶,所以复制DNA的酶系统在病毒的基因组里非常多见。病毒的DNA基因组有单链的,也有双链的。单链DNA复制起来与单链RNA完全一样,就连使用的聚合酶都非常类似,没什么可讨论的。而双链DNA就有不同的情况了。双链RNA病毒和某些双链DNA病毒,比如经常造成上呼吸道感染的腺病毒,根本就没有解决上一节的难题,它们真的是先等解旋酶把双链彻底解开,才从整个后随链的3"端开始另一次DNA聚合。这样做的确很简单,它们使用的DNA聚合酶也都与RNA聚合酶像极了,但是后随链的复制也延迟得太多了:在解旋酶解旋的时候,前导链已经复制了一条,等后随链终于开始复制的时候,那个前导链也可以开始第二轮复制了。而且前导链每复制一次,都意味着同时产生了又一条后随链,结果就是一轮一轮地复制下来,数不清的后随链都堆积在那里来不及复制,这是非常糟糕的事情。另外一些双链DNA病毒就开始缩短后随链的延迟,它们不等后随链的3"端完全解开,就能选择一个局部的3"端开始复制了

DNA复制的多个起点并不是同时开始复制的?这句话对么?

对的DNA的复制是一个边解旋边复制的过程。复制开始时,DNA分子首先利用细胞提供的能量,在解旋酶的作用下,把两条螺旋的双链解开,这个过程叫解旋。然后,以解开的每一段母链为模板,以周围环境中的四种脱氧核苷酸为原料,按照碱基配对互补配对原则,在DNA聚合酶的作用下,各自合成与母链互补的一段子链。随着解旋过程的进行,新合成的子链也不断地延伸,同时,每条子链与其母链盘绕成双螺旋结构,从而各形成一个新的DNA分子。这样,复制结束后,一个DNA分子,通过细胞分裂分配到两个子细胞中去!   注:复制时遵循碱基互补配对原则,复制发生在细胞分裂的间期。   DNA是遗传信息的载体,故亲代DNA必须以自身分子为模板准确的复制成两个拷贝,并分配到两个子细胞中去,完成其遗传信息载体的使命。而DNA的双链结构对于维持这类遗传物质的稳定性和复制的准确性都是极为重要的。   (一)DNA的半保留复制   Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,他们推测,DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。   1958年Meselson和Stahl进行了如图8-3-5的实验证明了DNA分子是以半保留方式进行自我复制的。图8-3-5 Meselson和Stahl证明DNA半保留复制的实验   (二)DNA复制的起始,方向和速度   DNA在复制时,双链DNA解旋成两股分别进行。其复制过程的复制起点呈现叉子的形式,故称复制叉。以复制叉向前移动的方向为标准,一条模板链为3"—〉5"走向,在其上DNA能以5"—〉3"方向连续合成,称为前导链(leading strand);另一条模板链为5"—〉3"走向,在其上DNA也是5"—〉3"方向合成,但与复制叉移动的方向正好相反,故随着复制叉的移动形成许多不连续的冈崎片段,最后在连成一条完整的DNA链,该链称为后随链(lagging strand)。实验证明DNA的复制是由一个固定的起始点开始的。一般把生物体的单个复制单位称为复制子。一个复制子只含一个复制起点。一般说,细菌,病毒即线粒体DNA分子均作为单个复制子完成其复制,真核生物基因组可以同时在多个复制起点上进行双向复制,即它们的基因组包括多个复制子。多方面的实验结果表明,大多数生物内DNA的复制都是从固定的起始点以双向等速方式进行的。复制叉以DNA分子上某一特定顺序为起始点,向两个方向等速生长前进。图8-3-6 DNA复制过程   DNA复制过程   (三)DNA复制过程   以原核生物DNA复制过程予以简要说明   1.DNA双螺旋的解旋   DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程   (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白)   ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。   2.冈崎片段与半不连续复制   因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。   3.复制的引发和终止   所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。   (四)端粒和端粒酶   1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。   在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。   在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后 ,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。   端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。   至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。

DNA复制完后,后随链的冈崎片段是留在后随链上还是被切去?

留着链上,其实冈崎片段就是合成的DNA链,因为是反向的,所以是一小段一小段的接上去的,另外一条链则是一个碱基一个碱基的连上的

DNA分子是由两条链组成的,其中一条链作为前导链的模板,另一条链作为后随链的模板。

【答案】:错误对于一个双向复制的DNA分子来说,相对于一个复制叉为前导链的那条链相对于另一个复制叉来说则是后随链的模板。

DNA复制特点

半保留复制、双向复制等。1、半保留复制:DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制(semiconservativereplication).DNA以半保留方式进行复制,是在1958年由M.Meselson和F.Stahl所完成的实验所证明。2、有一定的复制起始点:DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子).在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。3、需要引物(primer):DNA聚合酶必须以一段具有3"端自由羟基(3"-OH)的RNA作为引物,才能开始聚合子代DNA链.RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。4、双向复制:DNA复制时,以复制起始点为中心,向两个方向进行复制.但在低等生物中,也可进行单向复制。

DNA的滚环复制前导链与后随链分别怎样合成?

以M13噬菌体为例。其基因组为单链正DNA。先以单链正DNA为模板合成负链,形成复制型DNA。再把正链切开,在正链3"末端延伸,形成新的正链(前导链)。SSB蛋白从正链5"末端开始结合,使正链从5"末端与负链分开。正链延伸,形成连续的多拷贝的正链。然后正链酶切,形成单拷贝的单链正DNA。此例中没有后随链了...一些质粒则还有下文。酶切形成的单拷贝的单链正DNA,环化。在以此为模板,合成负链(即后随链)。大概就是先前导链,再后随链。实际上,这里的后随链并不是像染色体上DNA后随链一样,一段一段合成,再连起来。DNA环化后,后随链也可一气呵成。可以参考一下百度百科http://baike.baidu.com/view/178360.html?wtp=tt

在先导链上DNA沿5→3方向合成,在后随链上则沿3→5方向合成。

【答案】:错误所有DNA合成均沿5"→3"方向。后随链上的DNA以短片段合成,然后连接起来,所以后随链沿3"→5"方向增长。

DNA复制时为什么前导链是连续复制,而后随链是以不连续的方式复制

DNA复制是有方向的,只能沿着3撇端向5撇端复制(或者说只能沿着5撇端向3撇端合成),反过来的话是不可以的,考虑到DNA本身两条链是反向平行的,所以复制的时候一条链是连续的,一条链是不连续的(间断). 注:这是老教材上面有关DNA复制的一个特点,现行教材不再提这个问题,有些题目上涉及到的话会告诉你具体原理,不必深究,具体内容要到大学阶段会涉及到.

详述DNA的结构特点及复制过程

核酸是由很多单核苷酸聚合形成的多聚核苷酸(polynucleotide),DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成不分支的线性大分子,其中磷酸基和戊糖基构成DNA链的骨架,可变部分是碱基排列顺序。核酸是有方向性的分子,即核苷酸的戊糖基的5′位不再与其它核苷酸相连的5′末端,以及核苷酸的戊糖基3′位不再连有其它核苷酸的3′末端,两个末端并不相同,生物学特性也有差异。 DNA的复制过程 (一)DNA的半保留复制 Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,他们推测,DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。 (二)DNA复制的起始,方向和速度 DNA在复制时,双链DNA解旋成两股分别进行。其复制过程的复制起点呈现叉子的形式,故称复制叉。以复制叉向前移动的方向为标准,一条模板链为3"—〉 5"走向,在其上DNA能以5"—〉3"方向连续合成,称为前导链(leading strand);另一条模板链为5"—〉3"走向,在其上DNA也是5"—〉3"方向合成,但与复制叉移动的方向正好相反,故随着复制叉的移动形成许多不连续的冈崎片段,最后在连成一条完整的DNA链,该链称为后随链(lagging strand)。实验证明DNA的复制是由一个固定的起始点开始的。一般把生物体的单个复制单位称为复制子。一个复制子只含一个复制起点。一般说,细菌,病毒即线粒体DNA分子均作为单个复制子完成其复制,真核生物基因组可以同时在多个复制起点上进行双向复制,即它们的基因组包括多个复制子。多方面的实验结果表明,大多数生物内DNA的复制都是从固定的起始点以双向等速方式进行的。复制叉以DNA分子上某一特定顺序为起始点,向两个方向等速生长前进。 (三)DNA复制过程 以原核生物DNA复制过程予以简要说明 1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程 (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。 (2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。 (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。 2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。 3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。 (四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。 在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。 端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。 至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。

DNA分子在复制时,两条链是同时进行复制的吗?

高中生物书上的图片不需要纠结,本来就是错的。DNA分子在复制时,两条链同时进行复制。但是复制叉的异动方向只有一个,也就造成了一条链是沿5"-3"方向,而另一条链是相反的。也就是一条前导链(连续合成),一条后随链(非连续合成)。在DNA复制时,后随链会折叠一个角度,和前导链一起被DNA聚合酶催化合成,但后随链形成的片段是断断续续的,称之为冈崎片段,最后需要DNA连接酶连接起来。

DNA分子在复制时,两条链是同时进行复制的吗?

高中生物书上的图片不需要纠结,本来就是错的。DNA分子在复制时,两条链同时进行复制。但是复制叉的异动方向只有一个,也就造成了一条链是沿5"-3"方向,而另一条链是相反的。也就是一条前导链(连续合成),一条后随链(非连续合成)。在DNA复制时,后随链会折叠一个角度,和前导链一起被DNA聚合酶催化合成,但后随链形成的片段是断断续续的,称之为冈崎片段,最后需要DNA连接酶连接起来。

dna复制两条同时进行的吗

高中生物书上的图片不需要纠结,本来就是错的. DNA分子在复制时,两条链同时进行复制.但是复制叉的异动方向只有一个,也就造成了一条链是沿5"-3"方向,而另一条链是相反的.也就是一条前导链(连续合成),一条后随链(非连续合成). 在DNA复制时,后随链会折叠一个角度,和前导链一起被DNA聚合酶催化合成,但后随链形成的片段是断断续续的,称之为冈崎片段,最后需要DNA连接酶连接起来.

DNA的复制方向为什么是5’

DNA分子的复制只能沿特定方向复制是正确的,下面材料仅供参考;复制过程 (1)单链DNA结合蛋白(single-stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。 (2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"-〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"-〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。 (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"-3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2-3kb的冈崎片段。 2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"-〉3"方向,另一条是3"-〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"-〉3"方向,不是3"-〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。 3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。 (四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构--端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"-OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。 在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。 端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。 至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。

DNA由两条链组成的,其中一条链作为前导链的模板,另一条作为后随链的模板,这句话对吗,为什么

半不连续复制是由于DNA双螺旋的两股单链是反向平行,一条链的走向为5"-3",另一条链为3"-5",DNA的两条链都能作为模板以边解链边复制方式,同时合成两条新的互补链。但是,所有已知DNA聚合酶的合成方向都是5"-3",所以在复制是,一条链的合成方向和复制叉前进方向相同,可以连续复制,称为领头链;另一条链的合成方向与复制叉前进方向相反,不能顺着解链方向连续复制,必须待模板链解开至足够长度,然后从5‘-3"生成引物并复制子链。延长过程中,又要等待下一段有足够长度的模板,再次生成引物而延长,然后连接起来,这条链称随从链。因此就把领头链连续复制,随从链不连续复制的复制方式称为半不连续复制。

关于DNA复制前导链5‘末端引物被切除之后如何被补齐的问题?求解

一般认为,前导链在DNA的合成过程中引发一次,然后连续合成与其互补的子代链,而后随链需要引发多次。前导链和后随链都需要由引发酶合成的RNA做引物。在大肠杆菌中,这段RNA引物的切除由DNA聚合酶I完成,此酶具有5"-3"外切核酸酶的活性。在真核生物内,好像是RNA酶H1和5"→3"外切核酸酶MF1共同作用切除RNA引物。后随链的合成过程中,冈崎片段前面的引物RNA也是由DNA聚合酶I切除的,然后由DNA聚合酶I填补切除引物后留下的缺口,最后由DNA连接酶连接冈崎片段。真核生物前导链的引物切除后产生的缺口正常情况下无法填补,以粘性末端的形式存在,除非细胞内有端粒酶的活性,由端粒酶延伸复制过程中产生的5"末端隐缩。但无论有无端粒酶活性,染色体的末端都是粘性末端,以特殊的T-loop和D-loop的形式将末端保护起来。

延长随从链的是DNA polα还是DNA pol δ?最主要的是哪个

我想你说的是真核DNA聚合酶吧……DNA pol α 起始前导链和后随链,先合成约10bp RNA,然后是20-30bp DNA,然后交班给别人。DNA pol δ 延伸前导链,复制叉上的第二个DNA pol δ可能用来合成后随链DNA pol ε 可能参与合成后随链二选一的话,就是DNA pol δ

DNA的两条链的复制步骤有什么不同?为什么不能采取同样的步骤进行复制?

DNA的复制一条链是连续复制,而另一条链是半不连续复制. 原因是DNA的链增长方向是5"到3".模板链一条是5"到3",另一条是3"到5",由此可知两条链不可能以同样的步骤复制,因为复制是边解链边解旋同时复制. 先导链(leading strand):DNA复制时,与复制叉向 前移动的方向一致,以3"→5"链为模板,按5"→3"方向连续合成的一条链 先导链按 dUMP 片段连续复制 后随链按Okazaki 片段不连续复制 冈崎片段(Okazaki fragment): DNA复制不连续合成链中形成的短DNA片段. 先导链直接合成而后随链先合成冈崎片段再由连接酶联起来. 你看生物化学或分子生物学上就有.写的很清楚.

DNA链的重复结构是什么??它的意义及应用价值???

核酸是由很多单核苷酸聚合形成的多聚核苷酸(polynucleotide),DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成不分支的线性大分子,其中磷酸基和戊糖基构成DNA链的骨架,可变部分是碱基排列顺序。核酸是有方向性的分子,即核苷酸的戊糖基的5′位不再与其它核苷酸相连的5′末端,以及核苷酸的戊糖基3′位不再连有其它核苷酸的3′末端,两个末端并不相同,生物学特性也有差异。 DNA的复制过程 (一)DNA的半保留复制 Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,他们推测,DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。 (二)DNA复制的起始,方向和速度 DNA在复制时,双链DNA解旋成两股分别进行。其复制过程的复制起点呈现叉子的形式,故称复制叉。以复制叉向前移动的方向为标准,一条模板链为3"—〉 5"走向,在其上DNA能以5"—〉3"方向连续合成,称为前导链(leading strand);另一条模板链为5"—〉3"走向,在其上DNA也是5"—〉3"方向合成,但与复制叉移动的方向正好相反,故随着复制叉的移动形成许多不连续的冈崎片段,最后在连成一条完整的DNA链,该链称为后随链(lagging strand)。实验证明DNA的复制是由一个固定的起始点开始的。一般把生物体的单个复制单位称为复制子。一个复制子只含一个复制起点。一般说,细菌,病毒即线粒体DNA分子均作为单个复制子完成其复制,真核生物基因组可以同时在多个复制起点上进行双向复制,即它们的基因组包括多个复制子。多方面的实验结果表明,大多数生物内DNA的复制都是从固定的起始点以双向等速方式进行的。复制叉以DNA分子上某一特定顺序为起始点,向两个方向等速生长前进。 (三)DNA复制过程 以原核生物DNA复制过程予以简要说明 1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程 (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。 (2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。 (3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。 2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。 3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。 (四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。 在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。 端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。 至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。

dna复制的方向?

方向如下:DNA的两条链是反向平行的,并且迄今为止发现的DNA聚合酶都只能催化新链沿着5"到3"方向合成。故在DNA复制时,一条链的合成方向与解旋方向一致,沿5"3"方向连续合成,称为前导链;另一条则是按与解旋方向相反的方向,沿5"到3"方向合成短片段(冈崎片段)。再通过DNA连接酶将这些片段连接起来,称为后随链。所以在DNA复制时,一条链是连续合成的,另一条链是由间断合成的短片段连接而形成的,这样的复制过程称之为半不连续复制。转录和mRNA翻译时,方向还是5"到3"。核酸不管是DNA还是RNA,在合成的时候,方向都是5"到3",而与它相互配对的,自然是3"到5"比如,DNA在复制时,新链的合成方向是5"到3"。而DNA聚合酶在模板链上的滑动方向为3"到5",转录同理.mRNA翻译时,方向还是5"到3",与其配对的tRNA方向相反.所以生物体内的核酸的复制、转录和翻译的方向都是5"到3"的。

DNA复制时为什么有前导链和后随链之分

半不连续复制是指DNA复制时,前导链上DNA的合成是连续的,后随链上是不连续的,故称为半不连续复制。DNA复制的最主要特点是半保留复制,另外,它还是半不连续复制(Semi-ondisctinuousreplication)。半不连续模型是DNA复制的基本过程。

简述维持DNA复制的高度忠实性的机制。你预计前导链复制的忠实性与后随链复制的忠实性会是一样吗?

【答案】:维持DNA复制的高度忠实性的机制主要包括:(1)DNA聚合酶的高度选择性。(2)DNA聚合酶所具有的3"→5"的外切酶活性能够进行自我校对,以切除复制过程中错误参入的核苷酸。(3)错配修复。(4)使用RNA作为引物也能提高DNA复制的忠实性。因为当DNA刚开始进行复制的时候,由于缺乏协同性,所以错误的机会很大。利用RNA作为引物,就可以降低在开始阶段所发生的错误,这是因为最终RNA引物都要被切除。如果不使用RNA作为引物,那么后随链的合成忠实性可能要低于前导链。

DNA复制时,前导链的引物是DNA,后随链的引物是RNA,这句话对吗?我觉得都是RNA吧!

这句话不对,都是 RNA 。前导链和后随链并没有本质上的差别,仅仅是因为后者为了保持复制时3`——5`的措施罢了,即先合成冈崎片段,然后再拼接。

前导链和后随链可以在同一条dna链上吗

可以,前导链锚定,后随链防降解,好多都是这样吧

解释在dna复制过程中,后随链是怎样合成的

DNA聚合酶只能朝5"-3"方向合成DNA,后随链不能像前导链一样一直进行合成。后随链是以大量独立片段(冈崎片段)合成的,每个片段都以5"-3"方向,这些片段最后由连接酶连接在一起。每个片段独立引发、聚合、连接。与复制叉移动的方向相反,通过不连续的5ˊ-3ˊ聚合合成的新的DNA链。扩展资料:在真核细胞内,DNA的两条链都作为模板同时合成两条新的DNA链,由于DNA分子的两条链是反向平行的,从一个向看去,一条链是从5"→3"走向,另一条链则是3"→5",DNA复制时,不管以那条链作模板,新链的合成始终是按5"→3"方向进行的;随着双链的打开,由起始点形成复制叉后,新合成的两条方向相反的链中,一条链的合成方向与复制叉前进方向是一致的,合成就能顺利地连续进行,另一条链的合成方向则与复制叉前进方向相反。

关于前导链和后随链,缺失片段后补全DNA的问题

因为复制其实是双向进行的。即实际形成的并不是复制叉,而是复制泡。把DNA的两条链分别记为A链和B链。如果在复制起点的左边,A链为前导链,B链为滞后链,那么在复制起点的右端,A链则为滞后链,B链为前导链。因此,对于A链而言,复制起点右边那部分(作为滞后链的那部分)末端的引物切除后无法通过DNA聚合酶补齐,而是需要用到端粒酶;而对于B链而言,则是复制起点左边那部分(作为滞后链的部分)末端的引物无法补齐。而对于A、B两链各自作为前导链的部分而言,由于它们作为滞后链的部分为它们提供了3‘末端(图中红色方框部分),因此,被切除引物的地方可以直接通过DNA聚合酶补齐。总结:1.DNA的复制是双向的;2.因此,对于每一条链而言,都有一部分作为前导链,一部分作为滞后链;3.它们各自作为滞后链的部分,需要用到端粒酶补齐被切除的引物。4.即,对于新复制出来的子链而言,都只有一端“受损”,另一端正常。

DNA的滚环复制前导链与后随链分别怎样合成?

以M13噬菌体为例。其基因组为单链正DNA。先以单链正DNA为模板合成负链,形成复制型DNA。再把正链切开,在正链3"末端延伸,形成新的正链(前导链)。SSB蛋白从正链5"末端开始结合,使正链从5"末端与负链分开。正链延伸,形成连续的多拷贝的正链。然后正链酶切,形成单拷贝的单链正DNA。此例中没有后随链了...一些质粒则还有下文。酶切形成的单拷贝的单链正DNA,环化。在以此为模板,合成负链(即后随链)。大概就是先前导链,再后随链。实际上,这里的后随链并不是像染色体上DNA后随链一样,一段一段合成,再连起来。DNA环化后,后随链也可一气呵成。可以参考一下百度百科http://baike.baidu.com/view/178360.html?wtp=tt
 首页 上一页  4 5 6 7 8 9 10 11 12 13 14  下一页  尾页