基因

DNA图谱 / 问答 / 标签

基因探针的RNA探针

RNA探针是一类很有前途的核酸探针,由于RNA是单链分子,所以它与靶序列的杂交反应效率极高。早期采用的RNA探针是细胞mRNA探针和病毒RNA探针,这些RNA是在细胞基因转录或病毒复制过程中得到标记的,标记效率往往不高,且受到多种因素的制约。这类RNA探针主要用于研究目的,而不是用于检测。例如,在筛选逆转录病毒人类免疫缺陷病毒(HIV)的基因组DNA克隆时,因无DNA探针可利用,就利用HIV的全套标记mRNA作为探针,成功地筛选到多株HIV基因组DNA克隆。又如进行中的转录分析(nuclearrunontranscrip-tionassay)时,在体外将细胞核分离出来,然后在α-32P-ATP的存在下进行转录,所合成mR-NA均掺入同位素而得到标记,此混合mRNA与固定于硝酸纤维素滤膜上的某一特定的基因的DNA进行杂交,便可反映出该基因的转录状态,这是一种反向探针实验技术。近几年体外转录技术不断完善,已相继建立了单向和双向体外转录系统。该系统主要基于一类新型载体pSP和pGEM,这类载体在多克隆位点两侧分别带有SP6启动子和T7启动子,在SP6RNA聚合酶或T7RNA聚合酶作用下可以进行RNA转录,如果在多克隆位点接头中插入了外源DNA片段,则可以此DNA两条链中的一条为模板转录生成RNA。这种体外转录反应效率很高,在1h内可合成近10μg的RNA产生,只要在底物中加入适量的放射性或生物素标记的NTP,则所合成的RNA可得到高效标记。该方法能有效地控制探针的长度并可提高标记物的利用率。值得一提的是,通过改变外源基因的插入方向或选用不同的RNA聚合酶,可以控制RNA的转录方向,即以哪条DNA链以模板转录RNA。这种可以得到同义RNA探针(与mRNA同序列)和反义RNA探针(与mRNA互补),反义RNA又称cRNA,除可用于反义核酸研究外,还可用于检测mRNA的表达水平。在这种情况下,因为探针和靶序列均为单链,所以杂交的效率要比DNA-DNA杂交高几个数量级。RNA探针除可用于检测DNA和mRNA外,还有一个重要用途,在研究基因表达时,常常需要观察该基因的转录状况。在原核表达系统中外源基因不仅进行正向转录,有时还存在反向转录(即生成反义RNA),这种现象往往是外源基因表达不高的重要原因。另外,在真核系统,某些基因也存在反向转录,产生反义RNA,参与自身表达的调控。在这些情况下,要准确测定正向和反向转录水平就不能用双链DNA探针,而只能用RNA探针或单链DNA探针。

求:拟南芥中的矮化或簇生的相关基因,有文章跟好。。。。 不胜感激

http://so.med.wanfangdata.com.cn/ViewHTML/DegreePaper_Y1609833.aspx一个拟南芥矮化突变体wox1-D的鉴定及相关基因WUSCHEL HOMEOBOX1(WOX1)的功能分析 加入收藏夹 点击:13 下载:0植物茎端分生组织的两大功能即是其自身的维持与新器官的发生。位于分生组织中心的一群分裂缓慢的细胞是具有全能性的干细胞,分生组织边缘的干细胞不断分化.产生新的器官。我在对拟南芥插入激活突变体库的筛选过程中发现了一株植株矮化的突变体,通过对T—DNA插入位点的鉴定和分析,我发现在该突变体中T—DNA插在一个含有WUSCHEL相关同源异形结构域的转录因子WOX1(WUSCHEL HOMEOBOX1)基因的上游。该突变体的分生组织发育异常,茎尖显著小于野生型,并表现出矮化及多枝表型。突变体的叶片较小,呈深绿色,花药发育迟缓导致不育。我用35S增强子构建WOX1的过表达载体转入植物,转基因植物表现出与突变体类似的表型;而用WOX1的RNAi载体去转化突变体,可以使突变体回复到野生型表型。这说明突变体的表型确实是由于WOX1基因的过量表达引起,因此我把该突变体命名为wox1—D。   在wox1—D突变体中,干细胞标志基因CLV3在分生组织中的表达发生下调,并在根与下胚轴的连接处和侧根发生处发生异位表达,这表明WOX1的过量表达影响了CLV3的表达模式,从而导致矮化及多枝表型.此外,wox1—D突变体叶片的细胞明显小于野生型,检测发现在woxl—D中cyclinB1的表达强度明显低于野生型,这暗示WOX1在分生组织中表达模式的变化部分影响了细胞周期的顺利进行,阻滞了侧生器官的发育。   我通过酵母双杂交的方法寻找WOX1可能的相互作用蛋白。通过对拟南芥cDNA文库的筛选我找到了一个可能的靶蛋白SAMDC1,SAMDC1是多胺代谢过程中的一种关键酶。我通过MBP pull—down的方法在体外确认了WOX1与SAMDC1的相互作用。我的结果表明,WOX1参与分生组织的发育调控,这种调控可能是通过调节SAMDC的活性,进而影响多胺代谢,从而调节细胞的分裂活动实现;同时,多胺也有可能反过来调节茎端分生组织的发育。我通过逐步删除WOX1上各结构域的办法检测了WOX1与SAMDC1的结合位点,结果表明WOX1是通过其N端的同源结构域与SAMDC1结合并行使功能的。作者 张艳霞学科专业 生物学(生物技术)授予学位 博士授予单位 北京大学导师姓名 瞿礼嘉学位年度 2007关键词 拟南芥 植株矮化 突变体 转录因子 WOX1基因 基因表达MeSH主题词 突变(Mutation) 拟南芥属(Arabidopsis) 基因(Genes) 植物, 基因修饰(Plants, Genetically Modified) 分生组织(Meristem) 表型(Phenotype) 干细胞(Stem Cells) 代谢(Metabolism)分类号 Q949.748.3

长寿基因的发现过程

德国基尔大学医学院的一项调查德国基尔大学医学院的一项调查表明,人体DNA中存在一种名为“FOXO3A”的基因能够助人长寿,而与年轻人相比,这种基因存在于百岁老人体内的情况更加普遍。研究人员在比较了大量德国百岁老人和年轻人的DNA样本后还发现,FOXO3A基因发挥的作用覆盖各种不同人种。基尔大学在一份公报中指出,2008年9月,一个由布拉德利·威尔科克斯博士带领的美国研究小组曾在《美国国家科学研究院学报》上发表一份研究报告,指出这种“长寿基因” 在95岁以上、具有日本血统的美国人体内也普遍存在。定期接受健康检查的日裔美国男性布拉德利·威利克斯博士及其同事研究了一群定期接受健康检查的日裔美国男性。科学家筛查了受试者的DNA,把重点放在胰岛素路径的5个基因上。他们计算了每个基因的三个位置上出现的DNA碱基。FOXO3A基因上的一个位置特别突出。在组成了DNA的4种碱基(A、T、C、G)中,大多数受试者在一对染色体的FOXO3A基因位置上拥有的是胸腺嘧啶(T)。但是鸟嘌呤(G)取代了胸腺嘧啶(T)的受试者在当初健康检查的时候健康状况更好。但研究发现20年后,在最终到达了98岁平均年龄的男性组中鸟嘌呤(G)出现的频率更高。科学家在这些老年人中的许多人身上发现了有两个G(GG)的等位基因,他们认为这可能是这些人在老龄时非常健康的原因。确定了当FOXO3A基因在DNA上时此外,这项研究还确定了当FOXO3A基因在DNA上的一个含氮碱基上出现时,人健康地活到90岁的几率就会更高。基尔大学的研究报告指出,德国研究人员在将1762名百岁及90岁以上的德国长寿老人的DNA样本与年轻人的DNA样本进行比较后确认了威尔科克斯的研究结果。这项研究的负责人阿尔穆特·内贝尔表示,他们的调查结果能够消除此前人们有关FOXO3A基因与长寿之间是否存在紧密联系的所有疑问。此外,日本人和欧洲人之间存在遗传差异,却能在两个人种体内发现同样的“长寿基因”,使得这项研究更是意义非凡。内贝尔指出:“我们可以得出结论认为,这个基因很可能是让全球人类长寿的关键因素。”临床分子生物学院研究所教授发现基尔大学临床分子生物学院研究所教授弗里德里克·弗拉切巴特指出,这项研究的最大难点是如何找到大批长寿人群,尤其是百岁以上老人的DNA样本。因为有趣的是,与95岁老人相比,这种基因的遗传作用在百岁以上的老人身上更加明显。这项研究得到了德国石勒苏益格-荷尔施泰因-伯根生物样品库的帮助,这里保存着660份百岁老人的DNA样本,是世界上最大的长寿人群DNA样本收藏库之一。在对大量的资料进行研究后,基尔大学科学家证实FOXO3A基因的作用不分地区和性别,对世界各地的男性和女性都能发挥作用。这就意味着在未来,人类也许可以通过基因手段来控制衰老的过程。台湾阳明大学研究团队声称2010年05月03日,台湾阳明大学研究团队声称找到调控寿命长短的Cisd2基因,进一步利用基因转殖技术,提升长寿基因蛋白的量,使实验中的小鼠存活达36个月,较一般老鼠增加1.4倍,相当于人类的110岁。更重要的是,这些“长寿鼠”仍精力充沛毫无老态。未来若能找出补充Cisd2基因的物质,人类也可望长生不老、永保青青。

细胞中组成一个基因的嘌呤碱基与嘧啶碱基数量相等

A、真核生物的DNA主要位于染色体上,染色体是DNA和基因的主要载体,A正确; B、由于嘌呤和嘧啶进行碱基互补配对,故DNA分子上嘌呤与嘧啶的数量相等,B正确; C、一个DNA分子由基因片段和非基因片段组成,C错误; D、DNA复制后每条染色体含有2个DNA分子,故一条染色体上含1或2个DNA分子,D正确. 故选:C.

碱基颠倒是基因突变吗?

1、碱基颠换(transversion)是指在碱基置换中嘌呤与嘧啶之间的替代,而转换(transition)则是一个嘌呤被另一个嘌呤,或者是一个嘧啶被另一个嘧啶替代。2、DNA分子中某一个碱基为另一种碱基置换,导致DNA碱基序列异常,是基因突变的一种类型。可分为转换和颠换两类。转换是同类碱基的置换(AT→GC及GC→AT),颠换是不同类碱基的置换(AT→TA或CG,GC→CG或TA)。3、碱基置换的后果可能是:①同义突变(silent mutation),位于密码子第三碱基的置换,由于遗传密码的简并,经转录和翻译所对应的氨基酸不变。②错义突变(missense mutation),碱基置换使密码子的意义改变,经转录和翻译所对应的氨基酸改变。③无义突变(nonsense mutation),碱基置换使密码子成为终止密码,导致肽链延长提前结束。④终止密码突变(terminator codon mutation),碱基置换使终止密码转变成某种氨基酸密码,指导合成的肽链将延长到出现第二个终止密码才结束。引起碱基置换的致突变物称为碱基置换型致突变物(basesubstitutionmutation)。扩展资料:1、嘌呤有两个环(鸟嘌呤G、腺嘌呤A),嘧啶只有一个环(胸腺嘧啶T、胞嘧啶C),DNA碱基的替换保持环数不变,就是转换,如A→G、T→C;环数发生改变,就是颠换,如A→C、T→G。在进化过程中,转换发生的频率远比颠换高。2、碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。3、除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。

控制合成胰岛素《含51个氨基酸》的基因中,含有嘧啶碱基至少多少个?

控制合成胰岛素(含51个氨基酸)的基因中,(至少)有306个含N碱基,而DNA中嘌呤和嘧啶数是相等的,各占一半,

控制合成胰岛素(含51个氨基酸)的基因中,含有嘧啶碱基至少有 A306 B153 C102 D51 为什么不考虑终止密码

哎,这道题,我直接觉得出题的是个2,胰岛素是有51个AA,但人家是两条肽链以二硫键连接起来的,AB之间,本身还有一段切除的肽链,这题直接给学生一种错误的感觉,你从51个AA,推测基因的情况,这个是对的,是题目在混淆你(我觉得这是一道非常失败,而且老师没有生物常识,还自以为很高明,但提问方式确是不好反驳),题目本身就没有考虑基因的具体情况,你根本不用考虑什么终止密码子了, 因为本身就非常不准确。 你不用纠结这道题了, 因为题目本身很失败,高考题不会是这个2样。 复习高考还是要多看书,做一些高质量的题,而不是这种很没有意义的题目,历年各省真题是很有价值的,希望能帮到你。 不知道这类失败的模拟题还要横行多少年啊,我想当个老师还当不成呢,╮(╯▽╰)╭

控制合成胰岛素(含51个氨基酸)的基因中,含嘧啶碱基有多少

控制合成胰岛素(含51个氨基酸)的基因中,(至少)有306个含N碱基,而DNA中嘌呤和嘧啶数是相等的,各占一半,

痛风忌口的嘌呤和基因里边的嘌呤是一回事吗?

不一样,基因里面那些是嘌呤碱基对。

基因与dna的关系

基因与dna的关系如下:DNA的构成。1.DNA是指脱氧核糖核酸(Deoxyribonucleic Acid),是存在于所有生物中的一种高分子化合物。2.它由四种碱基组成,包括腺嘌呤(Adenine)、胸腺嘧啶(Thymine)、鸟嘌呤(Guanine)和胞嘧啶(Cytosine),其化学结构相同,但它们的分子结构略有差异。3.在细胞质中形成两股螺旋状的链状分子,通过交叉配对的方式提供了机体遗传信息的存储、复制和传递。DNA碱基的作用及类型。1.DNA中的碱基具有重要的生物作用,它决定了其序列和遗传信息的编码。2.腺嘌呤和鸟嘌呤是称为嘌呤碱基的两种基,而胸腺嘧啶和胞嘧啶则是被称为嘧啶碱基的两种基。3.嘌呤和嘧啶之间的配对规则决定了DNA序列的编码规则,例如A-T和G-C之间的配对。DNA结构和功能。1.DNA具有双螺旋结构,在形成的过程中,两股链通过氢键相互配对而组成一个稳定的分子。2.除了提供遗传信息外,DNA在其他生物学过程中也起着重要作用,包括DNA的复制、转录和翻译等。3.DNA的稳定性和准确性决定了生命活动的可持续性和完整性。DNA的研究与应用:1.在生物学领域,DNA是很重要的研究对象。DNA能够为生产更好的农作物和医药品贡献出重要价值,如现代基因工程就是基于DNA序列设计新型生物工具的颠覆性技术。2.DNA的研究还包括了一项叫做DNA测序技术。这项技术被应用在对DNA序列的快速精准测定和解读上,例如广泛应用于疾病诊断、法医学、生态学研究和生物多样性保护等领域。3.同时,如今人们借助DNA识别技术还能进行谋杀案、亲属寻找和恢复有关灾难的遗骸等事情,遇到一些无法解决的问题,DNA测序技术往往可以施展绝妙功效。

控制合成某蛋白质(含100个氨基酸)的基因中

1、合成100个氨基酸需要300个碱基对,所以至少有600个碱基,其中嘌呤数与嘧啶数相同,所以含有嘌呤碱基至少有300个2、共有2100个碱基对,能控制合成2100/3=700个氨基酸

有意义链以基因为准?

应该是以转录时所选择的模板链决定的,参与转录的那一条就是无意义链 负链反义链;为被转录的就是有意义链 正链 编码链

基因的表达,关于编码链的,看看这句话对不对

对哈~~~ 模板链就叫无意链(非编码链、反义链)~~~~基因表达转录的就是模板链的互补链(编码链、有意义链、正义链),其序列和模板链的互补链的序列相当,相当于是互补链的遗传信息得到表达,所以模板链的互补链才叫编码链~~~

高中生物 基因是在一条链上还是在两条链上?

基因是在两条链上的。而双链结构保持了生物基因的稳定性。比如在DNA复制的时候,两条链都是作为模板来复制出一模一样的双链。而更重要的作用是,当双链DNA的其中一根链发生损害,另一条单链在这时就可以当作模板,作为修正的依据。如果是双链都断裂,在缺乏另一条单链的序列当模版的情况下,就会转而透过同源的染色体来寻求支援。

为什么生物基因会进化出显新和隐性?

显隐性的由来得追溯到基因的表达上去,每个性状可由一对或多对等位基因控制,为了简便起见,这里讨论由一对等位基因控制,用Aa表示,由于基因在转录的时候分有义链和无义链,一个等位基因在有义链上,就可以进行转录和翻译,最终表达蛋白质,表现出一定的性状,另一个等位基因在无义链上就不会转录,最终表现出行转的隐性,所以就出现了显性和隐性的区别.不知道你看懂了没?

同种基因在不同细胞转录时的模板链相同吗

同种基因在不同细胞转录时的模板链相同,否则就会翻译出两种完全不同的蛋白质。转录是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非编码RNA(tRNA、rRNA等)的合成步骤。特点转录时,细胞通过碱基互补的原则来生成一条带有互补碱基的mRNA,通过它携带密码子到核糖体中可以实现蛋白质的合成。与DNA的复制相比,转录有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取并复制为mRNA。就是说,以特定的DNA片段作为模板,以DNA依赖的RNA合成酶作为催化剂,合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物,在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。被选为模板的单链叫模板链,又称信息链、无义链;另一条单链叫非模板链,又称编码链,有义链。DNA上的转录区域称为转录单位(transcription unit)。RNA聚合酶合成RNA时不需引物,但无校正功能。

一个DNA分子上有许多基因,这些基因不能同时转录,这是为什么呢?

可以的,因为人的DNA上有许多基因,就在两条链上,基因控制蛋白质的合成,从而控制性状,每条链上所控制的蛋白质不同,所以两条链都可以转录。转录时,细胞通过碱基互补的原则来生成一条带有互补碱基的mRNA,通过它携带密码子到核糖体中可以实现蛋白质的合成。与DNA的复制相比,转录有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取并复制为mRNA。就是说,以特定的DNA片段作为模板,以DNA依赖的RNA合成酶作为催化剂,合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物,在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。被选为模板的单链叫模板链,又称信息链、无义链;另一条单链叫非模板链,又称编码链,有义链。DNA上的转录区域称为转录单位(transcription unit)。

基因的表达,关于编码链的,看看这句话对不对

对哈~~~模板链就叫无意链(非编码链、反义链)~~~~基因表达转录的就是模板链的互补链(编码链、有意义链、正义链),其序列和模板链的互补链的序列相当,相当于是互补链的遗传信息得到表达,所以模板链的互补链才叫编码链~~~

基因的无意义链

无义链又称模板连(- 链),是RNA合成的模板,无义链也需从5‘端开始写。比如:大肠杆菌某一多肽基因的编码链的序列是:5′ACAATGTATGGTAGTTCATTATCCCGGGCGCAAATAACAAACCCGGGTTTC3′,其无意义链是5"GAAACCCGGGTTTGTTATTTGCGCCCGGGATAATGAACTACCATACATTGT3"

孪生子的遗传基因

遗传学的角度来看,同卵双生的孪生子具有完全相同的基因组。如果这两个孪生 孪生子子在同样的环境下成长,从逻辑上说,他们俩人的气质和体质应该非常相似。但研究者发现,一些孪生子的情况并不符合预期的理论,往往在长大成人后出现性格、健康方面的很大差异。这种反常现象长期困扰着遗传学家。现在科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅可以影响个体的发育,而且还可以遗传下去。因此,这类变异被称为“表观遗传修饰”,并被认为是导致遗传物质一致的孪生子出现个体差异的主要原因。在基因组的水平上研究表观遗传修饰的领域被称为“表观基因组学”。表观基因组学使人们对基因组的认识又增加了一个新视点:对基因组而言,不仅仅是序列包含遗传信息,而且其修饰也可以记载遗传信息。

如何看待大数据基因的问题

21世纪初,人类基因组计划(HGP)发布了第一张人类基因草图,人的基因组约有30亿个碱基对,意味着每一个人的基因组有3Gb以上的数据。该计划曾与上世纪的曼哈顿计划(原子弹制造)、阿波罗登月计划并称为三大科学计划,为本世纪的一个里程碑式的科学工程。15年过去了,基因组测序技术发展之快已经超乎人们的想象。十年前,这项技术还只是实验室中一个“迷人”但又昂贵的研究工具。现在,它却已经渐渐步入医疗界,成为一种略显“尖端”的诊断技术。该技术也引领生物医学领域进入大数据时代。早前,曾有人预言,当个人基因组测序费用下降到1000美元时,就标志着我们的医学将进入个体化医疗(Personalized Medicine)的时代。现在,这个目标已基本达到,随着这项技术的迅猛发展和成本的扁平化,它已经开始给我们带来了庞大的数据,包括基因组、蛋白组等各类组学(omics)的出现,也带来了不少数据。1. 海量数据的产生刚过去的七八年间,我们储存的个人基因组数据量已达到106规模,这个数量如此惊人,且这只是刚刚开始。每年Illumina公司的HiSeq X 10测序仪已经可以完成超过18000人的基因组测序工作,该测序系统已分布在全球顶尖测序中心,每天产生大量的数据。英国2014年也启动了“十万人基因组计划”,美国和中国则宣布要完成多达一百万人的基因组数据收集工作。基因测序数据正在以更快的速度翻倍。2015年以后,以历史累积的测序数据来看,每7个月就能翻一番, Illumina仪器测序所得的数据,每12个月就能翻一番;如果仅以摩尔定律来看,每18个月数据量就能翻一番。这种情况将带来一个巨大的“数据黑洞”。图片来自nature.com以上所提及的,只是大数据时代下的一个缩影,现在面临的还有其他数据。比如,伴随基因组计划的发展,人类蛋白组计划和基因测序结果在医疗界的应用等也被逐步提出,它们也正在给大数据“添砖加瓦”。所谓人类蛋白组计划,主要目的在于研究所有人类基因编码产生的蛋白质。关于这个,我们来看一个研究者的故事。美国斯坦福大学迈克尔?斯奈德(Michael Snyder)。迈克尔·斯奈德(Michael Snyder)是美国斯坦福大学的一名分子遗传学家。当他抱着好奇的心态测了自己的基因组后,得到了一些“惊喜”。他发现,自己是一名II型糖尿病易感基因的携带者,尽管在这之前,他并没在自己身上发现任何此类疾病的风险因素,包括肥胖、家族病史等等。在接下来的14个月,斯奈德持续监控了自己体内相应RNA的活性和蛋白表达情况。在一次感染呼吸道病毒后,他发现自己体内的蛋白表达发生了变化,并且有相应的生物学通路被激活。接着,他被诊断出了糖尿病。看起来,这场病就是由这次病毒感染所触发的。此后,他还在患上莱姆关节炎时,也监控了自己体内的蛋白表达变化。这时,他的研究已经产生了多达50Gb的数据,这还仅仅只是关于他个人的研究数据。当他将这项研究扩展至100个人时,并将研究目标扩展至13类“组学”(包括蛋白组、肠道菌群的转录组等等),而实际上,按照他的计划,要想真正做到预测疾病,还需要将研究对象增加至上百万个病人。如此这样,它将会带来多大的数据量?各种电子设备的普及以及健康数据记录App的出现,给这个时代带来了海量的数据,也给医学界带来了可观的研究对象。过去的几十年间,医生如果要观察病人的心血管健康情况,往往会给他们做这么一个小测试:让他们在一段平缓、稳固的路上行走6分钟,并记录他们的行走距离。这个测试不仅可用于预测肺移植者的存活率,还可用于检测肌肉萎缩的病程发展,甚至可以评估心血管患者的健康状况。这种小测试已被运用于多项医疗研究中,但在过去,最大规模的医疗研究项目中,这种参与者也很少能达到一千人。智能手机中健康类App的出现,从而能让研究者获取大量人群的数据。图片来自nature.com不过,这个情况近年来发生了很大的变化。在2015年3月进行的一项心血管研究中,研究者尤安·阿什利(Euan Ashley)在两周时间内就拿到了6000个人的测试结果,这就得益于现在有数百万计的人拥有智能手机和健身追踪器。到了6月份,参与到这项研究中的人数达到了40000人,这仅仅依靠的是一款叫做“我的心脏计数”(My Health Counts,见上图)的苹果应用。有了这个应用软件,阿什利甚至可以招募来自全球的参与者,获取他们的测试结果。那样的话,他得到的数据又将是多少?面对这个现状,不少研究者表示,这些海量数据可能会淹没现有的分析渠道,并对数据存储提出前所未有的“高”要求。2. “大数据”时代下的挑战在群体基因组研究的浪潮下,虽然更多的人关注的仅仅只是整个基因组中的外显子部分,即基因组中可编码产生蛋白的部分,它占到了整个基因组的1-5%,这能够将需要分析的数据量减少到原来的1%。但即使在这种情况下,每年产出的数据量仍可达4000万Gb。这就带来了第一个难题,如何存储这么大的数据量?尽管这还只是这个领域最基本的问题,仍需要巨大的资源来解决。这就是近年来网络上最常出现的一个词——云(Cloud)出现的契机所在。这么大的数据量,必然无法仅仅保存在固定的设备上,需要借助互联网来实现,也即是所谓的“云存储”。此外,这些数据带来的处理危机也是巨大的,电脑处理能力也将局限着它们的应用。这个问题的初步解决依然要依靠“云”,也就是现在所谓的“云计算”。即使处理好了海量数据的存储问题,我们还将迎来另一个更让人头痛的问题——这些数据说明了什么?现在关于基因组学的临床研究,往往聚焦于识别个人基因组中可扰乱基因功能的“小错误”,即所谓单核苷酸突变(single-nucleotide variants, SNPs),即使这些突变往往存在于仅占基因组1%的外显子区域,平均下来,依然有近13000个之多,而其中的2%已被预知可影响相应蛋白的变化,但要从中找出某类疾病的具体致病基因,仍是一个巨大的挑战。自奥巴马提出了“精准医学”的概念,这个方向就一路红火。即使现在已经有了测序技术和分析工具这些手段,有了电子健康记录这位“好帮手”,这种医疗方法的理想和现实之间仍然有着巨大的鸿沟。在这个领域,仍然存在多种障碍。比如,即使在电子健康记录普及和新疗法研发成功的前提下,想要依靠临床医生来实现这些疗法,往往还需要对他们进行不间断的培训,以帮助他们在做医学决定前了解足够多的细节信息。此外,电子健康记录的不可共享性(即涉及到病人隐私的问题),为精准医疗的实现设置了不小的障碍。很多时候,治疗患者个体病例的特异性信息往往被患者个人和治疗机构所把持,到不了研究者手里,那么就无法据此信息来改进一些治疗方法,因此也就没办法实现对个人的“个体化医疗”。这些问题往往反映生物医学领域需要信息处理专家的介入和帮助。遗憾的是,生物信息学家在学术领域也仅仅只占很少的席位,更别提在医学领域,还需要给他们提供更多的职位和机会。3. “大数据”带来的机遇有挑战也必然会带来机遇,这个机遇可以体现在生物医学领域的多个方面,比如医疗界的诊断方法更新、疾病分型更新、医药界药物开发新方向、医学界疾病治疗新方法,甚至生物学科基础研究领域的新工具等等。2013年,安吉丽娜·朱莉的故事轰动全球,为减少患上乳腺癌的风险,她进行了预防性的双乳腺切除术,而这个决定是在她检测到自身携带一种风险基因——BRCA基因后才做出的。这类基因能带来显著的致病风险,约有55-65%的乳腺癌患者携带有害的BRCA1基因突变,45%的携带BRCA2突变。对朱莉来说,虽然她携带的仅仅是前一个基因,已足以让她做出预防性手术的决定。这个故事给出了一个鲜活的例子,就是如何把个体测序得到的数据与临床诊断联系在一起,这就好像人类正在从自己的基因组中找到这些失落的宝藏,从而帮助自己预防一些恶性疾病,但这只是这个时代所带来的一个福利而已,并且只占到很少的一部分。以糖尿病为例,不精确的疾病分型,对于前期的预防和后期的治疗都十分不利。之前,医学界已经知道,有多达百余种途径可能导致糖尿病的发生,涉及到胰腺、肝脏、肌肉、大脑甚至脂肪的不同变化。现代通过基因的研究发现,对不同类型糖尿病而言,其致病基因十分多样。这时,如果将这些不同亚型的糖尿病混为一谈,就会让人很难弄明白,为什么携带同样的基因突变,病人在面对同一治疗方案时,会出现完全不同的治疗效果。正如生物化学家阿兰·阿蒂(Alan Attie)所说的那样,“从致病基因到体重、血糖水平等表型的出现这一过程,往往有许多步,其中每一步都可能发生基因突变,这最终会削弱基因和表型之间的联系”。因此,只看表型(即临床症状)和只看突变基因,得到的都只会是片面的结果。只有将两者有机结合起来,才能更加深我们对疾病的了解,做到更精确地进行疾病分型,以便更容易“对症下药”。美国国立卫生研究院(NIH)曾发起一项大型项目,构建了癌症基因组数据库(the Cancer Genome Altas,简称TCGA),将所有癌症相关基因突变分类保存,共保存有250万Gb的数据,这大大改进了研究者对各种类型癌症的认识。但仅仅这样,对于提供了组织样本的患者来说,并没给他们的临床经历带来太多改变。与癌症治疗相关的另一方面,是个人电子健康记录及其病例的特异性信息。对很多研究者来说,如果能从医院或个人手中得到这部分信息,就能够卓有成效地进行癌症治疗方案的改进。总体而言,只有在拿到测序大数据的基础上,同时掌握病人的干预记录(来自个人的电子健康记录)和临床特征(来自医疗机构的临床病理记录),才能最终做到“升级”肿瘤的临床治疗方案。医药研发也能从大数据获益良多,这无可厚非。在医药研发的世界里,基因技术公司更倾向于进行长期的生物学研究,并将其联系到临床数据上,以使得药物能够“对症下药”到每个人身上,甚至会帮助制药公司做出更“大胆”的研发决定,进行个性化定制免疫疗法的研究。以微生物菌群研究为例。现在就有人提出这样的想法:什么时候我们会想要研发出能改变体内微生物菌群的药物呢?这些存在于我们肠道、皮肤表面和环境中的数以十亿计的微生物,不仅影响我们是否患病,还会影响到药物对疾病所产生的药效。现在大部分对于微生物菌群研究得到的数据还只是针对小部分人群,但这是否也意味着一个不错的研究方向?毕竟我们现在还缺乏一些稳定的测试手段,能让我们以一种持续性的方法来改变微生物菌群,并对疾病发展产生有意义的影响。对免疫学研究来说,大数据会带来什么?首先,有以下“组学”都可以对免疫学研究产生有利影响,包括:基因组、微生物组、表观基因组、转录组、代谢组、通路组、细胞组和蛋白组。具体来说,比如对特定B细胞或T细胞所有抗体抗原分子的分析,这些分析结果(尤其是与能识别对应抗体的抗原决定簇的技术相结合),可将临床诊断、抗体药物研发、疫苗研发上升到一个新高度,并能为自身抗原肽结合抗体提供新见解。伴随着荆棘的引路,往往也会引来好歌喉的夜莺。大数据给我们带来挑战的同时,也带来了机遇,尤其是对于一些恶性疾病(比如癌症)的治疗。一种单一类型的肿瘤,往往就会伴随着多样化的基因突变,但随着投入更多的时间和金钱,会得到更多的治疗靶点。当大数据分析的精度越来越高时,对于整个疾病发生过程的了解也会越来越深入,有了“大数据分析”这项利器,更多的精准治疗方案将会产生,帮助人们做出更好的选择。

DNA上除基因外其它部分可以遗传吗

可以。有一个学科叫做表观基因组学。肥胖遗传是可以和基因组无关只和基因组上的修饰有关。不过其实这是定义而已。这种遗传毕竟不是稳定遗传。就叫表观遗传。

自体免疫疾病无法逆转?新表关基因学这样说

如果你像大多数自体免疫疾病患者一样(记住,我曾作为患者好多年了),这是坐在医师的诊间可能听到的内容:「我很抱歉,你患有自体免疫疾病。一旦开启发病的基因,它们就不会被关闭。我们无法治愈这种疾病,现在唯一能做的就是控制症状,唯一的办法就是服用药物。」 传统医学里有很多的真话,但他们同时被那些话误解了。没错,遗传在自体免疫疾病当中,确实占了一部份。然而,在双胞胎的研究中发现,自体免疫疾病只有25%是遗传的,意味着环境是另一个更重要的因素,准确的来说,它占了75%。 此外,从全新的表观基因学(epigeics)领域得知,我们可以修改基因表现。当然不能改变你的基因,但是,却可以开启一些基因,而关闭其他的,从而改变基因表现程度。 基因在疾病中是个重要因素,但拥有基因不代表全部,要得到自体免疫疾病,还需透过环境、饮食或个人生活型态,开启导致自体免疫疾病的一组基因。一旦这些基因被开启,还能努力设法关闭它们,或至少使它们减缓下来, 透过饮食、治疗肠道和排毒,可以引导问题基因再次关闭,从而恢复免疫系统的 健康。如果处在自体免疫光谱上,可以借由饮食和生活方式预防自体免疫疾病。 本文出自博思智库《自体免疫自救解方:反转发炎,改善肠躁、排除身体毒素的革命性疗法》

基因修饰是什么

补充楼上的。表观遗传修饰主要分为两类,DNA的甲基化和组蛋白的修饰。在哺乳动物基因组中,DNA的甲基化修饰主要存在于CpG位点,而组蛋白可以有很多修饰形式。一个核小体由两个H2A,两个H2B,两个H3,两个H4组成的八聚体和147bp缠绕在外面的DNA组成。.组成核小体的组蛋白的核心部分状态大致是均一的,游离在外的N-端则可以受到各种各样的修饰,包括组蛋白末端的乙酰化,甲基化,磷酸化,泛素化等等。在生物体内,组蛋白的甲基化发挥着重要的生理功能,比如说在活跃转录基因的启动子区域内,H3K4的三甲基化水平较高;H3K9的甲基化会导致染色体的异染色质化,而H3K27的甲基化同X-chromosomeinactivation相关(Cell128,707–719,February23,2007)。我的是原创的,是俺滴转博报告第一段,恩

染色体微阵列分析和基因检查一样吗

一、微阵列比较基因组杂交(Microarray Comparative genomic hybridization,aCGH)。DNA微阵列(DNA Microarray)也叫寡核苷酸阵列(Oligonucleitide array),是人类基因组计划(Human Geneome Project,HGP)的逐步实施和分子生物学的迅猛发展及运用的产物,它是生物学家受到计算机芯片制造和广为应用的启迪,融微电子学、生命科学、计算机科学和光电化学为一体,在原来核酸杂交(Northern、Southern)的基础上发展起来的一项新技术,它是第三次革命(基因组革命)中的主要技术之一,是生物芯片中的一种。该技术的原理是在固体表面上集成已知序列的基因探针,被测生物细胞或组织中大量标记的核酸序列与上述探针阵列进行杂交,通过检测相应位置杂交探针,实现基因信息的快速检测。DNA微阵列技术最突出的特点就是可一次性检测多种样品,获得多种基因的差别表达图谱,已成功地运用cDNA微阵列同时检测l万多个基因的表达。因此,DNA微阵列是对不同材料中的多个基因表达模式进行平行对比分析的一种高产出的、新的基因分析方法。与传统研究基因差异表达的方法相比,它具有微型化、快速、准确、灵敏度高,以及在同一芯片上同时大信息量平行检测的优势。DNA微阵列技术在基因表达图谱的绘制、寻找目的基因和功能基因等研究方面已取得了显著的成绩。但其不足之处在于所点样的序列并不都是试验需要检测的,且试验所需要的分析仪器比较复杂。另外,DNA微阵列技术在分析低丰度转录体方面比较有限,要确保某种低丰度转录体包含于DNA微阵列上,需挑选非常大量的克隆进行扩增点样。表观遗传(epigenetics)是指DNA序列不发生变化,但基因表达却发生了可遗传的改变。这种改变是细胞内除了遗传信息以外的其他可遗传物质发生的改变,且这种改变在发育和细胞增殖过程中能稳定传递。在表观遗传中,DNA序列不发生变化,但基因表达却发生了可遗传的改变。DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5"碳位以共价键结合一个甲基基团。正常情况下,人类基因组中的“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态;与之相反,人类基因组中大小为100-1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5-15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。DNA双螺旋结构的发现和重组DNA技术、PCR技术的产生促进了分子遗传学的发展。几十年来,人们一直认为基因决定着生命过程中所需要的各种蛋白质,决定着生命体的表型。但随着研究的不断深入,科研人员也发现一些无法解释的现象:马、驴正反交的后代差别较大;同卵双生的两人具有完全相同的基因组,在同样的环境中长大后,他们在性格、健康等方面却会有较大的差异。这些现象并不符合经典遗传学理论预期的结果,提示在某些情况下,基因的碱基序列不发生改变,但生物体的一些表型却可以发生了变化。此外,研究还发现有些特征只是由一个亲本的基因来决定,而源自另一亲本的基因却保持“沉默”。人们对于这样一些现象都无法用经典的遗传学理论去阐明。现在,遗传学中的一个前沿领域:表观遗传学(Epigenetics),为人们提供了解答这类问题的新思路。表观遗传学是研究表观遗传变异的遗传学分支学科。表观遗传变异(epigenetic variation)是指,在基因的DNA序列没有发生改变的情况下,基因功能发生了可遗传的变化,并最终导致了表型的变化。它并不符合孟德尔遗传规律的核内遗传。由此我们可以认为,基因组含有两类遗传信息,一类是传统意义上的遗传信息,即DNA 序列所提供的遗传信息;另一类是表观遗传学信息,它提供了何时、何地、以何种方式去应用遗传信息的指令。

你好,请问核仁显性和基因组印记有什么区别?

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic imprinting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所 致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学 则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变 化等;表观基因组学(epigenomics) 则是在基因组水平上对表观遗传学改变的研究。

可逆性的基因表达是什么意思(表观遗传的一大特点)

所谓表观遗传学,就是不改变基因的序列,通过对基因的修饰来调控基因的表达。所以,基因表达的表观遗传学调控,就是通过各种表观遗传的修饰方式来对基因进行调控。目前,已知的表观遗传现象有:DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。

什么是人类基因组计划和人类表观基因组计划

20世纪90年代开始的“人类基因组计划”由美国科学家提出,后来成为一项国际合作研究,这其中也有我国科学家的参与。人类基因线计划是对人体的30亿对核苷酸全序列进行作图、基因定位并对主要基因功能进行分析,为全面认识和了解人类基因组的结构和功能提供详尽的基础资料。这一计划的完成标志着后基因组学时代的到来。如果说基因组学时代的任务主要是进行各种基因图谱的构建,并最终获得完整的序列信息,那么后基因组时代则是去分析这些序列的功能。对于人类表观基因功能的研究已经成为生物学研究中的一个热点。在众多的后基因组时代的研究中,表观遗传学研究是一个值得关注的领域,而表观基因组学也是人类基因组计划之后,科学家们经常谈论到的几个“组学”之一。那么,什么是表观遗传说呢?我们知道,遗传学是研究遗传和变异的科学。例如,果蝇有红色和白色的眼睛,这是由其基因中特定的DNA序列所决定的。但是,并非所有的遗传现象都是这样简单。例如,遗传上相同的一卵双生的双胞胎从传统遗传学角度看,他们的DNA是完全相同的,那么是什么造成他们的不同呢?这是由于基因上存在着化学修饰。这种化学修饰并不改变DNA序列,但是会影响到基因的表达,而且更重要的是,这种修饰是可以遗传的。人们称之为表观遗传修饰,它可以影响到DNA和将DNA包装成染色质的蛋白质。这些修饰就像交通管理中的红、绿灯一样设在基因组中,告诉基因是否要有活性或处于失活状态。刚才说到的DNA序列相同的双胞胎中存在的那些差异现象就可能是由于他们之间存在着这种表观遗传修饰的改变。表观遗传学就是研究表观修饰的科学,它可定义为:表观遗传学是一门研究没有发生DNA序列变化的可遗传的基因表达改变的科学。常见的表观遗传修饰有:DNA的甲基化和组蛋白的乙酰化等,涉及的研究领域有:DNA甲基化、基因组印记、组蛋白码、RNA介导的基因沉默、癌基因等。其中,基因组印记现象的发现向“中心法则”和达尔文的进化论提出了挑战。“中心法则”说明了遗传信息的传递规律,但并未指出环境对于遗传信息传递影响的分子机制。但是,基因组印记的发现为解释环境的影响,甚至于拉马克的“获得性遗传”提供了比较合理的途径:环境的变化导致了基因的表观修饰,从而改变了基因的表达,造成表型的改变,这种变化发生在生殖细胞中时,则可以遗传给后代。这就为研究者提供了一个环境变化影响遗传基础的分子机制,是很有意义的。

胶质瘤文献1:脑干胶质瘤的整合基因组和表观基因组图谱

标题:The integrated genomic and epigenomic landscape of brainstem glioma 期刊:nature communications 影响因子:14.912 发表时间:2020 摘要 脑干胶质瘤是一组异质性肿瘤,既包括手术切除治愈的良性肿瘤,也包括没有有效治疗的高致死性肿瘤。本文作者对一大组脑干胶质瘤(包括弥漫性固有脑桥胶质瘤)进行了综合研究,包括表观遗传学和基因组分析。在这里,他们根据DNA甲基化数据分为H3-Pons, H3-Medulla, IDH,和PA-like的不同簇,每个簇都与独特的基因组和临床特征相关。H3-PON和-H3-Medulla的大多数肿瘤含有H3F3A突变,但显示出不同的甲基化模式,分别与桥脑或髓质内的解剖定位相关。临床数据显示,这些集群之间的总体生存率存在显著差异,路径分析表明这些样本中存在不同的致癌机制。研究结果表明,整合遗传学和表观遗传学数据有助于更好地理解脑干胶质瘤的发生和分类,并指导未来研究开发新的治疗方法。 背景 脑干胶质瘤是一组起源于中脑、桥脑或髓质的异质性肿瘤。在这些肿瘤中,儿童弥漫性固有桥脑胶质瘤(DIPG)的中位总生存期为9-12个月,由于化疗和放射治疗的不可操作性和耐药性,在过去50年中一直是主要的研究重点。大约80%的儿童DIPG含有影响H3F3A或HIST1H3B/C1的K27M突变。这些K27M突变肿瘤与特别差的预后相关。本文整合了全基因组测序、RNA测序和基于阵列的全基因组甲基化数据分析,以获得这些脑肿瘤分子组成的更全面的图像。 结果 1.患者队列特征 126名患者的肿瘤样本和配对的血液样本。肿瘤部位包括中脑被盖(11/126,8.7%)、顶盖(5/126,4.0%)、桥脑连接(2/126,1.6%)、桥(38/126,30.2%)、小脑中脚(7/126,5.6%)、桥髓(16/126,12.6%)、髓质(42/126,33.3%)和中脑丘脑(5/126,4.0%)。根据WHO分类对肿瘤进行分级,包括8.7%(11/126)WHO I级、41.3%(52/126)WHO II级、31.0%(39/126)WHO III级和19.0%(24/126)WHO IV级肿瘤。最初的组织病理学诊断主要为星形细胞瘤(59,46.8%),其次是少星形细胞瘤(21.4%)、胶质母细胞瘤(19.0%)、毛细胞性星形细胞瘤(PA)(6.3%)、神经节胶质瘤(2.4%)、毛粘液样星形细胞瘤(PMA)(1.6%)、多形性黄色星形细胞瘤(PXA)(0.8%),少突胶质细胞瘤1例(0.8%)。本研究包括的肿瘤的甲基化微阵列(n=123)和RNA测序(RNAseq)(n=75),配对肿瘤和正常(生殖系)对照的全基因组(n=97)和靶向测序(n=21)。 2.甲基化分类显示脑干胶质瘤中不同的H3簇与肿瘤位置相关 利用20000多个探针进行聚类,将样本分成了四类甲基化特征差异的样本。 3.不同甲基化簇的肿瘤的不同的基因组landscape Fig3.每个样本每个兆基数的突变数。b脑系统胶质瘤样本中的临床信息和基因改变。c每个基因突变的频率。 为了识别这个脑干胶质瘤组群中的体细胞遗传变化,在肿瘤样本和匹配血液中都使用了68个常见突变脑肿瘤基因的全基因组测序和靶向测序。H3-Pons和H3-Medulla都富含H3突变,而PPM1D、FGFR1和NF1的突变频率在H3-Medulla中比在H3-Pons中更高(Fig. 4a)。Fig. 4b每个集群的潜在驱动因素和重大的非编码突变 4.基因表达分析揭示了丰富独特的基因组甲基化集群H3-Pons和H3-Medulla。 5.Fusion genes and copy number alterations. 验证了分析中确定的几个复发性融合基因,包括C15orf57-CBX3基因(n = 3)和NTRK2-其他基因(n =6)。Sanger sequencing是为了确认这些样本中的融合基因和特定 breakpoints 。 6.H3-medulla is correlated with better survival than H3-Pons 分析了不同cluster的生存情况。Kaplan-Meier分析显示,根据这四组甲基化聚类进行分层的患者有明显的生存曲线(图6a)。与H3 clusters相比,IDH表现出更长的总体生存期H3-medulla 和H3-Pons,尽管H3和TP53通路突变的基因改变相似,但总体生存趋势明显(Log-rank检验,p < 0.0001)(图6b)。与其他组相比,PA-like病例显示了更好的总长期生存率。 讨论 通过甲基化数据,本文发现脑干胶质瘤可以分为四种主要的甲基化簇:H3- Pons, H3- medulla, IDH和PA-like。作者在图7中总结了这些亚型的综合遗传和临床特征。研究发现H3突变肿瘤存在两个不同的表观遗传亚群,H3- pons和H3- Medulla。这两组患者的生存趋势有显著差异,H3- pons组比H3- medulla的病程更严重。基于RNA-seq的差异表达分析,发现这些肿瘤具有不同的基因表达途径富集,其中h3 -髓质肿瘤富集于免疫应答相关途径,而更侵袭性的H3-Pons肿瘤富集于细胞周期相关途径。尽管这些肿瘤具有相似的突变模式,核心突变(如H3F3A)有共同的改变,但这些表观遗传和表达模式的显著差异可能表明肿瘤微环境的不同来源或影响,需要进一步研究。这些发现表明甲基化状态可能改善脑干胶质瘤的分类,并指导临床决策。 还利用全基因组测序数据建立脑干胶质瘤的突变格局,发现甲基化模式与突变格局密切匹配。在这些基因簇中发现了几个频繁突变的基因,包括H3F3A、HIST1H3B、IDH1、TP53、PPM1D、ATM、ATRX、FGFR1、PIK3CA、NF1、PTEN、PDGFRA和TCF12。 利用来自不同解剖位置的100多个脑干胶质瘤的整合基因组分析,本文展示了脑干肿瘤的分子图谱,以改进肿瘤分类和了解其分子基础,并识别新的潜在治疗靶点,所有这些都是为了改善这些患者的预后。

基因扩增属于表观遗传现象吗

不属于。表观遗传是指基于基因序列不发生改变所导致的基因表达水平变化,如DNA甲基化和染色质构象变化等,基因扩增属于基因突变的一种。遗传属于一种现象,主要是指亲代与子代之间,存在相似的性状,可以是隐形的,也可以是显性的。

表观遗传属于基因重组吗

属于 基因重组其实就是基因结构发生了发生 这也是分子水平的表现——因为从我的理解来说,生物的分子水平就是what(有哪些核苷酸,每种是多少个)+how(核苷

香奈儿是什么关注表观基因学的护肤品

香奈儿智慧紧肤乳霜问世以来,香奈儿护肤研究部门从表观遗传学的最新研究成果撷取灵感,为智慧紧肤系列家族再添新成员:香奈儿智慧紧肤精华液。香奈儿在研发这款乳霜时,发现了能改变DNA中后天形成的肌肤因子,从而改善肌肤状态这是香奈儿第一次根据创新科学「表观遗传学」的突破性研究成果.

男主角每天清理皮肤防止被人发现基因缺陷的电影叫什么

千钧一发 Gattaca (1997)导演: 安德鲁·尼科尔编剧: 安德鲁·尼科尔主演: 伊桑·霍克 / 乌玛·瑟曼 / 裘德·洛 / 艾伦·阿金 / 戈尔·维达尔

研究人员发现了导致男性不育的精子表观基因组缺陷

刮风不减半,下雨更好玩,大家好。这里是专注和大家一起吃瓜的深空小编。今天天气不错,正适合读读最新资讯放松一下。不让大家久等了,下面马上进入正题吧。费城-八对夫妇中有一对很难受孕,其中近四分之一是由于无法解释的男性不育引起的。在过去的十年中,研究已将这种不育与有缺陷的精子联系在一起,这些精子在发育过程中无法从DNA中清除称为组蛋白的蛋白质。但是,这种驱逐的机制以及在精子DNA中发生的机制仍然有争议,也不清楚。现在,Penn Medicine的研究人员显示,使用更新的全基因组DNA测序工具,这些保留的组蛋白的精确遗传位置以及调控它的关键基因。研究结果发表在《发育细胞》上。更进一步,研究人员创建了一个具有突变型Gcn5基因的新小鼠模型,该模型使研究人员可以密切跟踪从精子发育到受精等早期阶段的精子缺陷。这是向前迈出的重要一步,因为它不仅可以使人们更好地了解男性不育症,以及潜在的逆转方式,而且还可以通过自然或通过体外受精将可疑的表观遗传突变从男性传递给胚胎。表观遗传学是DNA中未编码的影响生物体遗传学的因素,在精子和卵的形成中起着重要作用。第一作者Lacey J. Luense博士说:对于无法解释的不育症的男人,医生看来一切正常:精液计数正常,运动能力正常。但是,他们仍然可能在受孕方面遇到问题。高级作者,Shelley L. Berger博士,Daniel S. Och大学细胞与发育生物学和生物学系教授,以及Penn表观遗传学研究所所长。对于持续性问题的一种解释是,组蛋白的位置不正确,这可能会影响精子,进而影响早期发育。现在,我们有了一个非常好的模型来研究当您没有适当地去除精子中的组蛋白时会发生什么。胚胎中的样子。健康的精子会损失90%到95%的组蛋白,它们是染色质中包装DNA并打开和关闭基因的主要蛋白质,并用鱼精蛋白替代,它们是能够将DNA正确包装成精子的较小蛋白。考虑到保留的组蛋白在不育和胚胎发育中的作用,人们对确定基因组位置非常感兴趣,因此有可能将其用于进一步研究和最终治疗。过去的研究对组蛋白的下落产生了矛盾的结果。利用酶促反应精确定位的称为MNase测序的技术已将保留的组蛋白置于重要的基因启动子上。其他使用相同方法的研究发现组蛋白位于DNA重复序列中,并被放置在所谓的基因沙漠中,在那里它们在调节中的作用较小。卢恩斯说:在试图理解这些差异数据方面存在争议。在这项新研究中,我们发现这两个先前描述的模型都是正确的。我们发现了似乎对胚胎发育很重要的基因组蛋白,但我们还在重复元件处发现了组蛋白,需要将其关闭并以防止这些区域在胚胎中表达。研究人员应用了一种称为ATAC测序的技术,一种更精确,更快速的方法,可以在小鼠精子发育的早期和晚期追踪整个基因组独特位点的组蛋白波。ATAC-seq可以识别基因组开放和封闭的部分-在这种情况下,是保留精子组蛋白的区域-然后进行切割并标记DNA,然后对其进行测序。在用突变的Gcn5基因创建的小鼠模型中,研究人员发现这些小鼠的生育力非常低。研究人员还表明,正常小鼠精子中保留的组蛋白与非常早期的胚胎中的组蛋白位置相关,支持了父本组蛋白将表观遗传信息传递给下一代的假说。拥有这种类型的突变体模型为科学家提供了一种工具,可以密切研究突变的精子轨迹的机制,并了解其对胚胎和发育的影响。这也为研究潜在的治疗目标提供了机会。伯杰说:目前,体外受精和其他辅助生殖技术的重担落在了女性身上。即使是男性因素,还是女性必须进行激素注射和手术。现在想象在胚胎发生之前能够应用表观遗传学的治疗方法改变男性中组蛋白和鱼精蛋白的水平吗?这是我们要探索的问题之一,这种模型将使我们朝着这个方向发展。有许多可用的表观遗传药物用于治疗癌症和其他疾病。考虑到它们的机制,用药物治疗精子以增加组蛋白驱逐是探索的一种潜在途径。研究人员说,科学中人类胚胎的局限性导致对不育症以及父亲表观基因组在胚胎发育中的作用缺乏全面研究,这突显了此类研究的重要性。卢恩斯说:可以改变精子表观基因组的因素很多,例如饮食,药物,酒精。我们现在才开始了解它如何影响孩子并影响发育。我们正在进行的这些初步基础研究至关重要,因此我们可以更好地了解是什么驱动了这些表观遗传突变。欲要知晓更多《研究人员发现了导致男性不育的精子表观基因组缺陷》的更多资讯,请持续关注深空的科技资讯栏目,深空小编将持续为您更新更多的科技资讯。王者之心2点击试玩

表观遗传信息是通过基因遗传吗

表观遗传信息不是直接通过基因遗传的。基因遗传是指父母将其基因传递给子代的过程,而表观遗传是指环境因素对基因表达的影响,这些影响可以通过细胞内的化学修饰来传递给后代。这些化学修饰可以影响基因的表达,从而影响细胞和个体的发育和功能。表观遗传信息可以通过DNA甲基化、组蛋白修饰、非编码RNA等方式传递给后代。因此,表观遗传信息是一种不同于基因遗传的遗传方式。

个体特异性功能表观基因组学揭示遗传决定因素,你怎么认为呢?

不清楚

问答:什么是人类基因组计划和人类表观基因组计划

什么是人类基因组计划和人类表观基因组计划20世纪90年代开始的“人类基因组计划”由美国科学家提出,后来成为一项国际合作研究,这其中也有我国科学家的参与。人类基因线计划是对人体的30亿对核苷酸全序列进行作图、基因定位并对主要基因功能进行分析,为全面认识和了解人类基因组的结构和功能提供详尽的基础资料。这一计划的完成标志着后基因组学时代的到来。如果说基因组学时代的任务主要是进行各种基因图谱的构建,并最终获得完整的序列信息,那么后基因组时代则是去分析这些序列的功能。对于人类表观基因功能的研究已经成为生物学研究中的一个热点。在众多的后基因组时代的研究中,表观遗传学研究是一个值得关注的领域,而表观基因组学也是人类基因组计划之后,科学家们经常谈论到的几个“组学”之一。那么,什么是表观遗传说呢?我们知道,遗传学是研究遗传和变异的科学。例如,果蝇有红色和白色的眼睛,这是由其基因中特定的DNA序列所决定的。但是,并非所有的遗传现象都是这样简单。例如,遗传上相同的一卵双生的双胞胎从传统遗传学角度看,他们的DNA是完全相同的,那么是什么造成他们的不同呢?这是由于基因上存在着化学修饰。这种化学修饰并不改变DNA序列,但是会影响到基因的表达,而且更重要的是,这种修饰是可以遗传的。人们称之为表观遗传修饰,它可以影响到DNA和将DNA包装成染色质的蛋白质。这些修饰就像交通管理中的红、绿灯一样设在基因组中,告诉基因是否要有活性或处于失活状态。刚才说到的DNA序列相同的双胞胎中存在的那些差异现象就可能是由于他们之间存在着这种表观遗传修饰的改变。表观遗传学就是研究表观修饰的科学,它可定义为:表观遗传学是一门研究没有发生DNA序列变化的可遗传的基因表达改变的科学。常见的表观遗传修饰有:DNA的甲基化和组蛋白的乙酰化等,涉及的研究领域有:DNA甲基化、基因组印记、组蛋白码、RNA介导的基因沉默、癌基因等。其中,基因组印记现象的发现向“中心法则”和达尔文的进化论提出了挑战。“中心法则”说明了遗传信息的传递规律,但并未指出环境对于遗传信息传递影响的分子机制。但是,基因组印记的发现为解释环境的影响,甚至于拉马克的“获得性遗传”提供了比较合理的途径:环境的变化导致了基因的表观修饰,从而改变了基因的表达,造成表型的改变,这种变化发生在生殖细胞中时,则可以遗传给后代。这就为研究者提供了一个环境变化影响遗传基础的分子机制,是很有意义的。我们不难看出,基因组中的遗传信息可以分为两类:一类是DNA序列所决定的遗传信息,另一类是不包含DNA序列改变的基因组修饰中所包含的遗传信息。表观基因组学也就是在整个基因组的水平上研究表观遗传修饰。在2003年,英国和德国的一些科学家宣布了人类表观基因组计划的实施。在为期五年的研究中,他们打算获得整个人类基因组中DNA甲基化的位点图谱。对于人类基因组计划和人类表观基因组计划的关系,一些科学家认为,人类基因组计划为生命提供了一张蓝图,而人类表观基因组计划研究的成功则可能告诉人们这张蓝图是如何去实施的,也就是说基因是在何时、何地进行表达或不表达,并最终产生一个完整的人体。从人类基因组计划到人类表观基因组计划,人类对于自身的认识不断的加深。这些研究成果不仅有深刻的理论意义,还可以为人类攻克癌症疾病提供线索,无疑也具有重要的应用价值。

转基因稻种有什么危害

我本人是生物学在读博士,下面客观的谈一下转基因水稻,希望对你有帮助。目前,市场上的转基因大米主要是已经获得安全证书但没有批准上市的含有BT63的转基因水稻。BT是一种来自微生物的蛋白,专门杀死鳞翅目的昆虫(比如很多水稻的病虫害的罪魁祸首),但对人体无害(因为人的消化系统跟虫子的不一样,BT进入人体直接彻底分解掉)。而且,这种转基因水稻的BT蛋白主要表达在茎和叶子,在稻米里面几乎没有,而且稻谷磨成精米之后主要是胚乳,这里面的蛋白含量就更少了,BT蛋白的含量就更是微乎其微。另外,对于转基因水稻自身不育,杂交后导致其他水稻不育更是无稽之谈,纯粹忽悠人的。更不可能导致哺乳动物和人的不育。因此,从这个角度讲,转基因大米是无害的。但是,由于转入了外源基因,对水稻本身的基因调控系统可能存在潜在的风险,会不会存在基因漂变,这个基因在偶然的情况下突变后会不会产生新的未知功能的蛋白?如果插入位点附近有转座子,这个基因随着转座子跳跃到其他基因组位置怎么办?等等。另外,在水稻本身的基因调控网络并没有彻底研究清楚之前,贸然转入一个外源基因,会对其他调控网络产生影响?总之,这些风险或潜在的不确定因素使得人们对于转基因水稻存在着由于未知而引起的担忧甚至恐惧。总起来一句话,目前来说,吃转基因大米是无害的,但存在潜在的风险和未知的因素。总之,转基因是大势所趋,不可避免,但现在技术、科研等方面都有待进一步提高,暂时不要吃。

基因在染色体上呈线性排列,线性排列是什么?

“基因在染色体上呈线性排列”并不是说基因的形状是线形的,而是指基因的排列是线性的(注意是“线性”,而不是“线形”)。基因线性排列是指基因是一个接着一个,之间没有重复、倒退、分枝等现象。但是要注意,基因的线性排列是相对的,因为随着现代生物学的发展,人们也发现了重叠基因、跳跃基因等现象的存在。

为什么基因在染色体上呈线性排列

“基因在染色体上呈线性排列”并不是说基因的形状是线形的,而是指基因的排列是线性的(注意是“线性”,而不是“线形”)。基因线性排列是指基因是一个接着一个,之间没有重复、倒退、分枝等现象。但是要注意,基因的线性排列是相对的,因为随着现代生物学的发展,人们也发现了重叠基因、跳跃基因等现象的存在。

等位基因位于同源染色体上的相同位置还是非同原染色体上的不同位置

等位基因是指位于一对同源染色体的相同位置上控制某一性状的不同形态的基因.从定义上来讲,等位基因位于同源染色体上,至少起源于同源染色体.但考虑到染色体变异的个体差异,比如,非同源染色体片段的易位,就可能使等位基因分布到非同源染色体之间.所以,就看你如何理解这个“一定”,是理论上,还是需要考虑染色体变异.

转座子基因是怎么运作的?

转座子是染色体上一段可移动的DNA片段,它可从染色体的一个位置跳到另一个位置。当转座子跳跃而插入到某个功能基因时,就会引起该基因的失活,并诱导产生突变型,而当转座子再次转座或切离这一位点时,失活基因的功能又可得一恢复。遗传分析可确定某基因的突变是否由转座子引起。由转座子引起的突变便可以转座子DNA为探针,从突变株的基因组文库中钓出含该转座子的DNA片段,并获得含有部分突变株DNA序列的克隆,进而以该DNA为探针,筛选野生型的基因组文库,最终得到完整的基因。转座子标签法不但可以通过上述转座突变分离基因,而且当转座子作为外源基因通过农杆菌介导等方法导入植物时,还会由于T-DNA整合到染色体中引起插入突变,并进而分离基因,因此大大提高了分离基因的效率。转座子标签法的主要步骤是:(1)采取农杆菌介导等适当的转化方法把转座子导入目标生物体,(2)转座子在目标生物体内的初步定位(3)转座子插入突变的鉴定及分离(4)转座子在目标生物体内的活动性能检测(5)对转座子插入引起的突变体,利用转座子序列作探针,分离克隆目的基因。如果解决了您的问题,请采纳好评,如有问题请继续追问,O(∩_∩)O谢谢

基因是结构单位和功能单位 这句话对不对捏

这是当年摩尔根的想法,现在已近不这样认为。经典遗传学认为基因是包括功能,突变,交换三位一体的最小的不可分割的基本的遗传单位,既是结构单位又是功能单位。1957,Benzer提出的顺反子假说,已经打破了这个概念。他发现基因内部也可以发生突变和重组,因此基因不是一个结构单位。实际上我们现在已知最小的结构单位是单个核苷酸。至于基因是功能单位,我觉得现在也不好说,特别是“重叠基因”“跳跃基因”这些,你如何解释。总之一句话,把那些经典遗传学上的术语套用到现在分子遗传的语境下面,都是别扭的,不太准确的。

基因位于染色体上,并在染色体上呈线性排列,那什么呈螺旋性排列

螺旋形排列指的是DNA的二级结构,呈螺旋形,而后缠绕在核小体上,扭曲成为染色质。基因的线性排列不是说基因的形状是线形的,而是指基因的排列是线性的。基因线性排列是指基因是一个接着一个,之间没有重复、倒退、分枝等现象。但是要注意,基因的线性排列是相对的,因为随着现代生物学的发展,人们也发现了重叠基因、跳跃基因等现象的存在。

基因在染色体上呈什么排列

螺旋形排列指的是DNA的二级结构,呈螺旋形,而后缠绕在核小体上,扭曲成为染色质。基因的线性排列不是说基因的形状是线形的,而是指基因的排列是线性的。基因线性排列是指基因是一个接着一个,之间没有重复、倒退、分枝等现象。但是要注意,基因的线性排列是相对的,因为随着现代生物学的发展,人们也发现了重叠基因、跳跃基因等现象的存在。

基因是什么?

含特定遗传信息的核苷酸序列,遗传物质的功能单位。除某些病毒基因由核糖核酸(RNA)构成外,多数生物的基因由脱氧核糖核酸(DNA)构成。孟德尔于1866年提出豌豆的相对性状是由遗传因子控制的,并用大写和小写拉丁字母表示具有对性关系的遗传因子。1909年贝特森提出遗传学这个学科名称,并发表了他的著作《孟德尔的遗传原理》,从此,遗传学作为生物学的一个分支学科诞生了。同年,约翰森把控制生物性状又遵循孟德尔定律的遗传因子改称为基因。对基因的认识可概括如下:从化学本质看,基因是遗传物质的功能单位,是有遗传效应的DNA分子片段。从表达方式看,DNA片段中四种脱氧核苷酸的排列顺序包含生物性状的表达方式,即每个基因中特定的核苷酸序列代表着特定的遗传信息,基因中核苷酸序列的改变,将导致特定遗传信息的改变,使生物产生遗传的变异。从结构上看,基因中有两种DNA小片段,即能转录和翻译外显子和能够转录而没有翻译产物的内含子。从原初功能看,基因可分为3种:(1)编码蛋白质的基因。(2)没有翻译产物的基因。(3)不能转录的DNA片段。从存在的位置上看,核基因在染色体上呈线性排列,有一定的座位,但并非皆固定不变,重叠基因和跳跃基因的存在,表明核基因在染色体上的座位是可变的。

染色体与基因的关系?什么叫线性排列?

染色体由DNA 和组蛋白构成,基因是控制生物性状的遗传物质的结构单位和功能单位,是有遗传效应的DNA片段。基因位于染色体上,用定义是基因在染色体上呈线性排列。基因线性排列是指基因是一个接着一个,之间没有重复、倒退、分枝等现象。那么,存在重叠的基因,会不会矛盾?答:基因的线性排列人们是通过连锁互换、基因杂交等现象认识并验证的。但现代生物学的发展,重叠基因、跳跃基因等现象的发现也使人们认识到基因的线性排列是相对的。http://zhidao.baidu.com/question/5648789.html

可以说基因在dna上呈线性排列吗

“线性排列”理解:  基因是具有遗传效应的DNA片段“基因在染色体上呈线性排列”并不是说基因的形状是线形的,而是指基因的排列是线性的(注意是“线性”,而不是“线形”)。基因线性排列是指基因是一个接着一个,之间没有重复、倒退、分枝等现象。但现代生物学的发展,重叠基因、跳跃基因等现象的发现也使人们认识到基因的线性排列是相对的

询一部美国科幻电影(讲有关未来人基因挑选的)?

变种异煞,伊森·霍克主演。英文名: Gattaca 中文名: 戛塔卡 | 变种异煞 | 千钧一发 | 加蒂卡 导 演: ( 安德鲁·尼科 Andrew Niccol ) 主 演: (伊桑·霍克 Ethan Hawke) (乌玛·瑟曼 Uma Thurman) (戈尔·维达尔 Gore Vidal) (山德·贝克利 Xander Berkeley) (简妮·布鲁克 Jayne Brook) (埃利亚斯·考蒂斯 Elias Koteas) 上 映: 1997年10月24日 在不久的未来,通过基因工程加工出生的人才是正常人,而没有这道程序,自然分娩的孩子则被视同“病人”。文森特就是这样一个病人,而他的弟弟安东则是正常人。但文森特却非常想参加由遗传精英组成的戛塔卡公司,因为那样才能参加前往“迪坦"星的太空旅行。他用因事故导致瘫痪的正常人杰罗姆的血样和尿样报名参选,如愿以偿不说,还赢得搭档艾琳的爱情。但一起凶杀案差点让文森特前功尽弃。事实澄清后,文森特遗传上的“缺憾"还是被艾琳知道了。但爱情的力量使艾琳原谅了他,文森特终于飞上了浩翰的太空…… 勾画未来能否成功关键在于真实感,就这一点而言,本片极为成功。那个忧郁未来世界似乎近在眼前。影片有着惊人的预见性,当我们将目光从影片中转回到现实,不难发现:技术的发展正推动着现实世界向那个技术化但剥夺人性的未来发展。唯基因主义——力避这种思想统治世界是摆在我们面前最重要的课题。影片通过一些隐喻性的画面表达出对唯基因主义的批判:杰罗姆拖着毫无知觉的下肢向楼上攀爬,那螺旋状的楼梯不就是人类基因链的幻化吗?文特森作全身清洁的画面多次出现,刚开始还难解其意,但当你突然明白他的目的时,你的心就会隐隐作痛,他试图洗掉的是自然人的“耻辱”,而这“耻辱”来自何方?另外,影片的对白、旁白,以及音乐都颇有特色。

谁发现了“会跳舞的基因”?这其中有哪些故事呢?

巴巴拉·麦克林托克是美国遗传学家,1902出生于美国康涅狄格州,1923年在康乃尔大学农学院获理学学士学位,1927年获植物学博士学位。而后,麦克林托克主要从事玉米遗传学的研究,在玉米中发现了“会跳舞的基因”。她一生未婚,但对玉米可以说是情有独钟。有关玉米染色体遗传变异的许多重大发现(如易位、倒位、缺失、环状染色体、双着丝粒染色体、断裂—融合—桥周期和核仁组织区功能等)都与她有关,她还成功地阐明了脉孢菌减数分裂的全过程。可以说,她以玉米遗传学的研究成果推动和促进了细胞遗传学这一遗传学分支学科的建立。但是,真正使她名垂科学史册的却是她在玉米中对可移动基因——转座基因(俗称“会跳舞的基因”)的研究。基因在染色体上呈现线性排列,基因与基因之间的距离非常稳定。常规的交换和重组只发生在等位基因之间,并不扰乱这种距离。在显微镜下可见的、发生频率非常稀少的染色体倒位和相互易位等畸变才会改变基因的位置。可是,麦克林托克竟然发现单个的基因会跳起舞来:从染色体的一个位置跳到另一个位置,甚至从一条染色体跳到另一条染色体上。麦克林托克称这种能跳动的基因为“转座因子”(目前通称“转座子”)。尽管“转座基因”的概念她在1938年就已提出,但是这一调控系统却是她从1944年至1950年整整花了6年时间才完全弄清楚的。麦克林托克理论的影响是非常深远的,她发现能跳动的控制因子,可以调控玉米籽粒颜色基因的活动,这是生物学史上首次提出的基因调控模型,对后来莫诺和雅可布等提出操纵子学说提供了启发。转座因子的跳动和作用控制着结构基因的活动,造成不同的细胞内基因活性状态的差异,有可能为发育和分化研究提供新线索,说不定癌细胞的产生也与转座因子有关。转座因子能够从一段染色体中跑出来,再嵌入到另一段染色体中去,现代的DNA重组和基因工程技术也从这里得到过启发。转座子的确是在内切酶的作用下,从一段染色体上被切下来,然后在连接酶的作用下再嵌入到另一切口中去的。

什么是基因转座子?

转座因子或转座子是一类在很多后生动物中(包括线虫、昆虫和人)发现的可移动的遗传因子。 一段DNA顺序可以从原位上单独复制或断裂下来,环化后插入另一位点,并对其后的基因起调控作用,此过程称转座。这段序列称跳跃基因或转座子,可分插入序列(Is因子),转座(Tn),转座phage。转座子是一类在细菌的染色体,质粒或噬菌体之间自行移动的遗传成分,是基因组中一段特异的具有转位特性的独立的DNA序列.  转座子是存在于染色体DNA上可自主复制和位移的基本单位。最简单的转座子不含有任何宿主基因而常被称为插入序列(IS),它们是细菌染色体或质粒DNA的正常组成部分  转座(因)子是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。

什么是跳跃基因?

跳跃基因,又称“转座子”或“转位子”,它们是一些能将自己“复制、粘贴”到基因组中新地方的基因片段,能够改变全基因组序列的活动。跳跃基因 - 主要特点1、跳跃基因能够进行自我复制,并能在生物染色体间移动。它们具有扰乱被介入基因组成结构的潜在可能性,并被认为是导致生物基因发生渐变(有时候是突变),并最终促使生物进化的根本原因。2、虽然像酵母这样的生物只有几十种跳跃基因,但哺乳动物体内一般却含有几十万数量的跳跃基因DNA,因此很难判断在哪里或是什么时候,甚至是否发生了跳跃。   3、人类的跳跃基因一般处于沉寂状态,因为它们所包含的指令很难被细胞阅读。于是科研人员把这些跳跃基因的指令用一些细胞愿意接受的指令替代,从而可以制造出一种非常活跃的人造跳跃基因。   4、科研人员发现,哺乳动物的细胞很好地接受了这种人造跳跃基因,并吸收了它所携带的信息,从而帮助这种基因跳跃。在一个对跳跃基因活性进行的标准测试中,人造跳跃基因跳跃的次数是自然跳跃基因的200倍。 跳跃基因 - 主要作用 1、利用跳跃基因构建的新非病毒基因传递系统,提供了一种比病毒更安全、比质粒更有效的基因治疗方法。[3] 2、已经证实以转座子为载体的技术能够靶向没有癌基因的基因组区域。而且与质粒相比的一个关键的优势就是跳跃基因技术能够更有效地使引入动物细胞的基因进行稳定表达。   3、为了利用跳跃基因,研究人员使用了一种能够将目标DNA序列从一个DNA分子转移到细胞内的另外一个DNA分子的酶。这种酶接着能将关闭以终止基因的跳跃。

如何确定一个蛋白质基因在翻译中经历了跳跃

先确定这段DNA,将其ORF对应的氨基酸与已生成的蛋白质的氨基酸作比对,如果长度不一,就很可能发生了跳跃。

一个基因缺陷的人实现航天梦想的科幻片,片名?

  变种异煞  港译:变种异煞/台译:千钧一发/其他:加特卡  片 名 Gattaca  年 代 1997  片 长 106 Min  导 演 安德鲁·尼库尔 Andrew Niccol  主 演 伊桑·霍克 Ethan Hawke  乌玛·瑟曼 Uma Thurman  裘德·洛 Jude Law  戈尔·维达尔 Gore Vidal  埃克桑达·伯克利 Xander Berkeley  伊莱亚斯·科泰斯 Elias Koteas  阿兰·阿金 Alan Arkin  欧内斯特·博格宁 Ernest Borgnine  劳恩·迪恩 Loren Dean  简 介  一部有着惊人预见性的关于基因与遗传的科幻惊险成功之作。由安德鲁·尼科(《楚门的世界》、《西蒙妮》)执导。  剧情讲述在不久的未来,通过基因工程加工出生的人才是正常人,而没有这道程序,自然分娩的孩子则被视同“病人"。文森特就是这样一个病人,而他的弟弟安东则是正常人。但文森特却非常想参加由遗传精英组成的戛塔卡公司,因为那样才能参加前往“迪坦"星的太空旅行。他用因事故导致瘫痪的正常人杰罗姆的血样和尿样报名参选,如愿以偿不说,还赢得搭档艾琳的爱情。但一起凶杀案差点让文森特前功尽弃。事实澄清后,文森特遗传上的“缺憾"还是被艾琳知道了。但爱情的力量使艾琳原谅了他,文森特终于飞上了浩翰的太空……

:基因有哪些存在形式、真核生物DNA序列有哪些种类

真核生物基因组存在大量的非编码序列。包括内含子和外显子、.基因家族和假真核生物的DNA与原核生物的DNA相比,真核生物的DNA编码区有外显子与内含子

一部关于基因的电影 有兄弟两个人 哥哥是普通人通过努力成为航天的 弟弟是完美的基因人。忘记叫什么名字啦

Gattaca - 千钧一发这个电影汇集了裘德洛(Jude Law) 乌玛-瑟曼(Uma Thurman) 伊桑·霍克(Ethan Hawke) 这三个现今大牌明星

转基因作物基因间的相互作用有没有可能产生有害的蛋白质?

转基因相当于基因重组,但是并不是导入了这个基因就一定能表达出来,同时一个基因也可能与另一个基因相互作用。假设一个转基因作物导入的目的基因与目的作物本身的基因产生相互作用,目的基因一样能表达,但是同时有可能产生一种本身无法产生的蛋白质。或者在酶切的时候,多余部分的DNA链在目的作物细胞内也会表达。那么这种蛋白质或者肽链就有一定可能是目前所未知的,假设这种蛋白质会对人体极小的危害,但是长期食用会导致某些严重慢性病的发生,这样的安全问题是不是按目前的技术根本无法侦测到,但是却仍旧是有可能发生的吧当然 有人可能会说蛋白质进入人体就消化了,但是若这种蛋白是酶,就算被消化也有可能产生有害物质残留在人体内这种如果是只有在长期食用的情况下才会发生严重的疾病的话,也是无法在短时间内侦测的,就算长时间也不一定能找到源头再说高温煮沸蛋白质变性 且不说部分蛋白即使100℃也具有一定活性 碱基链链在高温下氢键会被破坏 但是一降温就又恢复原样了,因子或转座子是一类在很多后生动物中(包括线虫、昆虫和人)发现的可移动的遗传因子。 一段DNA顺序可以从原位上单独复制或断裂下来,环化后插入另一位点,并对其后的基因起调控作用,此过程称转座。这段序列称跳跃基因或转座子,可分插入序列(Is因子),转座(Tn),转座phage。详细baidu、google;简单理解,在特定情况下,改造的基因有可能会“跳”到另外的位点,最后导致不可预知的后果。

有一部外国影片.先天基因差.后天段练成为宇航员

千钧一发 Gattaca (1997)  未来的世界,科技的力量胜过一切,基因决定命运,几乎成为金科玉律。不幸文森特(伊桑u2022霍克 Ethan Hawke 饰)是一个基因不良的人,出生以来就决定了他近视和心脏病的缺陷,他只能活到30岁。于是父母为文森特增添了一个有着优良基因的弟弟。 文森特的梦想是漫游太空,然而恶劣的基因令他无法圆梦,直到他遇到了太空中心的杰罗姆(裘德u2022洛 Jude Law 饰)。杰罗姆有优秀的基因,却在一次意外中半身瘫痪。二人决定调换身份,文森特千方百计隐藏自己的基因信息,每天都认真清洗掉自己的皮屑毛发,不暴露任何蛛丝马迹。另一方面,杰罗姆帮他筹备进入太空前需要检查的基因物品。事情进展得非常顺利,然而一桩谋杀案和一根睫毛,让事情节外生枝。 裘德洛 另外一部科幻片也值得一看:感官游戏 eXistenZ又名: X接触 / X接触来自异世界

看过一部电影,名字忘记了,男主角叫文森特什么的。剧情讲的是未来世界人类靠基因是否优秀来确定人的地位

《千钧一发》《千钧一发》是1997年美国科幻电影,《Gattaca》由伊桑霍克、乌玛瑟曼、裘德洛主演。

基因的转座有什么特征?

基因的转座有以下特征:(1)基因整合只能在基因组的某一特定部位发生,而基因转座则可在不同区域转移或跳跃,即异源重组;(2)插入序列不带有编码蛋白质的基因;(3)转座子含有终止密码子,因此可以钝化(即使基因的转录过早地终止)其插入部位附近基因的功能;(4)能使“沉默”了的基因重新表达。转座子不仅存在于微生物中,而且在酵母、果蝇等真核生物中也有。转座基因学说是对基因理论的重要补充。

基因概念的发展?

(一)遗传因子 基因的最初概念来自孟德尔的“遗传因子”,认为生物性状的遗传是由遗传因子所控制的,性状本身是不能遗传的,被遗传的是遗传因子。1909年,丹麦学者W.L.Johannsen提出了“基因”(gene)一词,代替了孟德尔的遗传因子。 (二)基因是一个遗传、交换、突变的单位 1910年摩尔根等通过果蝇杂交实验表明,染色体在细胞分裂时的行为与基因行为一致,从而证明基因位于染色体上,并呈直线排列,提出了遗传学的连锁交换规律,证明了性别决定是受染色体支配的。根据Morgan的“基因论”,遗传就是位于染色体上的粒子单位——基因的传递。每一个基因是一个物质实体,它具有以下含义:1.可以复制,由一代传至另一代,在现象型形成上有一特定功能;2.不能由交换再行区分;3.可突变成一改变了的状态。 (三)基因是不可分割的功能单位 1944年Avery等人我生物化学方法证明了DNA就是遗传物质。G W.Beadle和E.L.Tatum通过对粗糙脉孢菌营养缺陷型的研究,提出了一个基因一个酶的假说。1957年S.Benzer用大肠杆菌T4噬菌体作为材料,经过突变型的互补试验,提出了基因的顺反子(cistor)概念。一个顺反子即是一个为多肽编码的DNA片段,它的内部可以发生突变或重组,即包含着许多突变子和重组子。 (六)基因是一个转录单位 50年代初,美国遗传学家B.McClintock在玉米的控制因子的研究中已经指出某些遗传因子是可以转移位置的。后来的研究发现,在原核生物和真核生物中均发现有基因转移的现象,并将这些可转移位置的成分称为跳跃基因(jumping gene),亦称转座因子(transposon element)。此外,传统的观点认为,一个结构基因是一段连续的DNA序列,70年代后期发现绝大多数真核生物基因都是不连续的,其中被一些不编码序列所隔开,故称为断裂基因。1978年,在噬菌体中还发现了重叠基因,一个基因序列可被包含在另一个基因中,两个基因序列可能部分重叠。1985年Gilbert提出基因是一个转录单位。它由在成熟信使中要失掉的内含子于被表达的外显子交替组成。实际上基因是一个以不同来源的外显子为构件的嵌合体,处于沉默的DNA基质(内含子)中。近代生物学把基因定义为DNA分子的一个节段,把基因看成DNA专有的功能组分。1999年Wickner提出:“如果一个遗传因子是一种朊病毒,它就是一种有蛋白质组成的基因。”朊病毒是一种蛋白质病毒,它的自我繁殖是以其自身为模板对其同一基因所编码的正常蛋白质的翻译后修饰作用,使后者变成和自己同一构象。后来在酵母和丝状真菌中发现了prion形式的蛋白质,这些蛋白与早期发现的朊病毒的明显不同之处在于它们已经不是传染性的病毒,而是细胞质内的一种能影响细胞的特异性||性状的、可复制的遗传因子。因此,把它们叫做病毒已经不合适了,而是细胞中的一种非孟德尔式的遗传因子。另外,许多试验事实都证明组蛋白的共价修饰,诸如甲基化、乙酰化、磷酸化等在组蛋白上是以组合形式进行的,Allis把这种组合形式称为“组蛋白密码”。这些化学修饰改变了染色质的结构,使DNA(基因)的转录打开或者关闭,对基因的表达进行调控。这是一种基于组蛋白修饰而调控基因开或关的后成遗传现象,它的建立不需DNA突变。Allis认为:“组蛋白氨基末端修饰的组合性质解释了‘组蛋白密码"的存在,它极大地扩展了潜在的遗传密码信息。”组蛋白密码的提出告诉我们,作为功能单位的基因可能是由DNA与蛋白质组合而成。基因可能是DNA与蛋白质的结合体。 因此,当今分子生物学认为:基因是一段制造功能产物的完整的染色体片段。

举例阐述基因或基因组结构

分子遗传学关于基因的概念 要点如下: 1、基因位于DNA分子上,一个基因相当于DNA分子上的一个区段。 2、每一个基因都携带有特殊的遗传信息,这些遗传信息或者被转录为RNA并进而翻译为多肽;或者只被转录为RNA即可行使功能;或者对其他基因的活动起调控作用。 3、基因在结构上并不是不可分割的最小单位,一个基因还可以划分为若干个小单位: ①突变单位(突变子 muton):发生突变的最小单位。最小的突变子是一个核苷酸对。 ②重组单位(重组子 recon):可交换的最小单位。最小的重组单位也可以只是一个核苷酸对。 ③功能单位(顺反子cistron,又叫作用子):顺反子是基因中指导一条多肽链的合成DNA序列,平均大小约为500-1500bp。 顺反子是与经典概念的功能单位相当的概念,表示基因是一个在遗传功能上起作用的最小单位。 随着分子遗传学的不断发展,关于基因的认识也在不断地发展,是基因的概念有了新的内容。 结构基因(structural gene):可以编码一个RNA分子或一条多肽链的一段DNA序列。 调控基因(regulator gene):其产物参与调控其他结构基因表达的基因。 重叠基因(overlapping gene):同一个DNA序列可以参与编码两个以上的RNA或多肽链。 不连续基因(splitting gene):在一个基因内,编码序列(exon)与非编码序列(intron)相间排列。 跳跃基因(jumping gene):可以在染色体上移动位置的基因。 假基因(pseudogene):已经伤失功能,但是结构还存在的DNA序列。

有谁知道转座子是干嘛的?人的基因组中的转座子的作用?它可以自主复制吗?

转座子可以复制自身或者自身自由穿插在基因组内,有人认为它是病毒基因组的残留,也有认为是病毒的始祖(有学说认为病毒是细胞甩出去的东西)。有认为转座子会引起肿瘤,比如插入抑癌基因使其失活等等。人类细胞内的转座子在500万年前已全部失活,所以不用担心。自身具有转座酶的转座子可以进行自主复制和穿插,而失去转座酶的转座子需要依靠其他部分产生的转座酶进行转座,当然,也有转座子,其序列在漫长的进化过程中突变着突变着就失活了。

求一部科幻电影名字,只记得男主人公战斗中受伤,女朋友为了救他,给他注入了基因,开枪效果像CS。

桑霍克、乌玛瑟曼、裘德洛主演的《千钧一发》,英文名:Gattaca剧情:未来的世界,科技的力量胜过一切,基因决定命运,几乎成为金科玉律。不幸文森特(伊桑?霍克 Ethan Hawke 饰)是一个基因不良的人,出生以来就决定了他近视和心脏病的缺陷,他只能活到30岁。于是父母为文森特增添了一个有着优良基因的弟弟。文森特的梦想是漫游太空,然而恶劣的基因令他无法圆梦,直到他遇到了太空中心的杰罗姆(裘德?洛 Jude Law 饰)。杰罗姆有优秀的基因,却在一次意外中半身瘫痪。二人决定调换身份,文森特千方百计隐藏自己的基因信息,每天都认真清洗掉自己的皮屑毛发,不暴露任何蛛丝马迹。另一方面,杰罗姆帮他筹备进入太空前需要检查的基因物品。事情进展得非常顺利,然而一桩谋杀案和一根睫毛,让事情节外生枝。

什么是转座子?转座子标签法转移基因的原理是什么?

转座因子或转座子是一类在很多后生动物中(包括线虫、昆虫和人)发现的可移动的遗传因子。 一段DNA顺序可以从原位上单独复制或断裂下来,环化后插入另一位点,并对其后的基因起调控作用,此过程称转座。这段序列称跳跃基因或转座子,可分插入序列(Is因子),转座(Tn),转座phage。 转座子是一类在细菌的染色体,质粒或噬菌体之间自行移动的遗传成分,是基因组中一段特异的具有转位特性的独立的DNA序列. 转拙子是存在于染色体DNA上可自主复制和位移的基本单位。最简单的转座子不含又任何宿主基因而常被称为插入序列(IS),它们是细菌染色体或质粒DNA的正常组成部分 转座(因)子是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。 复合型的转座因子称为转座子(trans—poson,Tn)。这种转座因子带有同转座无关的一些基因,它的两端就是IS,构成了“左臂”和“右臂”。两个“臂”可以是正向重复,也可以是反向重复。这些两端的重复序列可以作为Tn的一部分随同Tn转座,也可以单独作为IS而转座。 转座子是细菌细胞里发现的一种复合型转座因子,这种转座因子带有同转座无关的一些基因,如抗药性基因;它的两端就是IS,构成了“左臂”和“右臂”。两个“臂”可以是正向重复,也可以是反向重复。这种复合型的转座因子称为转座子(trans—poson,Tn)。这些两端的重复序列可以作为Tn的一部分随同Tn转座,也可以单独作为IS而转座。Tn两端的IS有的是完全相同的,有的则有差别。当两端的IS完全相同时,每一个IS都可使转座子转座;当两端是不同的IS时,则转座子的转座取决于其中的一个IS。Tn有抗生素的抗性基因,Tn很容易从细菌染色体转座到噬菌体基因组或是接合型的质粒。因此,Tn可以很快地传播到其他细菌细胞,这是自然界中细菌产生抗药性的重要来源。 两个相邻的IS可以使处于它们中间的DNA移动,同时也可制造出新的转座子。Tn10的两端是两个取向相反的IS1O,中间有抗四环素的抗性基因(TetR),当TnlO整合在一个环状DNA分子中间时,就可以产生新的转座子。当转座子转座插人宿主DNA时,在插入处产生正向重复序列,其过程是这样的:先是在靶DNA插入处产生交错的切口,使靶DNA产生两个突出的单链末端,然后转座子同单链连接,留下的缺口补平,最后就在转座子插入处生成了宿主DNA的正向重复。已知的转座因子的转座途径有两种:复制转座和非复制转座。 1.复制转座(replicative transposition) 转座因子在转座期间先复制一份拷贝,而后拷贝转座到新的位置,在原先的位置上仍然保留原来的转座因子。复制转座有转座酶(transposase)和解离酶(resolvase)的参与。转座酶作用于原来的转座因子的末端,解离酶则作用于复制的拷贝。TnA是复制转座的例子。 2.非复制转座(non-replicative transposition) 转座因子直接从原来位置上转座插入新的位置,并留在插入位置上,这种转座只需转座酶的作用。非复制转座的结果是在原来的位置上丢失了转座因子,而在插入位置上增加了转座因子。这可造成表型的变化。 保留转座(conservative transposition)也是非复制转座的一种类型。其特点是转座因子的切离和插人类似于入噬菌体的整合作用,所用的转座酶也是属于入整合酶(integrase)家族。出现这种转座的转座因子都比较大,而且转座的往往不只是转座因子自身,而是连同宿主的一部分DNA一起转座。 非复制转座可以是直接从供体分子的转座子两端产生双链断裂,使整个转座子释放出来,然后在受体分子上产生的交错接口处插入,这是“切割与黏接”(“cut and paste")的方式。另一种方式是在转座子分子同受体分子之间形成一种交换结构(crossover structure),受体分子上产生交错的单链缺口,与酶切后产生的转座子单链游离末端连接,并在插入位点上产生正向重复序列;最 后,由此生成的交换结构经产生缺口(nick)而使转座子转座在受体分子。供体DNA分子上留下双链断裂,结果 或是供体分子被降解,或是被DNA修复系统识别而得到修复。 在复制转座过程中,转座和切离是两个独立事件。先是由转座酶分别切割转座子的供体和受体DNA分子。转座子的末端与受体DNA分子连接,并将转座子复制一份拷贝,由此生成的中间体即共整合体(cointegrat,)有转座子的两份拷贝。然后在转座子的两份拷贝间发生类似同源重组的反应,在解离酶的作用下,供体分子同受体分子分开,并且各带一份转座子拷贝。同时受体分子的靶位点序列也重复了一份拷贝。 酵母接合型的相互转换也是复制转座所产生。酿酒酵母(Saccharomvcescerf—visiae)的生命周期中有双倍体细胞和单倍体细胞两种类型。单倍体细胞则有a型和α型两种接合型(mating type)。单倍体酵母是a型还是α型,由单个基因座MAT所决定。MAT有一对等位基因MAT。和MATα,在同宗接合(homothallic)的酵母菌株中,酵母菌十分频繁地转换其接合型,即从a转换成α,然后在下一代又转换为a。这种转换和回复的频率已远远高于通常的自发突变,表明这不是通常的突变机制。现在已经知道,在MAT基因座两侧有两个基因带有MATα和ATα的拷贝,这就是HMLα和HMRα基因。这两个基因贮存了两种接合型等位基因,当转座给MAT基因座时就发生了接合型的转换。因此,MAT基因座是通过转座而转换其接合型的。MAT基因座的序列转换成另一个基因的序列,这种机制称为基因转换(gene convertion)。 1951年Barbara Mclintock首先在玉米中发现了控制元件,后来命名为转座元件或转座子(transposon)。转座子是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。这一元件不仅可用于分析生物遗传进化上分子作用引起的一些现象,还为基因工程和分子生物学研究提供了强有力的工具,可以在不了解基因产物的生化性质和表达模式的情况下,分离克隆植物基因,即转座子标签(transposon tagging),又称为转座子示踪法。其原理是利用转座子的插入造成基因突变,以转座子序列为基础,从突变株的基因文库中筛选出带有此转座子的克隆,它必定含有与转座子序列相邻的突变基因的部分序列,再利用这部分序列从野生型基因文库中获得完整的基因〔1〕。1984年,用转座子标签法首先在玉米中分离了bronze基因,该基因编码了玉米花色素合成途径的关键酶——UDP-葡萄糖类黄3-O-葡萄糖基转移酶〔2〕。此后还利用转座子标签技术分离了许多植物基因。 1 转座子概述 转座子可以分为两大类:以DNA-DNA方式转座的转座子和反转录转座子(retrotransposon)。第一类转座子可以通过DNA复制或直接切除两种方式获得可移片段,重新插入基因组DNA中。根据转座的自主性,这类元件又可以分为自主转座元件和非自主转座元件,前者本身能够编码转座酶而进行转座,后者则需在自主元件存在时方可转座,以玉米的Ac/Ds体系为例,Ac(Activator)属于自主元件,Ds(Dissociation)则是非自主元件,必需在Ac元件存在下才能转座〔1〕。第二类转座子又称为返座元(retroposon)〔3〕,是近年新发现的由RNA介导转座的转座元件,在结构和复制上与反转录病毒(retrovirus)类似,只是没有病毒感染必须的env基因,它通过转录合成mRNA,再逆转录合成新的元件整合到基因组中完成转座,每转座1次拷贝数就会增加1份,因此它是目前所知高等植物中数量最大的一类可活动遗传成分。目前共发现了3种类型反转录转座子:Tyl-copia类,Ty3-gypsy类和LINE(long interspersed nuclear Clements)类转座子,前两类是具有长末端重复的转座子,LINE类转座子没有长末端重复。高等植物中的反转录转座子主要属于Tyl-copia类,分布十分广泛,几乎覆盖了所有高等植物种类〔4〕。 克隆转座子主要有两条途径:其一,利用抗体识别或cDNA探针从野生型植株中获得表达量降低或不稳定基因座的序列,再从突变体中分离得到相应的转座子:其二是根据序列同源性,在基因组的不同位置分离同一家族的转座子成员。目前已经克隆的植物转座子约156种(来自Genbank的报告),表1列出了常用于转座子标签的一些植物转座子。 表1 常用植物转座子标签的转座子 名 称 来 源 类 型 Ac(Activator) 玉米 Ⅰ类自主型转座子 Ds(Dissociation) 玉米 Ⅰ类非自主型转座子 Mu(Mutator) 玉米 Ⅰ类自主型转座子 Spm/En 玉米 Ⅰ类自主型转座子 Tam 金鱼草 Ⅰ类自主型转座子 dTphl 拟南芥 Ⅰ类自主型转座子 Tos17 水稻 反转录转座子 2 转座子标签的转座元件体系 1984年首次用转座子标签法克隆了玉米bronze基因之后,在其它高等植物中一直没有发现象Ac/Ds、Spm/En类转座活性很高的转座子,因此在很长一段时间内都是利用玉米和金鱼草中转座性质较清楚的内源自主性转座子。B.Baker等人首先证明了玉米的Ac/Ds转座元件在转基因烟草中有作用,此后又发现Ac/Ds在其他许多物种中如拟南芥、蕃茄、矮牵牛、亚麻、马铃薯、黄豆和水稻中都有活性〔5〕。1993年用Ac元件从矮牵牛中成功地克隆了一个花色素苷合成基因,开创了用外源转座子在异源宿主中分离克隆基因的先河〔6〕。 目前植物基因工程常用的转座元件体系分为天然和人工改造两大类,前者包括自主元件单因子体系和反转录转座元件体系,后者主要是人工改造的双元因子体系。 2.1 自主转座元件单因子体系:自主转座元件单因子体系利用了转座活性较高的自主转座子如玉米的Mu转座子、Ac转座子和矮牵牛的dTpH1转座子,已经克隆了拟南芥白化病基因(albino)、雄性育性基因、蕃茄的抗病基因Cf-9等基因〔7〕。这一转座体系具有两大优点:一是在植物中插入拷贝数高,如Mu元件每个基因组平均拷贝数可达100以上,因此可以在大田自然培养条件下获得大量突变个体;二是只需筛选相对较少量的植株就能标记所有基因。然而,这一体系也存在一些问题:自主转座元件高频率的转座有可能切除转座酶而留下一些序列导致永久突变;自主转座在体细胞内可能造成基因功能自动恢复;自主元件切除留下一些片段使转座元件不能与突变表型共分离,这些都增加了筛选克隆的困难,阻碍了转座子标签的推广〔8〕。 2.2 反转录转座元件体系:虽然反转录转座子作为一个整体,在整个植物基因组中拷贝数很多甚至是最多的一类成分,但它包括了许多亚群,有的亚群仅由一个或几个拷贝组成,这些以单拷贝或低拷贝方式存在的成分比较容易识别,同时实验证明反转录转座子的转座活动在组织培养中能被激活,因此它们是一类很有潜力的转座子标签体系。1996年Hirchick等人就利用水稻反转录转座子Tos17建立了水稻基因敲除体系(gene knock-out system),Tos17可以在组织培养过程中被激活,插入水稻基因组中,使基因失效〔3〕。1999年Sato等利用这一体系分离了6个水稻kn1—型同源异型框基因,发现了引起水稻植株矮化的突变基因OSH15〔9〕。 最近Lucas等将烟草中的有活性的Ty1-copia类反转录转座子导入拟南芥〔8〕,发现它在后者中进行了转座,新的拷贝插入到其它基因的可读框中。之后又相继将它导入蕃茄和水稻中,在新的宿主中进行了表达,而且宿主的内源反转录转座子不影响新导入转座子的转座,说明反转录转座子并不受植物种类差异的影响。双子叶植物中的反转录转座子不仅可在异源双子叶植物中转座,也可以在单子叶植物中表达,这为反转录转座子用于转座子标签提供了更广阔的前景。 2.3 双元转座子体系:双元转座子体系由一个非自主转座元件和一个改造过后自身不能转座的自主转座元件组成,后者仍编码转座酶引起前者的转座,分别构建含两个元件的植物表达载体,转化植物培育了分别含有非自主性转座子和转座酶的株系,再通过转基因植株杂交,在F2代就能获得大量由转座子引起的突变体。Shimamoto等培育了含Ds转座元件和含Ac转座元件转座酶(AcTPase)基因的两种水稻株系(图1),通过杂交筛选得到了大量矮化、花期改变的突变体〔10〕。 图1 含有Ds元件和Ac转座酶的 双元转座体系的构建 A:缺失Ac元件的部分片段获得非自主性转座子Ds元件,加上35S启动子和潮霉素抗性基因。 B:构建编码转座酶的转座因子,Ac元件的转座酶片段与35S启动子相连。 为了减少筛选子代突变体的工作量,可以在构建的转座元件上插入用于筛选转化和切除的标记基因如抗生素抗性基因、除草剂抗性基因等。Knapp等构建了带潮霉素磷酸转移酶基因的Ds元件DsHPT,并将该元件插入除草剂抗性基因(ABR)中(图2),潮霉素抗性基因用于筛选含Ds元件的转基因植株,BAR基因用于筛选Ds从T-DNA位点切除的转基因植株〔7〕。 图2 Ds元件的改造 注:BL T-DNA左边界区; BR T-DNA左边界区; Pnos胭脂碱合成酶启动子;HPT潮霉素磷酸转移酶基因; BAR抗除草剂基因;P35S烟草花叶病毒35S启动子; NPTII新霉素磷酸转移酶II。 3 标签的策略 根据利用转座子标签的目的不同,可以采取两种方式的标签策略:定向标签和随机标签。 3.1 定向标签(directed tagging):定向标签是用一个稳定遗传的稳性纯合体与一个带有活跃转座元件的显性纯合体杂交,杂交后代可能产生3种表型:跟显性亲本表型一致,新的表型与隐性亲本表型一致,后两种子代是由于转座子插入了显性等位基因座。这一策略可以在F1代直接“标签”感兴趣的目的基因〔11〕。 3.2 随机标签(random tagging):随机标签是将带有功能性转位因子的显性纯合系植株与不带转位因子的同种植株杂交,产生的F1子代再自交,在F2代中就可筛选到转座子随机插入引起突变表型的突变株,这一策略的目的是为了发现、鉴定带有多种不同特征的新突变〔11〕。 4 标签基因的分离和克隆 4.1 Southern-based分离法:这是转座子标签分离克隆“标签”基因的常用方法,它是通过杂交得到纯合突变株,构建该类突变株的核基因文库,以转座子片作作为探针从该基因文库中筛选中同源的转座子,因为转座子已插入目的基因中,于是就筛选得到含突变基因的片段,再将这一片段亚克隆标记作为探针,去筛选另一个正常植株的核基因文库,获得完整的正常目的基因。为了增加转座子插入特定基因的机率,需要采用高效转座子体系,如玉米的Mu元件,但它的标签群在一个基因组内可达100个拷贝,这又给Southern-based分离法分析突变现象,鉴定特定插入序列的工作带来了相当大的工作量,只能通过多代与含低拷贝数元件的株系杂交来减少每一植株中插入序列的数量〔12〕。 4.2 PCR-based分离法 4.2.1 反向PCR分离法:Souer等1995年设计了将反向PCR(Inverse polymerase chain reaction, IPCR)和差别筛选结合的方法,从矮牵牛W138中分离了高效转座子标签dTph1标记的基因(图3)〔13〕。W138中含有200个拷贝以上的内源dTph1元件,自交后代形成大量不稳定的突变本,包括花色素合成、植物和花发育、育性或叶绿素合成等方面的突变体,用常规方法分离新基因需花大量的时间将突变株与含低拷贝数转座元件的株系多次杂交。Souer等利用反向PCR扩增突变体和野生型的dTph侧翼序列,其中突变体的扩增产物克隆到M13mp18载体上,感染细菌,再以突变体和野生型的扩增片段为探针与噬菌斑复制滤膜杂交,筛选差示克隆,分离dTph1插入的侧翼片段作为探针,再从野生型基因文库中筛选基因。反向PCR和差别筛选结合的方法不仅仅可以用于分离高拷贝转座子元件标签的基因,而且可以用于克隆基它植物轻微变异株中被标签基因,加速低拷贝转座元件标签基因的分离。此外,采用嵌套的反向PCR引物可以提高有效扩增dTph1侧翼序列的产量〔13〕。 图3 特异性克隆突变植株转座元件侧翼序列 4.2.2 TAIL-PCR分离法:刘耀光等设计热不对称交错PCR方法,(Thermal asymmetric interla ced PCR TAIL-PCR)最初用于YAC和Pl载体克隆基因的分离,后又用于转座子标签基因的分离,取得了成功〔14〕。其基本原理是利用多个嵌套的转座子插入序列特异性引物和一个短的随机简并引物(Arbitrary degenerate primer AD)组合,以突变体基因组DNA为模板,进行多次PCR反应,特异性引物的Tm值一般在57-62℃间,而AD引物的Tm值则在44-46℃范围,采取高温特异性扩增与低温随机扩增相间进行的方法,最后获得转座子插入侧翼区特异性扩增片段,可作为探针,筛选分离基因(图4)。 图4 TAIL-PCR特异性扩增插入位点 侧翼基因组序列流程图 TAIL-PCR分离法可以降低非侧翼区特异产物的背景,同时它可以产生2个以上嵌套的目的片段,与其它方法相比TAIL-PCR方法具有简便、特异、高效、快速和灵敏等特点,已经在拟南芥和水稻中获得了成功。 4.2.3 AIMS分离法:Gierl等建立的插入突变位点扩增法(Amplification of insertion Mutagenised sites AIMS)是以PCR为基础的分离转座子标签基因的方法,用它已经成功地从玉米Mu元件标签系统中分离了Bx1基因〔12〕。其原理如图5所示,用2种限制性内切酶消化突变植株的基因组DNA,酶切片段一侧加上接头序列,再采用一组嵌套的插入序列特异引物和一个接头序列互补的引物进行PCR反应扩增插入序列的侧翼序列,为了减少扩增产物的复杂性,在与接头互补引物3"末端加上一个碱基(A/T/C/G),分离的侧翼序列可作为探针筛选目的基因。 利用AIMS进行转座子插入侧翼序列的分离可以减少分析片段的复杂性,同时扩增产物可以不经任何纯化步骤,直接用作探针从cDNA文库或基因组文库中筛选目的基因。但是AIMS也存在一些问题,如难获得500bp以上的片段,可能是由于人工的未切动的DNA片段存在或是TaqDNA聚合酶不能完全扩增,解决这一问题就需要寻找一些更合适的限制性内切酶。 5 展望 目前转座子元件是植物分子生物学操作和植物基因工程中分离克隆基因和研究基因功能最有力的工具之一,其中的一大类—反转录转座子具有分布广、异源转座高和受组织培养诱导激活等优势,因此它的发现和利用又为转座子标签的应用提供了更广阔的前景。此外通过对现有转座元件的改造以及转座元件作为载体改造的工具,也将大大加速植物基因和功能序列的分离与研究,如利用转座子元件构建启动子捕捉载体,效率比T-DNA标签高〔11〕。 但转座子标签推广还存在一些困难,例如筛选鉴定转座元件引起的表型突变体。目前,各种突变体筛选方法都在植物个体水平进行研究,先要得到基因型包含转座子插入突变的植株的种子,再在104~106个后代的群体中筛选突变体,工作量非常大,定向标签还要求有隐性纯合系可进行杂交。最近开始研究利用单倍体进行细胞水平的突变体筛选,因为单倍体可直接表达隐性基因,瞿绍洪等鉴定了玉米转座因子Ac在单倍体烟草中的转座活性,这将有助于在单倍体细胞中进行转座因子研究〔15〕。 对转座子标签突变体筛选、标签基因分离等方面的改进将使这一技术更为完整,不仅为植物基因工程发展分离了更多的基因,同时可以大大促进植物基因表达机制等基础理论的研究。

不同类型基因介绍?

(1)结构基因:可编码RNA或蛋白质的一段DNA序列 (2)调控基因:其产物参与调控其他结构基因表达的基因 (3)重叠基因:指同一段DNA的编码顺序 ,由于阅读框架(ORF)的不同或终止早晚的不同,同时编码两个或两个以上多肽链的现象(4)隔裂基因:指一个结构基因内部为一个或更多的不翻译的编码顺序, 如内含子所隔裂的现象(5)跳跃基因:可作为插入因子和转座 因子移动的DNA序列,有人将它作为转座因子的同义词(6)假基因:同已知的基因相似,但位于不同位点,因缺失或突变而不能 转录或翻译,是没有功能的基因

什么是割裂基因、跳跃基因

断裂基因是指绝大部分真核基因编码区中的编码序列(外显子)被若干内含子序列(非编码序列)隔开了。跳跃记忆是基因组中有些片段可能从一个位置转移到另一位置,这些叫做转座子哦。有不同的转座机制,在基因组进化中有重要作用,现在活跃的转座子不多,可引起变异。有女科学家麦克林托克最先发现并在几十年后才被认可并获诺奖。

哪位科学家发现的“基因可以在染色体里移动”

巴巴拉·麦克林托克(barbaramcclintock,1902-1992)是20世纪具有传奇般经历的女科学家,她在玉米中发现了“会跳舞”的基因。基因在染色体上作线性排列,基因与基因之间的距离非常稳定。常规的交换和重组只发生在等位基因之间,并不扰乱这种距离。在显微镜下可见的、发生频率非常稀少的染色体倒位和相互易位等畸变才会改变基因的位置。可是,麦克林托克这位女遗传学家,竟然发现单个的基因会跳起舞来:从染色体的一个位置跳到另一个位置,甚至从一条染色体跳到另一条染色体上。麦克林托克称这种能跳动的基因为“转座因子”(目前通称“转座子”,transposon)。麦克林托克理论的影响是非常深远的,她发现能跳动的控制因子,可以调控玉米籽粒颜色基因的活动,这是生物学史上首次提出的基因调控模型,对后来莫诺和雅可布等提出操纵子学说提供了启发。转座因子的跳动和作用控制着结构基因的活动,造成不同的细胞内基因活性状态的差异,有可能为发育和分化研究提供新线索,说不定癌细胞的产生也与转座因子有关。转座因子能够从一段染色体中跑出来,再嵌入到另一段染色体中去,现代的dna重组和基因工程技术也从这里得到过启发。转座子的确是在内切酶的作用下,从一段染色体上被切下来,然后在连接酶的作用下再嵌入到另一切口中去的。我国遗传学者王身立教授曾在1982年与谈家桢教授一起预言,麦克林托克会获诺贝尔奖。翌年,麦克林托果然荣获诺贝尔生理学医学奖。

一部美国关于基因互换基因的电影 片面好像是四个字,很久以前电影频道演过

知道了,电影是:变种异煞,伊森·霍克主演。英文名: Gattaca 中文名: 戛塔卡 | 变种异煞 | 千钧一发 | 加蒂卡 导 演: ( 安德鲁·尼科 Andrew Niccol ) 主 演: (伊桑·霍克 Ethan Hawke) (乌玛·瑟曼 Uma Thurman) (戈尔·维达尔 Gore Vidal) (山德·贝克利 Xander Berkeley) (简妮·布鲁克 Jayne Brook) (埃利亚斯·考蒂斯 Elias Koteas) 上 映: 1997年10月24日 在不久的未来,通过基因工程加工出生的人才是正常人,而没有这道程序,自然分娩的孩子则被视同“病人”。文森特就是这样一个病人,而他的弟弟安东则是正常人。但文森特却非常想参加由遗传精英组成的戛塔卡公司,因为那样才能参加前往“迪坦"星的太空旅行。他用因事故导致瘫痪的正常人杰罗姆的血样和尿样报名参选,如愿以偿不说,还赢得搭档艾琳的爱情。但一起凶杀案差点让文森特前功尽弃。事实澄清后,文森特遗传上的“缺憾"还是被艾琳知道了。但爱情的力量使艾琳原谅了他,文森特终于飞上了浩翰的太空…… 勾画未来能否成功关键在于真实感,就这一点而言,本片极为成功。那个忧郁未来世界似乎近在眼前。影片有着惊人的预见性,当我们将目光从影片中转回到现实,不难发现:技术的发展正推动着现实世界向那个技术化但剥夺人性的未来发展。唯基因主义——力避这种思想统治世界是摆在我们面前最重要的课题。影片通过一些隐喻性的画面表达出对唯基因主义的批判:杰罗姆拖着毫无知觉的下肢向楼上攀爬,那螺旋状的楼梯不就是人类基因链的幻化吗?文特森作全身清洁的画面多次出现,刚开始还难解其意,但当你突然明白他的目的时,你的心就会隐隐作痛,他试图洗掉的是自然人的“耻辱”,而这“耻辱”来自何方?另外,影片的对白、旁白,以及音乐都颇有特色。

跳跃基因的介绍

跳跃基因或转座子:一段可以从原位上单独复制或断裂下来,环化后插入另一位点,并对其后的基因起调控作用的DNA序列。 美国约翰斯·霍普金斯大学的科学家已经成功地将一种普通的人类跳跃基因转化成-种运动速度比普通老鼠和人类细胞中的跳跃基因快几百倍的超级跳跃基因。

跳跃基因的首先发现人是谁

跳跃基因的首先发现人是McClintock。1944年,麦克林托克因出色的工作当选了美国科学院院士,进步的脚步从未停下。40年代,首次发现了跳跃基因(转座子Transposon),30多年后,分子生物学技术发展起来证实了理论,科学界承认了跳跃基因的重要性,1983年她被授予了诺贝尔生理学或医学奖。

基因为什么会跳跃?

跳跃基因又称之为转座子 在转座酶的帮助下,转座子自身进行复制,然后插入到另一段基因中;或者转座子直接从一个位点出来,转移到另一个位点. 其实人体内也有转座子,但是在500万年前已经全部失活,而相近的老鼠体内还是存在的. 具体可以百度“转座子”

什么是“跳跃基因”?

跳跃基因也叫转座子,跳跃基因是那些能够进行自我复制,并能在生物染色体间移动的基因物质。它们具有扰乱被介入基因组成结构的潜在可能性,并被认为是导致生物基因发生渐变(有时候是突变),并最终促使生物进化的根本原因。虽然像酵母这样的生物只有几十种跳跃基因,但哺乳动物体内一般却含有几十万数量的跳跃基因DNA,因此很难判断在哪里或是什么时候,甚至是否发生了跳跃。 科学家们说,人类的跳跃基因一般处于沉寂状态,因为它们所包含的指令很难被细胞阅读。于是,科研人员把这些跳跃基因的指令用一些细胞愿意接受的指令替代,从而制造出了一种非常活跃的人造跳跃基因。 科研人员发现,哺乳动物的细胞很好地接受了这种人造跳跃基因,并吸收了它所携带的信息,从而帮助这种基因跳跃。在一个对跳跃基因活性进行的标准测试中,这种人造跳跃基因跳跃的次数是自然跳跃基因的200倍。 科研人员已对这种人造基因申请了临时专利。 要想将一个基因从A位点转移到B位点,研究人员和基因治疗专家目前只有两个选择:使用一种能有效地将感兴趣基因输送到细胞中的病毒;质粒,一种能够做同样工作的经加工的DNA环。

通过什么方法进行基因诊断

  基因诊断(gene diagnosis)是以探测基因的存在,分析基因的类型和缺陷及其表达功能是否正常,从而达到诊断疾病的一种方法。它是继形态学、生物化学和免疫学诊断之后的第四代诊断技术,它的诞生与发展得益于分子生物学理论和技术的迅速发展。  常用基因诊断技术:  一、Southern印迹法(Southern blot)  基本原理是:硝酸纤维膜或尼龙滤膜对单链DNA的吸附能力很强,当电泳后凝胶经过DNA变性处理,覆以上述滤膜,再于其上方压上多层干燥的吸水纸,借助它对深盐溶液的上吸作用,凝胶上的单链DNA将转移到滤膜上。转移是原位的,即DNA片段的位置保持不变。转移结束后,经过80℃烘烤的DNA,将原位地固定于膜上。  当含有特定基因片段已原位转移到膜上后,即可与同位素标记了的探针进行杂交,并将杂交的信号显示出来。杂交通常在塑料袋中进行,袋内放置上述杂交滤膜,加入含有变性后探针的杂交溶液后,在一定温度下让单链探针DNA与固定于膜上的单链基因DNA分子按碱基到互补原理充分结合。结合是特异的,例如只有β珠蛋白基因DNA才能结合上β珠蛋白的探针。杂交后,洗去膜上的未组合的探针,将Ⅹ线胶片覆于膜上,在暗盒中日光进行放射自显影。结合了同位素标记探针的DNA片段所在部位将显示黑色的杂交带,基因的缺失或突变则可能导致带的缺失或位置改变。  二、聚合酶链反应  近年来,基因分析和基因工程技术有了革命性的突破,这主要归功于聚合酶链反应(polymerase chain reaction,PCR)的发展和应用。应用PCR技术可以使特定的基因或DNA片段在短短的2-3小时内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,也可用于进一步的分析。这样,少量的单拷贝基因不需通过同位素提高其敏感性来观察,而通过扩增至百万倍后直接观察到,而且原先需要一、二周才能作出的诊断可以缩短至数小时。  三、扩增片段长度多态性  小卫星DNA和微卫星DNA的长度多态性可以通过PCR扩增后电泳来检出,并用于致病基因的连锁分析,这种诊断方法称为扩增片段长度多态性(amplified fragment length polymorphism,Amp-FLP)连锁分析法。PCR扩增后,产物即等位片段之间的差别有时只有几个核苷酸,故需用聚丙烯酰胺凝胶电泳分离鉴定。此法多用于突变性质不明的连锁分析.  四、等位基因的特异寡核苷酸探针诊断法  当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断。探针通常为长20bp左右的核苷酸。用于探测点突变时一般需要合成两种探针,与正常基因序列完全一致,能与之稳定地杂交,但不能与突变基因序列杂交;另一种与突变基因序列一致,能与突变基因序列稳定杂交,但不能与正常基因序列稳定杂交,这样,就可以把只有一个碱基发生了突变的基因区别开来.  PCR可结合ASO,即PCR-ASO技术,即先将含有突变点的基因有关片段进行体外扩增,然后再与ASO探针作点杂交,这样大大简化了方法,节约了时间,而且只要极少量的基因组DNA就可进行。  五、单链构象多态性诊断法  单链构象多态性(signle strand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测。用SSCP法检查基因突变时,通常在疑有突变的DNA片段附近设计一对引物进行PCR扩增,然后将扩增物用甲酰胺等变性,并在聚丙烯酰胺凝胶中电泳,突变所引起的DNA构象差异将表现为电泳带位置的差异,从而可据之作出诊断。

基因芯片技术的发展历史有哪些

基因芯片(genechip)(又称DNA芯片、生物芯片)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,获得一组序列完全互补的探针序列。据此可重组出靶核酸的序列。

我在找一步电影,情节大概是在未来某个时代由出生时的基因检测决定一个人的一生,主人公貌似叫什么安东的

千钧一发 Gattaca (1997)导演: 安德鲁·尼科尔编剧: 安德鲁·尼科尔主演: 伊桑·霍克 / 乌玛·瑟曼 / 裘德·洛 / 艾伦·阿金 / 戈尔·维达尔 / 山德·贝克利 / 劳恩·迪恩类型: 剧情 / 科幻 / 惊悚制片国家/地区: 美国语言: 英语 / 世界语上映日期: 1997-10-24(美国)片长: 106分钟又名: 变种异煞

什么是基因诊断?基因诊断有什么方式?

  基因诊断(gene diagnosis)是以探测基因的存在,分析基因的类型和缺陷及其表达功能是否正常,从而达到诊断疾病的一种方法.它是继形态学、生物化学和免疫学诊断之后的第四代诊断技术,它的诞生与发展得益于分子生物学理论和技术的迅速发展.   常用基因诊断技术:   一、Southern印迹法(Southern blot)   基本原理是:硝酸纤维膜或尼龙滤膜对单链DNA的吸附能力很强,当电泳后凝胶经过DNA变性处理,覆以上述滤膜,再于其上方压上多层干燥的吸水纸,借助它对深盐溶液的上吸作用,凝胶上的单链DNA将转移到滤膜上.转移是原位的,即DNA片段的位置保持不变.转移结束后,经过80℃烘烤的DNA,将原位地固定于膜上.   当含有特定基因片段已原位转移到膜上后,即可与同位素标记了的探针进行杂交,并将杂交的信号显示出来.杂交通常在塑料袋中进行,袋内放置上述杂交滤膜,加入含有变性后探针的杂交溶液后,在一定温度下让单链探针DNA与固定于膜上的单链基因DNA分子按碱基到互补原理充分结合.结合是特异的,例如只有β珠蛋白基因DNA才能结合上β珠蛋白的探针.杂交后,洗去膜上的未组合的探针,将Ⅹ线胶片覆于膜上,在暗盒中日光进行放射自显影.结合了同位素标记探针的DNA片段所在部位将显示黑色的杂交带,基因的缺失或突变则可能导致带的缺失或位置改变.   二、聚合酶链反应   近年来,基因分析和基因工程技术有了革命性的突破,这主要归功于聚合酶链反应(polymerase chain reaction,PCR)的发展和应用.应用PCR技术可以使特定的基因或DNA片段在短短的2-3小时内体外扩增数十万至百万倍.扩增的片段可以直接通过电泳观察,也可用于进一步的分析.这样,少量的单拷贝基因不需通过同位素提高其敏感性来观察,而通过扩增至百万倍后直接观察到,而且原先需要一、二周才能作出的诊断可以缩短至数小时.   三、扩增片段长度多态性   小卫星DNA和微卫星DNA的长度多态性可以通过PCR扩增后电泳来检出,并用于致病基因的连锁分析,这种诊断方法称为扩增片段长度多态性(amplified fragment length polymorphism,Amp-FLP)连锁分析法.PCR扩增后,产物即等位片段之间的差别有时只有几个核苷酸,故需用聚丙烯酰胺凝胶电泳分离鉴定.此法多用于突变性质不明的连锁分析.   四、等位基因的特异寡核苷酸探针诊断法   当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断.探针通常为长20bp左右的核苷酸.用于探测点突变时一般需要合成两种探针,与正常基因序列完全一致,能与之稳定地杂交,但不能与突变基因序列杂交;另一种与突变基因序列一致,能与突变基因序列稳定杂交,但不能与正常基因序列稳定杂交,这样,就可以把只有一个碱基发生了突变的基因区别开来.   PCR可结合ASO,即PCR-ASO技术,即先将含有突变点的基因有关片段进行体外扩增,然后再与ASO探针作点杂交,这样大大简化了方法,节约了时间,而且只要极少量的基因组DNA就可进行.   五、单链构象多态性诊断法   单链构象多态性(signle strand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测.用SSCP法检查基因突变时,通常在疑有突变的DNA片段附近设计一对引物进行PCR扩增,然后将扩增物用甲酰胺等变性,并在聚丙烯酰胺凝胶中电泳,突变所引起的DNA构象差异将表现为电泳带位置的差异,从而可据之作出诊断.

简要分析基因的表达系统的组成及优化策略。

原核表达系统 表达调控方式 组成型,诱导型 表达产物定位 分泌型,不分泌型(细胞内,细胞膜,周质空间) 产物纯化方式 是否融合蛋白,是否一步亲和纯化 产物溶解状况 可溶,包含体,分泌型 在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。该项技术的主要方法是将已克隆入目的基因DNA片段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过IPTG诱导并最终纯化获得所需的目的蛋白。其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低 为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是 ①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制 ②能诱导基因高效表达,可达105倍,为其他系统所不及; ③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量 因此,利用真核表达系统来表达目的蛋白越来越受到重视。目前,基因工程研究中常用的真核表达系统有酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。2RT-PCR是将RNA的反转录(RT)和cDNA的聚合酶链式扩增(PCR)相结合的技术。首先经反转录酶的作用从RNA合成 cDNA,再以cDNA为模板,扩增合成目的片段。RT-PCR技术灵敏而且用途广泛,可用于检测细胞中基因表达水平,细胞中RNA病毒的含量和直接克隆特定基因的cDNA序列。作为模板的RNA可以是总RNA、mRNA或体外转录的RNA产物。无论使用何种RNA,关键是确保RNA中无RNA酶和基因组DNA的污染。 RT-PCR是将RNA的反转录(RT)和cDNA的聚合酶链式扩增(PCR)相结合的技术。首先经反转录酶的作用从RNA合成 cDNA,再以cDNA为模板,扩增合成目的片段。RT-PCR技术灵敏而且用途广泛,可用于检测细胞中基因表达水平,细胞中RNA病毒的含量和直接克隆特定基因的cDNA序列。作为模板的RNA可以是总RNA、mRNA或体外转录的RNA产物。。RT-PCR用于对表达信息进行检测或定量。另外,这项技术还可以用来检测基因表达差异或不必构建cDNA文库克隆cDNA。RT-PCR比其他包括Northern印迹、RNase保护分析、原位杂交及S1核酸酶分析在内的RNA分析技术,更灵敏,更易于操作。逆转录反应可以使用逆转录酶,以随机引物、oligo(dT)或基因特异性的引物(GSP)起始。RT-PCR可以一步法或两步法的形式进行。在两步法RT-PCR中,每一步都在最佳条件下进行。cDNA的合成首先在逆转录缓冲液中进行,然后取出1/10的反应产物进行PCR。在一步法RT-PCR中,逆转录和PCR在同时为逆转录和PCR优化的条件下,在一只管中顺次进行。 逆转录酶(reverse transcriptase)是存在于RNA病毒体内的依赖RNA的DNA聚合酶,至少具有以下三种活性:1、 依赖RNA的DNA聚合酶活性:以RNA为模板合成cDNA第一条链2、 Rnase水解活性:水解RNA杂合体中的RNA3、 依赖DNA的DNA聚合酶活性:以第一条DNA链为模板合成互补的双链cDNA 用于反转录的引物可视实验的具体情况选择随机引物、Oligo dT 及基因特异性引物中的一种。对于短的不具有发卡结构的真核细胞mRNA,三种都可。实验方法如下http://show.bioon.com/protocol/smallclass.asp?typeid=1724&newstype=RT-PCR3 质粒是染色体外能够进行自主复制的遗传单位,包括真核生物的细胞器和细菌细胞中染色体以外的脱氧核糖核酸(DNA)分子。现在习惯上用来专指细菌、酵母菌和放线菌等生物中染色体以外的DNA分子。在基因工程中质粒常被用做基因的载体。许多细菌除了染色体外,还有大量很小的环状DNA分子,这就是质粒(plasmid)(补充:部分质粒为RNA)。质粒上常有抗生素的抗性基因,例如,四环素抗性基因或卡那霉素抗性基因等。有些质粒称为附加体(episome),这类质粒能够整合进细菌的染色体,也能从整合位置上切离下来成为游离于染色体外的DNA分子。 目前,已发现有质粒的细菌有几百种,已知的绝大多数的细菌质粒都是闭合环状DNA分子(简称cccDNA)。细菌质粒的相对分子质量一般较小,约为细菌染色体的0.5%~3%。根据相对分子质量的大小,大致上可以把质粒分成大小两类:较大一类的相对分子质量是40×106以上,较小一类的相对分子质量是10×106以下(少数质粒的相对分子质量介于两者之间)。每个细胞中的质粒数主要决定于质粒本身的复制特性。按照复制性质,可以把质粒分为两类:一类是严紧型质粒,当细胞染色体复制一次时,质粒也复制一次,每个细胞内只有1~2个质粒;另一类是松弛型质粒,当染色体复制停止后仍然能继续复制,每一个细胞内一般有20个左右质粒。一般分子量较大的质粒属严紧型。分子量较小的质粒属松弛型。质粒的复制有时和它们的宿主细胞有关,某些质粒在大肠杆菌内的复制属严紧型,而在变形杆菌内则属松弛型。 在基因工程中,常用人工构建的质粒作为载体。人工构建的质粒可以集多种有用的特征于一体,如含多种单一酶切位点、抗生素耐药性等。常用的人工质粒运载体有pBR322、pSC101。pBR322含有抗四环素基因(Tcr)和抗氨苄青霉素基因(Apr),并含有5种内切酶的单一切点。如果将DNA片段插入EcoRI切点,不会影响两个抗生素基因的表达。但是如果将DNA片段插入到Hind III、Bam H I 或 Sal I切点,就会使抗四环素基因失活。这时,含有DNA插入片段的pBR322将使宿主细菌抗氨苄青霉素,但对四环素敏感。没有DNA插入片段的pBR322会使宿主细菌既抗氨苄青霉素又抗四环素,而没有pBR322质粒的细菌将对氨苄青霉素和四环素都敏感。pSC101与pBR322相似,只是没有抗氨苄青霉素基因和PstI切点。质粒运载体的最大插入片段约为10 kb(kb表示为千碱基对)。4 基因诊断(gene diagnosis)是以探测基因的存在,分析基因的类型和缺陷及其表达功能是否正常,从而达到诊断疾病的一种方法。它是继形态学、生物化学和免疫学诊断之后的第四代诊断技术,它的诞生与发展得益于分子生物学理论和技术的迅速发展。 常用基因诊断技术: 一、Southern印迹法(Southern blot) 基本原理是:硝酸纤维膜或尼龙滤膜对单链DNA的吸附能力很强,当电泳后凝胶经过DNA变性处理,覆以上述滤膜,再于其上方压上多层干燥的吸水纸,借助它对深盐溶液的上吸作用,凝胶上的单链DNA将转移到滤膜上。转移是原位的,即DNA片段的位置保持不变。转移结束后,经过80℃烘烤的DNA,将原位地固定于膜上。 当含有特定基因片段已原位转移到膜上后,即可与同位素标记了的探针进行杂交,并将杂交的信号显示出来。杂交通常在塑料袋中进行,袋内放置上述杂交滤膜,加入含有变性后探针的杂交溶液后,在一定温度下让单链探针DNA与固定于膜上的单链基因DNA分子按碱基到互补原理充分结合。结合是特异的,例如只有β珠蛋白基因DNA才能结合上β珠蛋白的探针。杂交后,洗去膜上的未组合的探针,将Ⅹ线胶片覆于膜上,在暗盒中日光进行放射自显影。结合了同位素标记探针的DNA片段所在部位将显示黑色的杂交带,基因的缺失或突变则可能导致带的缺失或位置改变。 二、聚合酶链反应 近年来,基因分析和基因工程技术有了革命性的突破,这主要归功于聚合酶链反应(polymerase chain reaction,PCR)的发展和应用。应用PCR技术可以使特定的基因或DNA片段在短短的2-3小时内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,也可用于进一步的分析。这样,少量的单拷贝基因不需通过同位素提高其敏感性来观察,而通过扩增至百万倍后直接观察到,而且原先需要一、二周才能作出的诊断可以缩短至数小时。 三、扩增片段长度多态性 小卫星DNA和微卫星DNA的长度多态性可以通过PCR扩增后电泳来检出,并用于致病基因的连锁分析,这种诊断方法称为扩增片段长度多态性(amplified fragment length polymorphism,Amp-FLP)连锁分析法。PCR扩增后,产物即等位片段之间的差别有时只有几个核苷酸,故需用聚丙烯酰胺凝胶电泳分离鉴定。此法多用于突变性质不明的连锁分析. 四、等位基因的特异寡核苷酸探针诊断法 当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断。探针通常为长20bp左右的核苷酸。用于探测点突变时一般需要合成两种探针,与正常基因序列完全一致,能与之稳定地杂交,但不能与突变基因序列杂交;另一种与突变基因序列一致,能与突变基因序列稳定杂交,但不能与正常基因序列稳定杂交,这样,就可以把只有一个碱基发生了突变的基因区别开来. PCR可结合ASO,即PCR-ASO技术,即先将含有突变点的基因有关片段进行体外扩增,然后再与ASO探针作点杂交,这样大大简化了方法,节约了时间,而且只要极少量的基因组DNA就可进行。 五、单链构象多态性诊断法 单链构象多态性(signle strand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测。用SSCP法检查基因突变时,通常在疑有突变的DNA片段附近设计一对引物进行PCR扩增,然后将扩增物用甲酰胺等变性,并在聚丙烯酰胺凝胶中电泳,突变所引起的DNA构象差异将表现为电泳带位置的差异,从而可据之作出诊断。

基因诊断有哪些技术

基因诊断又称DNA诊断或分子诊断,通过分子生物学和分子遗传学的技术,直接检测出分子结构水平和表达水平是否异常,从而对疾病做出判断常用技术综述  当细胞的基因组DNA用特定的内切酶如Eco RⅠ切割时, 基因诊断凡有GAATTC的地方都被切开,得到许多长度一定但互不相等的片段,需要分析、分离的基因或DNA片段就在其中某一特定的的片段上。 然而许多长短不同的DNA片段混合在一起是很难分析的。因此首先必需将它们按大小(长短)分离开来,这可借助凝胶电泳来完成。在电泳时,分子量愈小的片段的迁移愈快,愈大的片段愈慢。因此,在电泳结束时可以获得一个由大到小连续的带谱(smear),而由许多细胞基因组得来的某一特定片段,因其长度相同将处于同一位置,有利于检出。但凝胶易碎且操作不便。英国科学家Southern首创印迹法克服了上述困难。Southern印迹法  Southernblot的基本原理是:硝酸纤维膜或尼龙滤膜对单链DNA的吸附能力很强,当电泳后凝胶经过DNA变性处理,覆以上述滤膜,再于其上方压上多层干燥的吸水纸,借助它对深盐溶液的上吸作用,凝胶上的单链DNA将转移到滤膜上。转移是原位的,即DNA片段的位置保持不变。转移结束后,经过80℃烘烤的DNA,将原位地固定于膜上。   当含有特定基因片段已原位转移到膜上后,即可与同位素标记了的探针进行杂交,并将杂交的信号显示出来。杂交通常在塑料袋中进行,袋内放置上述杂交滤膜,加入含有变性后探针的杂交溶液后,在一定温度下让单链探针DNA与固定于膜上的单链基因DNA分子按碱基到互补原理充分结合。结合是特异的,例如只有β珠蛋白基因DNA才能结合上β珠蛋白的探针。杂交后,洗去膜上的未组合的探针,将Ⅹ线胶片覆于膜上,在暗盒中日光进行放射自显影。结合了同位素标记探针的DNA片段所在部位将显示黑色的杂交带,基因的缺失或突变则可能导致带的缺失或位置改变。   分子杂交是基因探测的基础,除了用印迹杂交外,还有斑点杂交法。即将DNA样品变性后直接点在硝酸纤维滤膜上,再与探针杂交,或者将细胞或病毒点在膜上,菌落或菌斑原位地吸附在膜上,经过变性处理,再进行杂交。斑点杂交多用于病原体基因,如微生物的基因,但也可用于检查人类基因组中的DNA序列。聚合酶链反应  近年来,基因分析和基因工程技术有了革命性的突破,这主要归功于聚合酶链反应(polymerase chain reaction,PCR)的发展和应用。应用PCR技术可以使特定的基因或DNA片段在短短的2-3小时内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,也可用于进一步的分析。这样,少量的单拷贝基因不需通过同位素提高其敏感性来观察,而通过扩增至百万倍后直接观察到,而且原先需要一、二周才能作出的诊断可以缩短至数小时。   首先应按照欲检测的DNA的5"和3"端的碱基顺序各合成一段长约17-20余个碱基的寡核苷酸作为引物(primer),其次是将待检测的DNA变性后,加入四种单核苷酸(dNTP)、引物和耐热聚合酶。在较低的温度,引物将与待扩增的DNA链复性结合,然后的聚合酶的作用下,利用溶液中的核苷酸原料,不断延伸合成新互补链,这样,一条DNA双链就变成了两条双链。若继续按照变性(92-95℃)→复性(40-60℃)→引物延伸(65-72℃)的顺序循环20至40个周期,就可以得到大量的DNA片段。理论上循环20周期可使DNA扩增2n,即100余万倍。PCR反应特异性强,灵敏度高,极微量的DNA即可作为扩增的模板得到大量的扩增片段。毛发、血痕,甚至单个细胞的DNA即可供PCR扩增之用。因此它用于病原体DNA的检查、肿瘤残留细胞的检出、罪犯或个体遗传物质的鉴定以及遗传病的基因诊断等。   已可对一系列的遗传病进行PCR诊断。如果疾病是由基因缺失引起的(如α地贫),则在缺失两端设计一对引物进行扩增,就不会得到扩增产物或只能得到缩短了的扩增产物。如果疾病是由点突变引起的,而突变的位置和性质已知,则在设计引物时使之包括突变部位,由于突变后的碱基不配对,结果无扩增片段;或者在引物设计时于其3"端设计一个错误的核苷酸,使之与突变了的核苷酸配对,其结果是正常引物不能扩增,而用错误的引物能扩增,从而可对突变的存在作出判断。   PCR技术目前有许多新的发展,用途日益扩大。例如,可用RNA为模板经过逆转录再行扩增的RT-PCR;改变两引物浓度,使其相差100倍,结果得到大量单链产物,称为不对称PCR,其单链产物可用于序列分析;在一个反应中加入多对引物同时检测多个部位的多重PCR等等。扩增片段长度  多态性小卫星DNA和微卫星DNA的长度多态性可以通过PCR扩增后电泳来检出,并用于致病基因的连锁分析,这种诊断方法称为扩增片段长度多态性(amplified fragment length polymorphism,Amp-FLP)连锁分析法。PCR扩增后,产物即等位片段之间的差别有时只有几个核苷酸,故需用聚丙烯酰胺凝胶电泳分离鉴定。此法多用于突变性质不明的连锁分析。等位基因的特异  寡核苷酸探针诊断法当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断。探针通常为长20bp左右的核苷酸。用于探测点突变时一般需要合成两种探针,一种与正常基因序列完全一致,能与之稳定地杂交,但不能与突变基因序列杂交;另一种与突变基因序列一致,能与突变基因序列稳定杂交,但不能与正常基因序列稳定杂交,这样,就可以把只有一个碱基发生了突变的基因区别开来。   PCR可结合ASO,即PCR-ASO技术,即先将含有突变点的基因有关片段进行体外扩增,然后再与ASO探针作点杂交,这样大大简化了方法,节约了时间,而且只要极少量的基因组DNA就可进行。单链构象多态性诊断法  单链构象多态性(signlestrand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测。用SSCP法检查基因突变时,通常在疑有突变的DNA片段附近设计一对引物进行PCR扩增,然后将扩增物用甲酰胺等变性,并在聚丙烯酰胺凝胶中电泳,突变所引起的DNA构象差异将表现为电泳带位置的差异,从而可据之作出诊断。   PCR-SSCP法具有能快速、灵敏地检测有无点突变或多态性的优点,但如欲阐明突变的碱基性质,则需作序列分析。

美国电影一个普通人想当宇航员混入航天城和另外一个基因优秀的腿断了的人交换身份的电影叫什么名字?

《千钧一发》1997年美国科幻电影《Gattaca》由伊桑霍克、乌玛瑟曼、裘德洛主演。讲述了在不久的未来,通过基因工程加工出生的人才是正常人,而自然分...>>>楼主请参考下回答时间。。。
 首页 上一页  3 4 5 6 7 8 9 10 11 12 13  下一页  尾页