初二生物问题,跪求!!!
B米猪肉即患囊虫病的死猪肉。这种肉对人体危害很大,不能食用。识别时主要是“看”,“米”猪肉一般不鲜亮,肥肉瘦肉及五脏、器官上都有或多或少米粒状的囊包。囊包虫呈石榴籽状,寄生在肌纤维 ( 瘦肉 ) 中,腰肌是囊包虫寄生最多的地方。用刀子在肌肉上切,一般厚度 1 厘米,长度 20 厘米,每隔 1 厘米切一刀,切 4 - 5 刀后,在切面上仔细看,如发现肌肉上附有石榴籽一般大小的水泡,即是囊包虫。这种猪肉即是米猪肉。 ===========================米猪肉是含有寄生虫幼虫的病猪肉。瘦肉中有呈黄豆样大小不等,乳白色,半透明水泡。象是肉中夹着米粒,故称米猪肉。人吃了米猪肉会得两种病。一种是绦虫病,会在小肠长出长达2 一4米的绦虫,在粪便中排出一节节的白虫子,叫寸白虫。另一种是囊虫病,误食了囊虫后,虫卵在胃液,肠液的作用下,孵化出幼虫,钻入肠壁组织,经血液带到全身,在肌肉里长出一个个象米粒一样的囊肿,囊虫可寄生在人的心脏,大脑,眼睛。长在眼睛就失明,长在大脑引发癫痫。治疗很困难。 人若吃了未经煮熟的“米猪肉”,即受感染囊尾蚴可固着在人的肠壁上,逐渐发育成成虫,长期寄生于肠内,通过粪便不断排出节片或卵,此时称绦虫病。节片或卵通过污染的手或蔬菜被人食入经消化作用,孵出幼虫(囊尾蚴),进入肠壁,通过血流在肌肉、皮下组织、脑、眼等处寄生,此时称为囊尾蚴病。凡在40平方厘米的肌肉上发现囊尾铀或钙化的虫体3个以内者,可用冷冻或盐腌法处理。如40平方厘米内有4~5个囊尾蚴,则高温处理。、
生物化学:求小肽lys-ile-glu的等电点
首先辨别每个氨基酸的带电性质,特别侧链基团的带电量,获得每个氨基酸的等电点.氨基酸是是两性电解质,在碱性溶液中表现出带负电荷,在酸性溶液中表现出带正电荷,在某一定PH溶液中,氨基酸所带的正电荷和负电荷相等时的PH,称为该氨基酸的等电点.此题还应有附加条件,即溶液的PH,不然无法计算,在不同ph条件下,等电点会变化.计算等电点的关键:找出兼性离子(静电荷为0)两侧的pK值,取二者的平均值即可。该四肽在PH<2.4时,带2个单位正电荷;在2.4至4.2时,带1个单位正电荷;在4.2至9.8时,静电荷为0;在9.8至10.6时,带一个单位负电荷。大于10.6时,带2个单位负电荷。所以,该四肽的等电点是:pI = 1/2 (4.2 + 9.8)= 7.0
小分子活性肽的小肽的生物医学功效
1.更新陈旧老化的细胞成分,置换排除细胞内的毒素。2.通过细胞内外的特殊载体,运送营养物质进入细胞内,携带代谢物运出细胞外。3.激活多种酶系统。4.恢复皮肤的年轻态。5.激活性腺分泌轴,调节靶器官的状态及功能。6.活跃和增强两大免疫系统。7.提高记忆系统。8.消除过度活跃的自由基,推迟衰老延长寿命。
生物活性肽的种类都有哪些
定义:肽是两个或两个以上的氨基酸以肽键相连的化合物,在人体内起重要生理作用,发挥生理功能。具有活性的多肽称为活性肽,又称生物活性肽或生物活性多肽。分类:活性肽的分类可按原料来源和保健功能来划分:1、按原料划分的类别有:乳肽、大豆肽、玉米肽等;2、按照功能来分有免疫活性肽、神经活性肽、降血压肽和抗菌多肽等多种。
生物活性肽的功能功效有哪些?
生物活性多肽:具有代谢和生理调节、易消化吸收、有促进免疫、调节激素、抑菌等功能。肽是人体维持生命活动所必须的表现形式,人体吸收蛋白质的形式是以小肽的形式吸收,肽能直接进入细胞膜,和细胞膜结合,形成抗体。提高人体抗病毒的能力。功效:活性肽具有人体代谢和生理调节功能,易消化吸收,有促进免疫、激素、酶抑制剂、抗菌、抗病毒、降血脂等功效,食用安全性及高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。扩展资料:生物活性肽对生物机体的生命活动有益或是具有生理作用的肽类化合物, 是一类相对分子质量小于6000Da , 具有多种生物学功能的多肽。其分子结构复杂程度不一,是介于氨基酸与蛋白质之间的分子聚合物,小至由两个氨基酸组成,大至由数十个氨基酸通过肽键连接而成,而且这些多肽可通过磷酸化、糖基化或酰基化而被修饰。参考资料来源:百度百科-生物活性肽
生物活性肽的种类都有哪些
1、呈味肽呈味肽包括甜味肽、酸味肽、咸味肽和苦味肽等,这些肽类添加到食品中能够明显改变食品原有的口感。同时这些肽类如咸味肽, 由于可作为无钠调味剂,能为糖尿病患者和高血压患者所利用,所以可作为保健食品的基料。2、表面活性肽从酪蛋白、乳清蛋白、大豆蛋白和面筋蛋白水解物中获得的多肽, 如一酪蛋白多肽段:α-S1-CN(1-23)、β-CN(193-209)和β-CN(1-25)。它们在食品中具有表面活性剂的作用,有很好的稳定性和乳化能力,从而改善了酪蛋白的功能性质。此外,对蛋白质进行适度水解,还可以提高其起泡性。3、营养肽针对营养不良或消化吸收有问题的病人,配方食品中的多肽或蛋白质水解物已经逐渐取代氨基酸作为氮源使用,并且已经证明二肽或三肽的消化吸收率较氨基酸高。扩展资料大量研究表明,蛋白质和肽除可直接供给动物机体氨基酸需要外,对动物生长还有一些特殊的额外作用。以游离氨基酸代替完整蛋白质的数量是有限的,低蛋白日粮无论如何平衡氨基酸都无法达到高蛋白日粮的生产水平。动物日粮中蛋白质的重要性部分体现在小肠部位可以产生具有生物活性的肽类。肽类的营养价值高于游离氨基酸和完整蛋白质,其原因有以下几个方面:1、一般来说,小肽的抗原性要比大的多肽或原型蛋白质的抗原性低。2、与转运游离氨基酸相比,机体转运小肽通过小肠壁的速度更快。3、肽类的渗透压比游离氨基酸低,因此可提高小肽的吸收效率,减少渗透问题。4、小肽还具有良好的感官/味觉效应。参考资料来源:百度百科-生物活性肽
自然界中存在的多肽基本没有生物活性,这个说法正确吗?
多肽一般不具备活性只有形成特定的高级结构,才有完整的生物活性。其中的一部分肽链,或者整条肽链没有正确折叠,都没有完整的生物活性。必须注意,是“完整的”生物活性。部分肽链,或者错误折叠,都有可能具有部分活性,比如Klenow片段,是DNA聚合酶的一部分,也具有聚合活性多肽被核糖体合成后,一般还需要:水解作用,一些不需要的部分被水解掉;糖基化,乙酰化,一些氨基酸被修饰;二硫键的形成,一些蛋白质有多条肽链组成,需要二硫键链接;构象,空间构型。多肽一般不具备活性,需要上述过程加工包装形成蛋白质才有生物活性。不经过上述过程的单纯的多肽目前还没有发现有生物活性的。多肽有生物活性肽和人工合成多肽两种。今天我们主要来聊聊生物体内各种各样的活性肽。与大分子量蛋白质类似,低分子量的生物活性肽也广泛参与了机体大部分生理过程的调控。根据功能的不同,生物活性肽主要包括以下几类:抗菌活性肽:当昆虫受到外界环境刺激时产生大量的具有抗菌活性的阳离子多肽。
生物活性蛋白多肽因子液有什么做用?
就是指有生物活性的多肽,一般多肽都要在空间结构上进行一定的折叠等加工过程才变成有生物活性的蛋白质。而生物活性多肽,指以多肽形式存在时就有生物活性了。生物活性多肽是蛋白质中25个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,食用安全性极高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。
小分子肽和生物活性肽有什么区别?有些宣传的活性肽非常神奇是真的吗?
活性肽是一千多种肽的总称。具有活性的多肽称为活性肽,又称生物活性肽或生物活性多肽。活性肽在人的生长发育,新陈代谢,疾病以及衰老,死亡的过程中起着关键作用。活性肽在人体处于一种平衡状态,若活性肽减少,人体的机能会发生重要变化。儿童活性肽减少,生长、发育变得缓慢,甚至停止,长久下去就形成了侏儒;成年人或老年人缺少活性肽,自身的免疫力会下降,新陈代谢紊乱,内分泌失调,引起各种疾病的产生,如失眠、身体消瘦或浮肿;由于活性肽还作用于神经系统,所以人体还会出现动作迟缓,头脑不再聪慧;另外活性肽减少,直接引起人身体各部位逐渐出现全面衰老,引发各种疾病。大量的国内外研究结果表明:活性肽是涉及生物体内多种细胞功能的生物活性物质,在生物体内已发现几百种,具有各种各样的结构和生理功能。而且,从被发现至今,因为研究肽而获得诺贝尔奖的已经达到了17人之多,肽也被用于生活的方方面面,不少公司都是专门做肽的,比如嘉谷肽业、国肽等。
生物多肽作用是什么?
活性多肽的作用是:参与了人体的生长发育和蛋白质、脂肪、糖三大物质的代谢,正是因为它在体内分泌量的增多或减少,控制着蛋白质的正常合成速度,质量,控制着细胞的正常复制和合成。常见作为细胞内部或细胞间传输化学信号的信使,调控细胞间或器官间的行动。包括神经、免疫、衰老等许多最新的研究方向都与小小的活性肽有关。常见而重要的活性多肽包括:谷胱甘肽gsh、催产素、脑肽等等。拓展资料活性多肽又称活性肽,指在生物体内有着特殊功能的肽。小到只含有两个氨基酸,大到由上百个氨基酸组成。活性肽广泛分布于生物界。起着许多各种各样的作用。常见作为细胞内部或细胞间传输化学信号的信使,调控细胞间或器官间的行动。包括神经、免疫、衰老等许多最新的研究方向都与小小的活性肽有关。常见而重要的活性多肽包括:谷胱甘肽gsh、催产素、脑肽等等。 活性多肽是人体内的一种物质,它在人体内发挥着巨大而神奇的作用,它能促进细胞的分裂,调整细胞的新陈代谢,确保基因的表达和复制,保证细胞内蛋白质合成的数量、质量和速度处在正常状态,提高蛋白质的合理利用率。进而控制人体的生长和发育,衰老与疾病。活性多肽,是人体细胞调理的总工程师有人说,大自然最优美的作品是人的身体,而组成这一作品的是由成千上万的用肉眼看不到的细胞,单个细胞并不存在智慧成分,但它们构成的生命为什么却能做出很复杂的事情呢?在这些数以亿计的细胞之间存在着极其复杂的调控制机制。正是这个调控机制使得人体能够用相对较少的细胞数量,以最佳的细胞搭档和最精确的联络反馈方式演绎着大自然最精彩的乐章,而演奏这个精彩乐章的每一个音符就是有不同分子链组成的成千上万的互相协调工作的活性肽。在人体内所有的细胞以及由细胞组成的组织、器官都受活性肽的控制。它决定着人的长相和得什么样的疾病。活性肽控制着人体蛋白质的合成,而蛋白质是生命的表现形式。参考资料:搜狗百科:活性多肽
猪用生物活性肽有什么作用
健康从”肠”计议产品概述:益生肽微生态制剂是郑州农盛乐生物科技有限公司根据动物肠道生理特点及肠道微生物的特性,研发、生产的具有很强针对性和实效性的固态多菌种复合微生态产品。产品主要成分乳酸菌(嗜酸乳杆菌、植物乳杆菌、乳酸片球菌、粪肠球菌)、枯草芽孢杆菌、地衣芽孢杆菌、生物活性免疫多肽等。枯草芽孢杆菌:迅速消耗肠道中的游离氧,造成肠道低氧,促进有益厌氧菌生长,抑制其它致病菌生长;合成α-淀粉酶、蛋白酶、脂肪酶、纤维素酶等酶类,在消化道中与动物体内的消化酶类一同发挥作用。地衣芽孢杆菌:生物夺氧,促进机体内有益菌的生长,调整肠道菌群失调,恢复肠道功能,能抑制致病菌的生长繁殖。乳酸菌:肠道原籍菌,快速在肠道定植,产生乳酸等有机酸类,降低肠道PH值,调节胃肠道菌群,维持肠道微生态平衡,增强动物机体的免疫功能。生物活性多肽:具 有代谢和生理调节、易消化吸收、有促进免疫、调节激素、抑菌等功能。
怎么区分生物活性肽?
定义:肽是两个或两个以上的氨基酸以肽键相连的化合物,在人体内起重要生理作用,发挥生理功能。具有活性的多肽称为活性肽,又称生物活性肽或生物活性多肽。;分类:活性肽的分类可按原料来源和保健功能来划分:;1、按原料划分的类别有:乳肽、大豆肽、玉米肽等;2、按照功能来分有免疫活性肽、神经活性肽、降血压肽和抗菌多肽等多种。
什么是生物活性多肽?
就是指有生物活性的多肽,一般多肽都要在空间结构上进行一定的折叠等加工过程才变成有生物活性的蛋白质。而生物活性多肽,指以多肽形式存在时就有生物活性了。生物活性多肽是蛋白质中25个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,食用安全性极高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。
有谁知道生物活性肽的药理作用?
生物活性肽是蛋白质中20个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线形、环行结构的不同肽类的总称,是源于蛋白质的多功能最复杂的化合物。活性肽具有人体代谢和生理调节功能,易消化吸收,有促进免疫、激素、酶抑制剂、抗菌、抗病毒、降血脂等作用,食用安全性及高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。2.活性肽的分类活性肽的分类可按原料来源和保健功能来划分。按原料划分的肽类有:乳肽:主要由动物乳中酪蛋白与乳清蛋白酶解制得,比原蛋白更易溶解于水和人体消化吸收,耐酸、耐热、渗透压底,是活性肽中需求量最大、应用最广的保健功能素材。大豆肽:由大豆蛋白酶解制得。具有低抗原性、抑制胆固醇、促进脂质代谢及发酵等功能。用于食品能快速补充蛋白质源,消除疲劳和做双歧增殖因子。玉米肽:由玉米蛋白酶解制得。具有抗疲劳,改善肝、肾、肠胃疾病患者营养的功能,并可促进酒精代谢,用做醒酒食品。豌豆肽:酶解豌豆蛋白制得。口味温和,价廉,可用于婴儿配方乳粉。卵蛋白肽:酶解卵蛋白制得。具有易消化吸收、抵抗原。耐热等特点,可用于流动食品、营养食品或糕点中。畜产肽:牲畜肌肉、内脏、血液中的蛋白经酶解而制得不同的畜产肽。如脱脂牛肉酶解制得牛肉肽,含较高支链氨基酸和肉毒碱,是低热量蛋白质补充剂;新鲜猪肝经酶解、脱色、脱臭、超滤精制得肝肽,可做促铁吸收剂,用于婴儿食品、饮料、糕点等;猪血经酶解制得血球蛋白肽,可用于各类食品。水产肽:各种鱼肉蛋白酶解制得的肽,如沙丁鱼肽,是血管紧张素转换酶抑制肽,不含苦味,可用于防止高血压的保健食品或制剂。丝蛋白肽:蚕茧丝蛋白经酶解制得的低肽,具有促进酒精代谢、降胆固醇、预防痴呆等多种功能,可用于醒酒食品和特种保健食品。复合肽:动植物、水产、畜产等多种蛋白质混合物经酶解制得的复合肽,具有改善脂制代谢等功能,可用于各类保健食品。按活性肽功能分类有:易消化吸收肽:主要是二肽、三肽等低肽,比氨基酸消化吸收快,吸收率高,并具有抵抗原性、低渗透压,不会引起过敏、腹泻等不良反应,适用于胃功能低下、消化道疾病患者术后恢复、耐久力运动员、婴幼儿及老人的滋补食品。抗菌肽:又称抗微生物肽,广泛分布于自然界,在原核生物和真核生物都存在。如植物、微生物、昆虫和脊椎动物在微生物感染时迅速合成而得,也可以用基因克隆技术生产。如乳球菌肽(Nisin)即具有很强杀菌作用。抗菌肽主要用于食品防腐保鲜。吗啡片肽:源于动物乳中酪蛋白、乳清蛋白、乳球蛋白分离和血红蛋白、植物蛋白酶解制而得,是最早的食品蛋白肽,具有镇痛、调节人体情绪、呼吸、脉搏、体温、消化系统及内分泌等功能。类吗啡拮抗肽:有牛乳k-酪蛋白经胰蛋白酶作用分离而得,与类吗啡肽相拮抗,具有抑制血管紧张素转换酶与平滑肌收缩活性等功用。血管紧张素转换酶抑制肽(简称ACEI肽):从天然蛇毒中分离和细菌胶原酶降解胶原蛋白或牛乳酪蛋白、大豆、玉米、沙丁鱼、磷虾蛋白等酶解而制得的ACEI肽,是血管紧张素转换酶抑制剂,具有降血压的显著功效。其低肽易消化吸收,具有促进细胞增殖、提高毛细血管通透性等作用,可用做降压功能食品基料。抑制胆固醇作用肽:大豆等植物蛋白经胃蛋白酶或胰酶作用而制得,具有高疏水性,能刺激甲状腺素的分泌,促进胆固醇的胆汁酸化,增加胆固醇排泄,用于降胆固醇的保健食品。促进矿物质吸收肽:主要是动物乳中酪蛋白经胰蛋白酶作用后制得的酪蛋白磷酸肽(CPP),具有促进钙、铁吸收的功能,可用于幼儿、老年食品和耐乳糖过敏的酸奶等产品。机体防御功能肽:如谷胱甘肽(GSH),系用微生物细胞或酶生物合成,也可用大肠杆菌重组生产,具有多种重要生理功能。苦味肽:是蛋白质酶解液中的苦味物质,由某些疏水基团和疏水性氨基酸构成,可用活性炭吸附或用某些端肽酶、乳酸菌、酿酒酵母等微生物进一步水解,脱出或减轻苦味后,其必需氨基酸含量比酶解液中更高,营养价值更大,可用做食品营养强化剂。肝性脑病防治肽:如F值寡肽,系由动物或植物蛋白酶解制得,用于防治肝性脑病药品,和护肝保健食品或抗疲劳食品。其他活性肽:如促进免疫作用肽、成熟肽、促进巨噬细胞作用肽、抑制血小板凝集因子肽、降血压肽……
请问,抗菌肽有毒性么?对人体有毒么?——存在对人体有毒的多肽么?有的话,是哪些呢? 因为看到有声称“生物
有毒的肽/蛋白多了去了,蛇毒基本上都是吧(望天抗菌肽指的是一类多肽,这些多肽都是在生物体内天然合成的物质,具有杀菌作用。和传统抗生素相比它有很多优势,例如它的机制是直接杀死细菌而不是抑制细菌生长,此外它暂时没有观察到耐药性等。在医药领域,目前取得了一些研究进展,可能在未来它有望成为继抗生素之后的新一代抗感染药物,但目前应该还没有这种药物上市。LZ说的这个。。。是居家用的消毒剂?按道理说这种生物制剂的使用要求还是比较严格的吧。。。记得采纳啊
生物抗菌肽(威洛特)
保质期:三年产品规格:500ML/瓶贮藏保存:常温或低温避光密封贮存主要成分:苦参芦荟、印度苦楝、柑橘皮、生物抗菌肽注章事项:旅转喷嘴至雾状模式,对着需要消毒祛味、除臭的区域喷洒,如宠物店环境、居室环境、墙辟、地板等,重点喷洒易污染区,如窝垫笼具、宠物大小便处、以及宠物体表。
三氯乙酸 蛋白质 酶 生物 实验
三氯乙酸的作用楼上两位已经说得很明白了,我来具体说说它在本实验中作用吧。土壤中产蛋白酶的微生物,在生长过程中会向细胞外分泌蛋白酶,加入三氯乙酸后,这些细胞外的蛋白酶变性沉淀出絮状物,据此判断该微生物可能是产蛋白酶的。比如你在液体培养基里养了某菌,然后离心把菌沉淀出来,如果培养基里有足够浓度的细菌分泌出来的蛋白酶,加入10%左右的三氯乙酸后就可以看见絮状沉淀。不过这些沉淀也不一定是蛋白酶,可能只是一般的蛋白质。呵呵,也许有别的作用,暂时想到这样子。
生物半透膜由什么构成
生物的半透膜一般由磷脂构成,不同的生物半透膜上还可能含有糖类和蛋白质。
半透膜和生物膜的区别和联系
半透膜无选择性,好比过滤用的滤纸,大的分子不能通过。生物膜是选择透过性,可对物质有选择的吸收、排出。有用请采纳哦
生物膜中有哪些是半透膜
生物膜是指脂质双分子层构成的片层结构,其中分布着蛋白质、糖类等物质,包括细胞膜、细胞器膜以及核膜。半透膜在化学中只允许溶液通过,胶体和浊液均不能通过。人体的细胞膜、腺粒体膜及血管壁都属于具有半透膜性质的生物膜,其它像膀胱膜、神经细胞膜、腹膜都属于半透膜。
生物上说的半透膜是什么,有什么作用
什么是半透膜?高中化学课本中是这样解释的:“一般指动物的膀胱膜、肠衣、羊皮纹、胶棉薄膜、玻璃纸等。半透膜有非常小的细孔,这些细孔只能使离子或分子透过,而不能使胶体微粒通过。而高中生物课本中又是这样解释的:“是指水分子能够自由通过,而蔗糖等大分子不能通过的薄膜,一般指玻璃纸、动物膀胱膜等。”因此,高中学生在学习了“胶体”和“生物的新陈代谢”知识以后常常发生这样的疑问:蔗糖分子比水分子大,但还算高分子,它不能透过半透膜,即分离胶体的渗析作用会不会失灵呢? 事实上,凡是只容许混合物中的一些物质透过,而不容许另一些物质透过的薄膜都叫半透膜。例如动物的膀胱容许水透过而不容许酒精透过,灼热的钯和铂容许氢气分子透过而不容许氩、氖等气体透过。不同的半透膜的半透性能不同,而且同一半透膜在不同条件下半透性能也可以不同。细胞膜的半透性能及其变化与维持细胞内的特殊化学组成,细胞内外物质交换以及各种生物电现象都密切相关。人工制造的半透膜种类很多,如用铁氰化铜沉淀于无釉陶瓷中制成的膜,赛璐玢,胶棉膜等等。它们的应用也很广,如用以分离大小分子,测定渗透压强和气体分压等等
高中生物半透膜,可以通过什么物质
在高中生物中,能通过半透膜的主要是一些小分子颗粒以维持细胞正常代谢:乙醇、甘油、水、二氧化碳、氧气、葡萄糖、氨基酸以及一些无机盐离子(钙、镁、钠等)等。其中,乙醇、甘油、水、二氧化碳、氧气等以被动运输的方式跨膜;氨基酸、一些无机盐离子(钙、镁、钠等)已主动运输方式跨膜。
半透膜和选择性透过膜有什么区别啊?【高一生物】
区别:半透膜没有选择性,小分子可通过,大分子则不能通过,它的对象为分子的大小;选择性透过膜具有选择性,是针对某一分子(离子),不管这种分子(离子)是否为大(小)分子。 半透膜(英语:semipermeable membrane)是一种只给某种分子或离子扩散进出的薄膜,对不同质点的通过具有选择性的薄膜。例如细胞膜、膀胱膜、羊皮纸以及人工制的胶棉薄膜等。现代半透膜还用与多孔性壁(如无釉陶瓷)并使适当的化合物(如铁氰化铜)沉淀于其孔隙中制成。半透膜用于渗透溶胶和测定渗透压强等。生物吸取养分也是通过半透膜进行的。是用高分子材料经过特殊工艺制成的半透膜,它只允许水分子透过,而不允许溶质通过。用高压泵使处于半透膜一侧的原水压力超过渗透压时,原水中的水分子就能够透过半透膜进入另一侧,从而获得纯净水。而原水中的溶解与非溶解的无机盐,重金属离子,有机物,菌体,胶体等物质无法通过半透膜,只能留在浓缩水中被放掉。 反渗透设备广泛应用于医药行业、饮料行业、电子、电力行业等。 补充:半透膜是一种只允许离子和小分子自由通过的膜结构[1],生物大分子不能自由通过半透膜,其原因是因为半透膜的孔隙的大小比离子和小分子大但比生物大分子如蛋白质和淀粉小。
高中生物 半透膜问题
这道题我们老师讲过了,有点坑注意看题目,下面说的是加入某种等量微量物质,(等量微量)而且注意看它问题:最可能是什么,(最可能)还有看括号里(体积小于或等于单糖的物质,注意那个(或),而半透膜决定分子通过是看它孔径大小,不是所有半透膜的透过能力都一样,而题目意思是这就是一张不知道能不能透过单糖分子的半透膜,要是孔径不够,存在不能透过的可能!~A,D怎么排除就不解释了,那么麦芽糖分解之后,一份子麦芽糖分解为两分子葡萄糖,浓度自然升高,所以右边升高,答案选C,如果选B就是左边升高了·和题目意思不符合@!~C就是这么来的·这道题坑在审题上·老师后来解释还真雷了我们一番如果对您有帮助,希望采纳,谢谢
半透膜和生物膜的区别【高中】
半透膜是指一些物质可以透过,另一些物质不能透过的多孔性薄膜。从结构上看,生物膜相当于于半透膜。但是,从功能上看,半透膜(如动物的膀胱膜、玻璃纸)对物质的透性取决于它的分子间隙,只要分子直径小于此间隙的物质就可以通过。而生物膜是选择透过性膜,只有被选择吸收的物质才能通过,其具体表现是:①脂溶性物质优先通过;②水分子可以自由通过生物膜上的通道;③细胞选择的离子和小分子可以通过;④细胞需要的一些大分子物质采用膜泡运输的方式进出细胞;⑤不被细胞选择的离子、小分子、大分子不能通过。半透膜与选择透过性膜是两个明显不同的概念,即半透膜是物理学上的概念,物质的透过与否取决于半透膜孔隙直径的大小,而选择透过性膜是生理学上的概念,它具有生物活性,即便是小分子,只要不是细胞所要选择吸收的,也不能通过。半透膜与选择透过性膜是有区别的。半透膜的透性是由半透膜上的孔隙大小决定的,即分子直径大于膜孔隙的物质不能通过半透膜,只有分子直径小于膜孔隙的物质才能通过,因此半透膜是一种物理膜;而选择透过性膜的透性是由膜上磷脂双分子层的物理化学性质和膜上蛋白载体共同决定的,当然大分子物质是不能过膜的,但何种小分子物质过膜是受到严格选择的,不单纯由该物质的分子直径而定,因此细胞的膜结构是生物膜。
关于半透膜的生物问题
分类: 教育/科学 >> 升学入学 >> 高考 问题描述: 半透膜将容器分为2个部分,向左边的加入10%的葡萄糖溶液,向右边加入10%的蔗糖溶液,液面一样高.问一段时间后液面如何变化,为什么??? 解析: 一般情况下,我们常说的溶液浓度是指溶液中溶质的质量浓度,在上题中在溶质质量相等的情况下,由于葡萄糖的分子质量小,分子的量多于蔗糖的分子,这时,蔗糖侧的水透过半透膜进入葡萄糖侧的量多于葡萄糖侧的水透过半透膜进入蔗糖侧的水的量,表现为蔗糖侧的水进入葡萄糖一侧,使蔗糖一侧的液面上升。同时,由于葡萄糖的分子小,会通过半透膜进入蔗糖一侧,使蔗糖一侧的溶质的浓度升高,而葡萄糖一侧的溶质的浓度下降,这时水又会反向向蔗糖一侧流动,使葡萄糖一端已经升高的液面回落,而使蔗糖一侧的液面上升。在不考虑其他因素的情况下,两侧的溶质的量相等时,既溶质的分子的量相等时(当两侧的渗透压相等时,)两侧进出的水分子的量保持相对平衡。这时两侧的液面又达到一样的高度,只是这时的溶液和当初的溶液已经在浓度上在所不同了。
生物膜中有哪些是半透膜
生物膜是指脂质双分子层构成的片层结构,其中分布着蛋白质、糖类等物质,包括细胞膜、细胞器膜以及核膜。半透膜在化学中只允许溶液通过,胶体和浊液均不能通过。人体的细胞膜、腺粒体膜及血管壁都属于具有半透膜性质的生物膜,其它像膀胱膜、神经细胞膜、腹膜都属于半透膜。
半透膜不是可以分离溶液和胶体吗?那为什么生物说细胞膜是半透膜,水分子可以通过而蔗糖分子不能通过?这
半透膜(英语:semipermeable membrane)是一种只给某种分子或离子扩散进出的薄膜,对不同粒子的通过具有选择性的薄膜。用高分子材料经过特殊工艺制成的半透膜,它只允许水分子透过,而不允许溶质通过半透膜在化学中只允许溶液通过,胶体和浊液均不能通过。(粒子大小 浊液:大于100nm;胶体:1~100nm;溶液:小于1nm 注1nm=1纳米)生物膜就是一种半透膜,植物细胞的原生质层与细胞液共同组成一个渗透系统,能够允许一些小分子比如说水、氧气、二氧化碳等自由通过参考百度百科。意思就是这两种都是半透膜,但是前一种是人工制造的半透膜,具有不同大小的孔径,根据粒子的大小选择性通过。可以允许水分子通过或者部分离子通过。而生物膜是活细胞才具有的半透膜,简单扩散的小分子化合物就是利用的生物膜的选择通透性。细胞膜对蔗糖是不通透的,运送蔗糖靠的是主动运输。这么说应该能理解吧
(高中生物)哪些物质可以/不可以透过半透膜?
在高中生物知识体系中 (1)能通过半透膜的有:常见的阴阳离子;水、二氧化碳、氧气、葡萄糖、甘油、氨基酸等 (2)不能透过的有:蔗糖、麦芽糖;淀粉、蛋白质、核酸等生物大分子
半透膜、选择透过性膜、生物膜之间的关系。
半透膜一般是指膜上面有均匀的孔道,只允许分子直径小于孔径的分子通过,分子直径大于孔径的分子则不能通过的结构物质。选择透过性膜不是以分子孔径定义,而是以细胞是否需要这种物质决定是否允许通过,生物膜都是选择透过性膜,必须保持生命的活性,选择透过性才能保证正常的执行。
高中生物半透膜,可以通过什么物质
在高中生物中,能通过半透膜的主要是一些小分子颗粒以维持细胞正常代谢:乙醇、甘油、水、二氧化碳、氧气、葡萄糖、氨基酸以及一些无机盐离子(钙、镁、钠等)等。其中,乙醇、甘油、水、二氧化碳、氧气等以被动运输的方式跨膜;氨基酸、一些无机盐离子(钙、镁、钠等)已主动运输方式跨膜。
半透膜和生物膜的区别
半透膜是指一些物质可以透过,另一些物质不能透过的多孔性薄膜。从结构上看,生物膜相当于于半透膜。但是,从功能上看,半透膜(如动物的膀胱膜、玻璃纸)对物质的透性取决于它的分子间隙,只要分子直径小于此间隙的物质就可以通过。而生物膜是选择透过性膜,只有被选择吸收的物质才能通过,其具体表现是:①脂溶性物质优先通过;②水分子可以自由通过生物膜上的通道;③细胞选择的离子和小分子可以通过;④细胞需要的一些大分子物质采用膜泡运输的方式进出细胞;⑤不被细胞选择的离子、小分子、大分子不能通过。半透膜与选择透过性膜是两个明显不同的概念,即半透膜是物理学上的概念,物质的透过与否取决于半透膜孔隙直径的大小,而选择透过性膜是生理学上的概念,它具有生物活性,即便是小分子,只要不是细胞所要选择吸收的,也不能通过。半透膜与选择透过性膜是有区别的。半透膜的透性是由半透膜上的孔隙大小决定的,即分子直径大于膜孔隙的物质不能通过半透膜,只有分子直径小于膜孔隙的物质才能通过,因此半透膜是一种物理膜;而选择透过性膜的透性是由膜上磷脂双分子层的物理化学性质和膜上蛋白载体共同决定的,当然大分子物质是不能过膜的,但何种小分子物质过膜是受到严格选择的,不单纯由该物质的分子直径而定,因此细胞的膜结构是生物膜。
高中生物问题,怎么判断甜味肽是二肽
判断多肽或者二肽要靠N原子。理论上来说,二肽至少含有2个N原子 而三肽至少含有三个N原子,以此类推。故而只有2个N原子的肽 一定就是二肽。我是高中生物老师,刚讲过这道题。
海拉尔二中生物老师那个好
我可以跟你讲,于宗丽老师非常棒,我高一时候生物考30分,高二换了她以后我开始听生物课做生物题,到高三后来模拟的时候我生物能接近80。
生物:什么是二肽,什么是三肽,有没有一肽?如何画图?详细!
二肽就是两个氨基酸连在一起,三肽就是三个氨基酸合在一起,没有一肽 二肽是二胜肽的最简单的肽,由一分子氨基酸的α-羧基和另一分子氨基酸的α-氨基脱水缩合形成的酰胺键(即-CO-NH-)组成的蛋白质片段或物质。其分子中仅包含一个肽键。它们是一大类物质的统称。
生物中肽键和二肽怎么区分?怎么知道是几肽?肽链是什么?
肽键是两个氨基酸脱水缩和形成的化学键(中心词是化学键),二肽是两个氨基酸脱水缩和连接成的分子(中心词是分子)。由几个氨基酸连接而成就是几肽,如由五个氨基酸脱水缩和连接而成则叫做五肽。肽链就是由多个多肽连接成的氨基酸长链。懂了请采纳,不懂请追问谢谢~(一个比你们都苦逼的高三复习党)
生物中的二肽和三肽是什么意思啊?
两个氨基酸脱水缩合会形成一个肽键 同理 三个氨基酸脱水缩合会形成两个肽键,简称二肽 四个氨基酸脱水缩合会形成三个肽键,简称三肽 n+1个氨基酸脱水缩合会形成n个肽键,简称多肽(n>3)
生物:什么是水解酶?详细!
水解就是物质跟水反应 分解酶就是能促进反应的一种有机物,大多是蛋白质,少量是核酸水解酶就是帮助水解反应的酶
生物:被蛋白酶水解是什么意思?详细!
就是有一种酶,专门水解蛋白质的,叫蛋白酶,具有专一性的。被蛋白酶水解就是这个蛋白质被相应的蛋白酶分解了,蛋白质分解后形成多肽,这个过程需要加入水分子,所以说“水解”。
生物化学求解 谢谢了 胰脏分泌的蛋白质降解酶类主要有哪些,它们的蛋白质降解能力是如何被活化的?
蛋白水解酶又称肽酶,包括内肽酶、外肽酶、寡肽酶和二肽酶。内肽酶有胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶和弹性蛋白酶,对肽链内肽键的特异性不同。胃蛋白酶对底物特异性较低,主要水解Phe、Try C端的肽键;胰蛋白酶水解Lys、Arg C端;胰凝乳蛋白酶作用Phe、Try C端;弹性蛋白酶作用脂肪族氨基酸C端。羧肽酶、氨肽酶是外肽酶,羧肽酶B要求肽的C末端氨基酸残基必须是Arg、Lys;羧肽酶A则水解除Arg、Lys,Pro或羟脯氨酸外的C末端氨基酸残基。胃粘膜主细胞分泌胃蛋白酶原,经胃酸激活生成胃蛋白酶。胃蛋白酶有自身激活作用。胰酶的前体也是无活性的酶原,进入十二指肠后,胰蛋白酶原迅速被肠激酶激活;胰蛋白酶自身激活作用不强,加上胰液中存在的胰蛋白酶抑制剂,可保护胰脏免遭自身消化,但胰蛋白酶能迅速激活胰液中其他几种酶原。
高中生物:ATP在什麼地方合成?在哪些地方分解?
在细胞质基质、线粒体、叶绿体细胞质基质:有氧呼吸第一阶段和无氧呼吸线粒体:有氧呼吸第二、三阶段(线粒体基质和内膜)以上合成的ATP用于各种生化反应,地点一般在细胞质基质叶绿体:光反应(类囊体薄膜),用于暗反应,在叶绿体基质分解
维持生物体生命活动的氧化物是什么
ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍存在的一种高能磷酸化合物.高能磷酸化合物是指水解时释放的能量在20.92kJ/mol(千焦每摩尔)以上的磷酸化合物,ATP水解时释放的能量高达30.54kJ/mol.ATP的分子式可以简写成A-P~P~P.简式中的A代表腺苷①,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键.ATP的水解实际上是指ATP分子中高能磷酸键的水解.高能磷酸键水解时能够释放出大量的能量,ATP分子中大量的化学能就储存在高能磷酸键中,保证细胞各项生命活动的能量供应.因此直接提供维持生物体生命活动能量的物质是ATP.
ATP作为生物体直接的能量来源,是直接被利用吗?
新陈代谢与ATP的关系: 新陈代谢不仅需要酶,而且需要能量。我们知道,糖类是细胞的主要能源物质之一,脂肪是生物体内储存能量的主要物质。但是,这些有机物中的能量都不能直接被生物体利用,它们只有在细胞中随着这些有机物逐步氧化分解而释放出来,并且储存在ATP中才能被生物体利用。所以说,新陈代谢所需要的能量是由细胞内的ATP直接提供的,ATP是新陈代谢所需能量的直接来源。 ATP的分子简式 ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍存在的一种高能磷酸化合物。高能磷酸化合物是指水解时释放的能量在20.92 kJ/mol(千焦每摩尔)以上的磷酸化合物,ATP水解时释放的能量高达30.54 kJ/mol。 ATP的分子式可以简写成A- P~P~P。简式中的A代表腺苷①,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键。ATP的水解实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时能够释放出大量的能量,ATP分子中大量的化学能就储存在高能磷酸键中。 ATP与ADP的相互转化: 科学研究表明,ATP分子中远离A的那个高能磷酸键,在一定的条件下很容易水解,也很容易重新形成:水解时伴随有能量的释放;重新形成时伴随有能量的储存。在有关酶的催化作用下,ATP分子中远离A的那个高能磷酸键水解,远离A的那个磷酸基团脱离开,形成磷酸(Pi),同时,储存在这个高能磷酸键中的能量释放出来,三磷酸腺苷就转化成二磷酸腺苷(英文缩写符号是ADP) 。在另一种酶的催化作用下,ADP可以接受能量,同时与一个磷酸结合,从而转化成ATP。ATP在细胞内的含量是很少的。但是,ATP在细胞内的转化是十分迅速的。这样,细胞内ATP的含量总是处在动态平衡之中,这对于构成生物体内部稳定的供能环境,具有重要的意义。ATP水解时释放出的能量,是生物体维持细胞分裂、根吸收矿质元素离子和肌肉收缩等生命活动所需能量的直接来源。 ATP的形成途径 生物体内的活细胞怎样使ADP转化成ATP,以便保证能量的不断供应呢?对于动物和人来说,ADP转化成ATP时所需要的能量,主要来自线粒体内有氧呼吸过程中分解有机物释放出的能量。对于绿色植物来说,ADP转化成ATP时所需要的能量,除了来自有氧呼吸过程中分解有机物释放出的能量外,还来自光合作用。 总之,构成生物体的活细胞,根据生命活动的需要,内部时刻进行着ATP与ADP的相互转化,同时也就伴随有能量的储存和释放。我们可以形象地把ATP比喻成细胞内流通着的“能量货币”。正是由于细胞内具有这种流通着的“能量货币”,生物体的生命活动才能及时地得到能量供应,新陈代谢才能顺利地进行下去。
生物的ATP是什么意思啊?
ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍存在的一种高能磷酸化合物。高能磷酸化合物是指水解时释放的能量在20.92kJ/mol(千焦每摩尔)以上的磷酸化合物,ATP水解时释放的能量高达30.54kJ/mol。ATP的分子式可以简写成A-P~P~P。简式中的A代表腺苷①,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键。ATP的水解实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时能够释放出大量的能量,ATP分子中大量的化学能就储存在高能磷酸键中。
生物化学名词解释 谢谢 自由能 高能磷酸化合物
自由能指的是在某一个热力学过程中,系统减少的内能中可以转化为对外作功的部分。自由能(free energy)在物理化学中,按照亥姆霍兹的定容自由能F与吉布斯的定压自由能G的定义,G=A+PV (P为压力,V为体积)。在生物的反应中,因为△(PV)可以忽略不计,所以两者是相同的。只有这样,A的变化△A=△U-T△S才成为主要讨论的问题(U、T、S分别是该系统的内能、绝对温度、熵)。△A给出了生物反应中释放出来可用于做功的能量上限。其变化量(一般用△G*表示)在生物学上使用时必须注意下列事项:⑴水的活度,可随意设为1.0进行计算:⑵因[H+]=1M并不符合实际情况,一般认为[H+]=10^(-7) M(pH=7),为了区别其符号写成△G0′;⑶例如反应,因各种成分并非标准浓度(1M),把实际浓度代入下式后其值△G′就有问题了;⑷在共轭反应中,要注意各种成分反应的变化量之和;⑸把△G0改为用平衡常数(Keq)表示,往往是很有用的。高能磷酸化合物(energy rich phosphate compounds)是指水解自由能在20.92KJ/mol以上的磷酸化合物。代谢过程中出现的磷酸化合物,尽管它们都是脱水形成的,但是将它们再水解时,释放的自由能有极大的差异。有些自由能的变化为-2000到-3000cal,如6-磷酸葡萄糖、3-磷酸甘油、腺核苷酸等;另有一些如焦磷酸、乙酰磷酸、肌酸磷酸、磷酸烯醇式丙酮酸等磷酸化合物,每克分子水解时,自由能的变化为-7000到-12000cal。根据这些实验结果,生化上将后一类磷酸化合物称作高能磷酸化合物,前一类称低能磷酸化合物(以5000cal为界限)。
下面哪些属于生物体内常见的高能磷酸化合物?
下面哪些属于生物体内常见的高能磷酸化合物? A.ATPB.GTPC.CTPD.UTP正确答案:ATP;GTP;CTP;UTP
生物学科中所谓的ATP是指什么?
ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍存在的一种高能磷酸化合物。高能磷酸化合物是指水解时释放的能量在20.92kJ/mol(千焦每摩尔)以上的磷酸化合物,ATP水解时释放的能量高达30.54kJ/mol。ATP的分子式可以简写成A-P~P~P。简式中的A代表腺苷①,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键。ATP的水解实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时能够释放出大量的能量,ATP分子中大量的化学能就储存在高能磷酸键中。
生物体内既能贮存能量,又能为生命活动直接提供能量的物质是什么
ATP的分子简式 ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍存在的一种高能磷酸化合物。高能磷酸化合物是指水解时释放的能量在20.92 kJ/mol(千焦每摩尔)以上的磷酸化合物,ATP水解时释放的能量高达30.54 kJ/mol。 ATP的分子式可以简写成A- P~P~P。简式中的A代表腺苷①,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键。ATP的水解实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时能够释放出大量的能量,ATP分子中大量的化学能就储存在高能磷酸键中。 ATP与ADP的相互转化: 科学研究表明,ATP分子中远离A的那个高能磷酸键,在一定的条件下很容易水解,也很容易重新形成:水解时伴随有能量的释放;重新形成时伴随有能量的储存。在有关酶的催化作用下,ATP分子中远离A的那个高能磷酸键水解,远离A的那个磷酸基团脱离开,形成磷酸(Pi),同时,储存在这个高能磷酸键中的能量释放出来,三磷酸腺苷就转化成二磷酸腺苷(英文缩写符号是ADP) 。在另一种酶的催化作用下,ADP可以接受能量,同时与一个磷酸结合,从而转化成ATP。ATP在细胞内的含量是很少的。但是,ATP在细胞内的转化是十分迅速的。这样,细胞内ATP的含量总是处在动态平衡之中,这对于构成生物体内部稳定的供能环境,具有重要的意义。ATP水解时释放出的能量,是生物体维持细胞分裂、根吸收矿质元素离子和肌肉收缩等生命活动所需能量的直接来源。
生物体内的高能磷酸化合物有多种
不属于高能磷酸化合物的是A.磷酸肌酸B.GTPC.CTPD.UTPE.磷酸肌醇答案是E
所有生物膜上都有糖蛋白?
不是的所有生物膜上都有糖蛋白。生物膜包括,细胞膜、核膜。膜性细胞器(叶绿体、线粒体、高尔基体、内质网、溶酶体、液泡),而糖蛋白只存在细胞膜外表。糖蛋白多肽链常携带许多短的杂糖链。它们通常包括N-乙酰己糠胺和己糖(常是半乳糖和/或甘露糖,而葡萄糖竟较少)。该链末端成员常常是唾液酸或L-岩藻糖。这种寡糖链常分支,很少含多于15个单体的,一般含2—10个单体,分子量相当于540—3,200。糖链数目也变化很大。扩展资料糖蛋白是含糖的蛋白质,由寡糖链与肽链中的一定氨基酸残基以糖苷键共价连接而成。其主要生物学功能为细胞或分子的生物识别,如卵子受精时精子需识别卵子细胞膜上相应的糖蛋白。受体蛋白、肿瘤细胞表面抗原等亦均属糖蛋白。 糖蛋白普遍存在于动物、植物及微生物中,种类繁多,功能广泛。可按存在方式分为三类:1、可溶性糖蛋白,存在于细胞内液、各种体液及腔道腺体分泌的粘液中。血浆蛋白除白蛋白外皆为糖蛋白。可溶性糖蛋白包括酶(如核酸酶类、蛋白酶类、糖苷酶类)、肽类激素(如绒毛膜促性腺激素、促黄体激素、促甲状腺素、促红细胞生成素)、抗体、补体、以及某些生长因子、干扰素、抑素、凝集素及毒素等。2、膜结合糖蛋白,其肽链由疏水肽段及亲水肽段组成。疏水肽段可为一至数个,并通过疏水相互作用嵌入膜脂双层中。亲水肽段暴露于膜外。糖链连接在亲水肽段并有严格的方向性。在质膜表面糖链一律朝外;在细胞内膜一般朝腔面。膜结合糖蛋白包括酶、受体、凝集素及运载蛋白等。此类糖蛋白常参与细胞识别,并可作为特定细胞或细胞在特定阶段的表面标志或表面抗原。3、结构糖蛋白,为细胞外基质中的不溶性大分子糖蛋白,如胶原及各种非胶原糖蛋白(纤粘连蛋白、层粘连蛋白等)。它们的功能不仅仅是作为细胞外基质的结构成分起支持、连接及缓冲作用,更重要的是参与细胞的识别、粘着及迁移,并调控细胞的增殖及分化。参考资料来源:百度百科-糖蛋白
高中生物 什么东西属于糖蛋白? 举例:干扰素 。。等等
可按存在方式分为三类:1、可溶性糖蛋白,存在于细胞内液、各种体液及腔道腺体分泌的粘液中。血浆蛋白除白蛋白外皆为糖蛋白。可溶性糖蛋白包括酶(如核酸酶类、蛋白酶类、糖苷酶类)、肽类激素(如绒毛膜促性腺激素、促黄体激素、促甲状腺素、促红细胞生成素)、抗体、补体、以及某些生长因子、干扰素、抑素、凝集素及毒素等。2、膜结合糖蛋白,其肽链由疏水肽段及亲水肽段组成。疏水肽段可为一至数个,并通过疏水相互作用嵌入膜脂双层中。亲水肽段暴露于膜外。糖链连接在亲水肽段并有严格的方向性。在质膜表面糖链一律朝外;在细胞内膜一般朝腔面。膜结合糖蛋白包括酶、受体、凝集素及运载蛋白等。此类糖蛋白常参与细胞识别,并可作为特定细胞或细胞在特定阶段的表面标志或表面抗原。3、结构糖蛋白,为细胞外基质中的不溶性大分子糖蛋白,如胶原及各种非胶原糖蛋白(纤粘连蛋白、层粘连蛋白等)。它们的功能不仅仅是作为细胞外基质的结构成分起支持、连接及缓冲作用,更重要的是参与细胞的识别、粘着及迁移,并调控细胞的增殖及分化。寡糖链通常指由2~10个单糖基借糖苷键连成的聚合体。糖蛋白的寡糖链多有分枝。由于单糖的端基碳(异头碳)原子有α、β两种构型,而且单糖分子中存在多个可形成糖苷键的羟基,因此,糖链结构的多样性超过多核苷酸及肽链。在糖链结构中可以贮存足够的识别信息,从而在分子识别及细胞识别中起决定性作用。糖蛋白参与的生理功能包括凝血、免疫、分泌、内吞、物质转运、信息传递、神经传导、生长及分化的调节、细胞迁移、细胞归巢、创伤修复及再生等。糖蛋白的糖链还参与维持其肽链处于有生物活性的天然构象及稳定肽链结构,并赋予整个糖蛋白分子以特定的理化性质(如润滑性、粘弹性、抗热失活、抗蛋白酶水解及抗冻性等)。(摘自百度百科)
高中生物 为什么教科书上说糖蛋白与糖脂构成糖被,而不是糖蛋白属于受体蛋白呢?糖蛋白和受体蛋白是
糖蛋白(glycoprotein)是分支的寡糖链与多肽链共价相连所构成的复合糖,主链较短,在大多数情况下,糖的含量小于蛋白质。同时,糖蛋白还是一种结合蛋白质,糖蛋白是由短的寡糖链与蛋白质共价相连构成的分子。受体在药理学上是指糖蛋白或脂蛋白构成的生物大分子,存在于细胞膜、胞浆或细胞核内。不同的受体有特异的结构和构型。
糖蛋白的生物学功能
糖蛋白寡糖链末端的唾液酸残基,决定着某种蛋白质是否在血流中存在或被肝脏除去的信息。A.脊椎动物血液中的铜蓝蛋白。肝细胞能降解丢失了唾液酸的铜蓝蛋白,唾液酸的消除可能是体内“老”蛋白的标记方式之一。B.红细胞。新生的红细胞膜上唾液酸的含量远高于成熟的红细胞膜。用唾液酸酶处理新生的红细胞,回注机体,几小时后全部消失。而末用酶处理的红细胞,回注几天以后,仍能在体内正常存活。 淋巴细胞正常情况应归巢到脾脏,而切去唾液酸后,结果竟然归巢到了肝脏。在原核中表达的真核基因,无法糖基化。糖蛋白可以是胞溶性的,也可以是膜结合型的,可以存在于细胞内在也可存在于细胞间质中。糖蛋白在动植物中较为典型,脊柱动物中糖蛋白尤为丰富,如金属转运蛋白(转铁蛋白)、血铜蓝蛋白,凝血因子、补体系统、一些激素,促卵泡素(Follicle-stimulating hormone, FSH,前脑下垂体分泌,促进卵子和精子的发育)、RNase、膜结合蛋白(如动物细胞膜的Na+-K+-ATPase)、主要组织相容性抗原(major histocompatibility antigen,细胞表面上介导供体器官与受体器官交叉匹配的标识)。绝大多数糖蛋白的寡糖是糖蛋白的功能中心。有些糖蛋白的糖对于糖蛋白自身成机体起着保护作用或润滑作用,如牛的RNaseB(糖蛋白)对热的抗性大于RNaseA,大量的唾液酸能增强唾液粘蛋白的粘性从而增强唾液的润滑性。南极鱼抗冻蛋白的糖组分能与水形氢键,阻止冰晶的形成从而提高了抗冻性。糖蛋白在细胞间信号传递方面着更为复杂的作用。Hiv的靶细胞结合蛋白GP120是一个糖蛋白,能与人类靶细胞表面的CD4受体结合从而附着在靶细胞表面,如果去掉GP120的糖部分则不能与CD4受体结合从而失去感染能力。细胞表面的糖蛋白形成细胞的糖萼(糖衣)、参与细胞的粘连,这在胚和组织的生长、发育以及分化中起着关键性作用。
高中生物问题:糖蛋白怎么形成的?糖蛋白里的蛋白质属于分泌蛋白吗?
结构蛋白一般是通过内质网的加工形成的含其他成分的蛋白质,如糖蛋白,脂蛋白,;糖蛋白不是分泌蛋白,分泌到胞外,在其他地方起作用的才叫分泌蛋白,很明显,糖蛋白在细胞膜上,
生物学家把鸭嘴兽归为哺乳动物的依据是什么?
回答这个问题前我想问一下为什么会有这个问题?因为鸭嘴兽生蛋所以觉得和爬行动物更接近?所以我们首先要确定一下现代哺乳动物和现代爬行动物的关系。现代哺乳动物都是合弓纲兽孔目新颌兽小目哺乳形类下的一支。而现代爬行动物都是蜥形纲,现代蜥形纲包括蛇、蜥蜴、鳄和鸟类,蜥形纲分类过于复杂这里不做叙述。合弓纲和蜥形纲在二叠纪就是两类不同的生物,也就是说现代哺乳动物和爬行动物从他们的祖宗出现开始就没关系,而不是什么蜥蜴进化成哺乳动物。合弓纲和蜥形纲一样有很多生蛋的种类,但很多已灭绝,只剩下鸭嘴兽所在的单孔目。同时,除了哺乳动物外的其他的动物类群照样有胎生哺乳现象,只不过不普遍。所以说胎生哺乳是哺乳动物在现代生物学上并不严谨,科学一直在进步,随着时代也要做出调整,现在多根据分子生物学从基因的层面来判断生物间的亲缘关系,而就目前的生物形态、行为和分子生物学的佐证,鸭嘴兽是纳入哺乳动物的。
高中生物单糖有哪些
常见单糖分为五碳糖和六碳糖。五碳糖有核糖和脱氧核糖。六碳糖有葡萄糖、果糖和半乳糖等。常见的就这些。补充:常见二糖有1.麦芽糖(两分子葡萄糖组成)2.蔗糖(一分子葡萄糖和一分子果糖组成)3.乳糖(一分子葡萄糖和一分子半乳糖组成)4.纤维二糖(生物里不考)常见多糖:1.淀粉(水解形成多分子葡萄糖)2.纤维素(水解形成多分子葡萄糖)3.糖元(水解形成多分子葡萄糖)1和2仅存在于植物细胞中 3仅存在于动物细胞中。望采纳
高中生物单糖有哪些
常见单糖分为五碳糖和六碳糖。五碳糖有核糖和脱氧核糖。六碳糖有葡萄糖、果糖和半乳糖等。常见的就这些。补充:常见二糖有1.麦芽糖(两分子葡萄糖组成)2.蔗糖(一分子葡萄糖和一分子果糖组成)3.乳糖(一分子葡萄糖和一分子半乳糖组成)4.纤维二糖(生物里不考)常见多糖:1.淀粉(水解形成多分子葡萄糖)2.纤维素(水解形成多分子葡萄糖)3.糖元(水解形成多分子葡萄糖)1和2仅存在于植物细胞中3仅存在于动物细胞中。望采纳
高中生物,单糖二糖多糖有那些?要详细常见的-
单糖:不能再分的糖。常见单糖(主要类型:五碳糖——核糖和脱氧核糖,六碳糖——葡萄糖、果糖、半乳糖,并利用多媒体展示它们的分子式)及分布、功能(着重强调葡萄糖是细胞活动所需要的主要能源物质、五碳糖构成核酸)。二糖:水解时能够形成两分子单糖的糖。媒体展示“图2—11几种二糖的组成示意图”,指导学生分析,通过分析让学生了解几种主要的二糖及它们的组成和水解产物。多糖:水解时可形成3个及3个以上单糖的糖。主要是淀粉、糖原、纤维素等多糖的分布(存在生物及部分)和作用。希望采纳
高一生物:哪些是单糖、二糖、多糖,怎么记比较容易啊?
单糖是指不能再被简单水解成更小的糖类的分子。二糖又名双糖,由二分子的单糖通过糖苷键形成,在一种单糖的还原基团和另一种糖的醇羟基相结合的情况下,显示出与单糖的共同化学性质,诸如还原于斐林溶液、变旋光化、脎形成等(如麦芽糖、乳糖),通过还原基结合的单糖则无这种性质(如蔗糖、海藻糖)。多糖,是由糖苷键结合的糖链,至少要超过10个的单糖组成的聚合糖高分子碳水化合物。记忆:联系生活中的例子进行记忆。其吸收糖类在小肠内已被消化成单糖,故能被小肠上皮细胞吸收入血液。按照吸收的速率可将单糖分为两类:半乳糖和葡萄糖属于吸收快的一类;果糖是属于吸收慢的一类。葡萄糖(或半乳糖)的吸收是与Na+耦联的,二者共同使用位于肠粘膜上皮纹状缘上的一种载体蛋白。由于肠腔中Na+的浓度高于细胞内的,Na+可与载体蛋白结合顺浓差而进入细胞,只要肠腔中保持着高浓度的Na+,就可带着葡萄糖主动地转运入细胞,直到肠腔中的葡萄糖全部运完。当Na+和葡萄糖进入细胞后,就与载体脱离,Na+可借细胞侧膜上的钠泵主动转运于细胞间隙。葡萄糖分子则以扩散方式通过侧膜和底膜出细胞。肠腔中的果糖可能是通过易化扩散转运入绒毛上皮。
单糖名词解释生物化学
单糖就是不能再水解的糖类,是构成各种二糖和多糖的分子的基本单位。按碳原子数目,单糖可分为丙糖、丁糖、戊糖、己糖等。自然界的单糖主要是戊糖和己糖。根据构造,单糖又可分为醛糖和酮糖。多羟基醛称为醛糖,多羟基酮称为酮糖。例如,葡萄糖为己醛糖,果糖为己酮糖。单糖中最重要的与人们关系最密切的是葡萄糖等。常见的单糖还有果糖、半乳糖、核糖和脱氧核糖等。目录一分钟了解单糖5.2万 47"单糖 [dān táng]科普中国 | 本词条由“科普中国”科学百科词条编写与应用工作项目审核审阅专家包申旭单糖是指分子结构中含有3~6 个碳原子的糖,如三碳糖的甘油醛; 四碳糖的赤藓糖、苏力糖; 五碳糖的阿拉伯糖、核糖、木糖、来苏糖; 六碳糖的葡萄糖、甘露糖、果糖、半乳糖。食品中的单糖以己糖(六碳糖) 为主。[1]中文名单糖外文名Monosaccharide定义不能再水解的糖类类别丙糖、丁糖、戊糖、己糖等结构环状结构和链状结构快速导航分类结构性质单糖分类吸收定义单糖就是不能再水解的糖类,是构成各种二糖和多糖的分子的基本单位。[2]分类按碳原子数目,单糖可分为丙糖、丁糖、戊糖、己糖等。自然界的单糖主要是戊糖和己糖。根据构造,单糖又可分为醛糖和酮糖。多羟基醛称为醛糖,多羟基酮称为酮糖。例如,葡萄糖为己醛糖,果糖为己酮糖。单糖中最重要的与人们关系最密切的是葡萄糖等。常见的单糖还有果糖、半乳糖、核糖和脱氧核糖等。单糖的环状结构在溶液中,含有4个以上碳原子的单糖主要以环状结构存在。单糖分子中的羟基能与醛基或酮基可逆缩合成环状的半缩醛(emiacetal)。环化后,羰基C就成为一个手性C原子称为端异构性碳原子(anomeric carbon atom),环化后形成的两种非对映异构体称为端基异构体,或头异构体(anomer),分别称为α-型及β-型头异构体。环状结构一般用Haworth结构式表示。Haworth结构式比Fischer投影式更能正确反映糖分子中的键角和键长度。
CDP DG生物化学中指的是什么
cytidine-5"-diphosphate 1,2-diacyl-sn-glycerol 二磷酸胞苷-二酰基甘油,与肌醇在内质网上合成磷脂酰肌醇(PI)
卵磷脂生物合成所需的活性胆碱是
30、D 31、C 32、C 33、D 34、C 35、D 36、C
说明磷指的结构、特性和生物功能。
磷脂科技名词定义中文名称:磷脂英文名称:phospholipid;phosphatide;PL定义1:含有磷酸基团的脂质,包括甘油磷脂和鞘磷脂两类。属于两亲脂质,在生物膜的结构与功能中占重要地位,少量存在于细胞的其他部位。所属学科:生物化学与分子生物学(一级学科);脂质(二级学科)定义2:具有磷酸二酯结构的类脂化合物。所属学科: 水产学(一级学科);水产饲料与肥料(二级学科)定义3:含有一个或多个磷酸基的脂质。是构成细胞膜的主要脂分子。主要分为鞘磷脂及甘油磷脂两大类。所属学科:细胞生物学(一级学科);细胞化学(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片磷脂(Phospholipid),也称磷脂类、磷脂质,是含有磷酸的脂类,属于复合脂。磷脂组成生物膜的主要成分,分为甘油磷脂与鞘磷脂两大类,分别由甘油和鞘氨醇构成。磷脂为两性分子,一端为亲水的含氮或磷的尾,另一端为疏水(亲油)的长烃基链。由于此原因,磷脂分子亲水端相互靠近,疏水端相互靠近,常与蛋白质、糖脂、胆固醇等其它分子共同构成脂双分子层,即细胞膜的结构。目录简介磷脂的结构分类磷脂代谢磷脂的功能磷脂的性质甘油磷脂鞘磷脂展开编辑本段简介定义 磷脂是一类含有磷酸的脂类,机体中主要含有两大类磷脂,由甘油构成的磷脂称为甘油磷脂(phosphoglyceride);由神经鞘氨醇构成的磷脂,称为鞘磷脂(sphingolipid)。其结构特点 磷脂结构图1是:具有由磷酸相连的取代基团(含氨碱或醇类)构成的亲水头(hydrophilic head)和由脂肪酸链构成的疏水尾(hydrophobic tail)。在生物膜中磷脂的亲水头位于膜表面,而疏水尾位于膜内侧。 磷脂是重要的两亲物质,它们是生物膜的重要组分、乳化剂和表面活性剂(表面活性剂是能降低液体,通常是水的,表面张力,沿水表面扩散的物质)组成部分 磷脂(phospholipid)是生物膜的重要组成部分,其特点是在水解后产生含有脂肪酸和磷酸的混合物。根据磷脂的主链结构分为磷酸甘油脂和鞘磷脂。 1.磷酸甘油酯(phosphoglycerides)主链为甘油-3-磷酸,甘油分子中的另外两个羟基都被脂肪酸所酯化,噒酸基团又可被各种结构不同的小分子化合物酯化后形成各种磷酸甘油酯。体内含量较多的是磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、磷脂酰丝氨酸、磷脂酰甘油、二磷脂酰甘油(心磷酯)及磷酯酰肌醇等,每一磷脂可因组成的脂肪酸不同而有若干种。 从分子结构可知甘油分子的中央原子是不对称的。因而有不同的立体构型。天然存在的磷酸甘油酯都具有相同的主体化学构型。按照化学惯例。这些分子可以用二维投影式来表示。D-和L甘油醛的构型就是根据其X射线结晶学结果确定的。右旋为D构型,左旋为L构型。磷酸甘油酯的立化化学构型及命名由此而确定。 2.鞘磷脂(sphingomyelin)鞘磷脂是含硝氨醇或二氢鞘氨醇的磷脂,其分子不含甘油,是一分子脂肪酸以酰胺键与鞘氨醇的氨基相连。鞘氨醇或二氢鞘氨醇是具有脂肪族长链的氨基二元醇。有疏水的长链脂肪烃基尾和两个羟基及一个氨基的极性头。 鞘磷脂含磷酸,其末端痉基取代基团为磷酸胆碱酸乙醇胺。人体含量最多的鞘磷脂是神经鞘磷脂,由鞘氨醇、脂肪酸及磷酸胆碱构成。神经鞘磷酯是构成生物膜的重要磷酯。它常与卵磷脂并存细胞膜外侧。编辑本段磷脂的结构 甘油的C(1)和C(2)羟基被脂肪酸酯化,C(3)羟基被磷酸酯化,磷酸又与一极性醇X—OH连接,这就构成甘油磷脂。分子的非极性尾含有两个脂肪酸的长烃链,甘油C(1)连结的常是含16或18个碳原子的饱和脂肪酸,其C(2)位则常被16~20个碳原子的不饱和脂肪酸占据。磷酰—X组成甘油磷脂的极性头,故甘油磷脂可根据极性头醇(X—OH)的不同分类。X=H构成最简单的甘油磷脂,叫做磷脂酸,它在生物膜中仅有少量。通常存在于生物膜中的甘油磷脂都有极性头。重要的甘油磷脂极性头基举例如下。磷脂结构图2极性脂在水溶液表面自然形成厚度为一个脂质分子的脂单层,其烃尾避开水朝向大气,而亲水的极性头则指向极性的水相。在水系统中,极性脂自然聚在一起形成分子团(非极性尾朝内)或极薄的脂双层以分开两个水性部分。脂双层脂质分子的非极性尾向内伸展形成一个连续的内部碳氢核心,而极性头朝外,伸入水相中。脂双层较软,易弯曲流动,是生物膜的基本结构,它们依膜的类型不同,占膜重量的20~80%不等。 鞘磷脂的结构和性质见鞘脂。编辑本段分类分类标准 磷脂根据骨架的不同可以分为磷酸甘油脂(glycerolphospholiid)和鞘磷脂(sphingolipid)。它们都是极性脂。极性脂由极性部分(叫做极性头)和非极性部分(叫做非极性尾 粉末磷脂)组成。其中,甘油磷脂又可以根据极性头部集团的不同区分为磷脂酰胆碱(Phosphatidyl cholines,PC)、磷脂酰乙醇氨(Phosphatidyl ethanolamines,PE)、磷脂酰丝氨酸(Phosphatidyl serines,PS)、磷脂酰肌醇(Phosphatidyl inositols,PI)、磷脂酰甘油(PG)、甘油磷脂酸(phosphatidic acid,PA)等。具体分类 依照氨基醇的不同可分以下几类:各种甘油磷脂的极性头部和电荷量 (1)、 磷脂酰胆碱(卵磷脂)(PC),HO—CH2CH2N+(CH3)3(胆碱),分布:,植物:大豆等,动物:脑、精液、肾上腺、红细胞,蛋卵黄(8-10%)。作用:控制肝脂代谢,防止脂肪肝的形成。 (2)、 磷脂酰乙醇胺(脑磷脂)(PE),HO—CH2CH2—N+H3(乙醇胺),参与血液凝结。 (3)、 磷脂酰丝氨酸(PS),HO—CH2CH—COO-(丝氨酸), N+H3, 注:(1)—(3)X均为氨基醇。 (4)、 磷脂酰肌醇(PI), (5)、 磷脂酰甘油(PG) (6)、 二磷脂酰甘油(心磷脂)编辑本段磷脂代谢 磷脂代谢(phospholipid metabolism):磷脂在生物体内可经各种磷脂酶作用水解为甘油、脂肪酸、磷酸和各种氨基醇(如胆碱、乙醇胺、丝氨酸等)。甘油可以转变为磷酸二羟丙酮,参加糖代谢。脂肪酸经β-氧化作用而分解。磷酸是体内各种物质代谢不可缺少的物质。各种氨基醇可以参加体内磷脂的再合成,胆碱还可以通过转甲基作用转变为其他物质。磷脂合成时,乙醇胺或胆碱与atp在激酶的作用下生成磷酸乙醇胺或磷酸胆碱,然后再与ctp作用转变成胞二磷乙醇胺或胞二磷胆碱。胞二磷乙醇胺或胞二磷胆碱再与已生成的甘油二酯(见甘油三酯的生成)合成相应的磷脂。编辑本段磷脂的功能 磷脂,是含有磷脂根的类脂化合物,是生命基础物质。而细胞膜就由4 大豆磷脂粉0%左右蛋白质和50%左右的脂质(磷脂为主)构成。它是由卵磷脂,肌醇磷脂,脑磷脂等组成。这些磷脂分别对人体的各部位和各器官起着相应的功能。 人体所有细胞中都含有磷脂,它是维持生命活动的基础物质。磷脂对活化细胞,维持新陈代谢,基础代谢及荷尔蒙的均衡分泌,增强人体的免疫力和再生力,都能发挥重大的作用。概括的讲磷脂的基本功用是:增强脑力,安定神经,平衡内分泌,提高免疫力和再生力,解毒利尿,清洁血液,健美肌肤,保持年轻,延缓衰老。乳化作用 分解过高的血脂和过高的胆固醇,清扫血管,使血管循环顺畅,被公认为血管清道夫。还可以使中性脂肪和血管中积压的胆固醇乳化为对人体无害的微分子状态,并溶解于水中排出体外。同时阻止多余脂肪在血管壁沉积,缓解心脑血管的压力。磷脂之所以防治现代文明病,其根本原因之一,就是在于它具有强大的乳化作用。 拿心脑血管疾病来说吧.。日常肉类摄取过多,造成胆固醇,脂类沉积,造成血管通道狭窄,引起高血压。血液中的血脂块及脱落的胆固醇块遇到血管窄小位置,卡住通不过,就造成了堵塞,形成栓塞。而磷脂强大的乳化作用可乳化血管内沉积在血管壁上的胆固醇及脂类,形成乳白色液体,排出体外。 冠心病,结石都是同等道理。增智 人体神经细胞和大脑细胞是由磷脂为主所构成的细胞薄膜包覆,磷脂不足会导致薄膜受损,造成智力减退,精神紧张。而磷脂中含的乙酰进入人体内与胆碱结合,构成乙酰胆碱。而乙酰胆碱恰恰是各种神经细胞和大脑细胞间传递信息的载体。可以加快神经细胞和大脑细胞间信息传递的速度,增加记忆力,预防老年痴呆。活化细胞 磷脂是细胞膜的重要组成部分,肩负着细胞内外物质交换的重任。如果人每天所消耗的磷脂得不到补充,细胞就会处于营养缺乏状态,失去活力。 人的肝脏能合成一些磷脂,但大部分是从饮食中摄取的,特别是三四十岁以后。但是磷脂的活性以25度左右最有效,温度超过摄氏50度后,磷脂活性会大部分失去。因此建议健康的人亚健康的人都可以食用磷脂,会给你带来出乎意料的效果。编辑本段磷脂的性质物理性质 依加工和漂白程度而呈乳白,浅黄和棕色。易溶于乙醚、笨、三氯甲烷、正己烷,不溶于丙酮、水等极性溶剂。属于两性表面活性剂,具有乳化性。化学性质 可进行水解反应,乙酰基化,羟基化,酰基化,磺化,饱和化(氧化使磷脂饱和),活化(引入不饱和基团)等反应。编辑本段甘油磷脂分类及生理功能 甘油磷脂是机体含量最多的一类磷脂,它除了构成生物膜外,还是胆 甘油磷脂结构图汁和膜表面活性物质等的成分之一,并参与细胞膜对蛋白质的识别和信号传导。? 甘油磷脂基本结构是磷脂酸和与磷酸相连的取代基团(X); 甘油磷脂由于取代基团不同又可以分为许多类,其中重要的有:? 胆碱(choline) + 磷脂酸 ——→ 磷脂酰胆碱(phosphatidylcholine)又称卵磷脂(lecithin)? 乙醇胺(ethanolamine) + 磷脂酸 ——→磷脂酰乙醇胺(phosphatidylethanolamine)又称脑磷脂(cephain)? 丝氨酸(serine) + 磷脂酸 ——→ 磷脂酰丝氨酸(phosphatidylserine)? 甘油(glycerol) + 磷脂酸 ——→ 磷脂酰甘油(phosphatidylglycerol)? 肌醇(inositol) + 磷脂酸 ——→ 磷脂酰肌醇(phosphatidylinositol)? 心磷脂(cardiolipin)是由甘油的C1和C3与两分子磷脂酸结合而成。心磷脂是线粒体内膜和细菌膜的重要成分,而且是唯一具有抗原性的磷脂分子。 除以上6种以外,在甘油磷脂分子中甘油第1位的脂酰基被长链醇取代形成醚,如缩醛磷脂(plasmalogen)及血小板活化因子(plateletactivating factor,PAF),它们都属于甘油磷脂。甘油磷脂的合成 合成全过程可分为三个阶段,即原料来源、活化和甘油磷脂生成。甘油磷脂的合成在细胞质滑面内质网上进行,通过高尔基体加工,最后可被组织生物膜利用或成为脂蛋白分泌出细胞。机体各种组织(除成熟红细胞外)即可以进行磷脂合成。 1. 原料来源? 合成甘油磷脂的原料为磷脂酸与取代基团。磷脂酸可由糖和脂转变生成的甘油和脂肪酸生成(详见甘油三酯合成代谢),但其甘油C2位上的脂肪酸多为必需脂肪酸,需食物供给。取代基团中胆碱和乙醇胺可由丝氨酸在体内转变生成或食物供给。? 丝氨酸——→乙醇胺——→胆碱 2. 活化? 磷脂酸和取代基团在合成之前,两者之一必须首先被CTP活化而被CDP携带,胆碱与乙醇胺可生成CDP-胆碱和CDP-乙醇胺,磷脂酸可生成CDP-甘油二酯。 3. 甘油磷脂生成 1)磷脂酰胆碱和磷脂酰乙醇胺 这两种磷脂生成是由活化的CDP-胆碱与CDP-乙醇胺和甘油二脂生成。此外磷脂酰乙醇胺在肝脏还可由与腺苷蛋氨酸提供甲基转变为磷脂酰胆碱。不同生物合成磷脂酰胆碱的途径有所不同。 2)磷脂酰丝氨酸 体内磷脂酰丝氨酸合成是通过Ca2+激活的酰基交换反应生成,由磷脂酰乙醇胺与丝氨酸反应生成磷脂酰丝氨酸和乙醇胺。? 磷脂酰乙醇胺 + 丝氨酸 ——→ 磷脂酰丝氨酸 + 乙醇胺 3)磷脂酰肌醇、磷脂酰甘油和心磷脂 述三者生成是由活化的CDP-甘油二酯与相应取代基团反应生成。 心磷脂的另一条合成途径。 4)缩醛磷脂与血小板活化因子? 缩醛磷脂与血小板活化因子的合成过程与上述磷脂合成过程类似,不同之处在于磷脂酸合成之前,由糖代谢中间产物磷酸二羟丙酮转变生成脂酰磷酸二羟丙酮以后,由一分子长链脂肪醇取代其第一位脂酰基,其后再经还原(由NADPH供H)、转酰基等步骤合成磷脂酸的衍生物。此产物替代磷脂酸为起始物,沿甘油三酯途径合成胆碱或乙醇胺缩醛磷脂。血小板活化因子与缩醛磷脂的不同在于长链脂肪醇是饱和长链醇,第2位的脂酰基为最简单的乙酰基。甘油磷脂的分解 在生物体内存在一些可以水解甘油磷脂的磷脂酶类,其中主要的有磷脂酶A1、A2、B、C和D,它们特异地作用于磷脂分子内部的各个酯键,形成不同的产物。这一过程也是甘油磷酯的改造加工过程。 1. 磷脂酶A1 自然界分布广泛,主要存在于细胞的溶酶体内,此外蛇毒及某些微生物中亦有,可有催化甘油磷脂的第1位酯键断裂,产物为脂肪酸和溶血磷脂2。? 2. 磷脂酶A2 普遍存在于动物各组织细胞膜及线粒体膜,能使甘油磷脂分子中第2位酯键水解,产物为溶血磷脂1及其产物脂肪酸和甘油磷酸胆碱或甘油磷酸乙醇胺等。? 溶血磷脂是一类具有较强表面活性的性质,能使红细胞及其他细胞膜破裂,引起溶血或细胞坏死。当经磷脂酶B作用脱去脂肪酸后,转变成甘油磷酸胆碱或甘油磷酸乙醇胺,即失去溶解细胞膜的作用。? 3. 磷脂酶C 存在于细胞膜及某些细胞中,特异水解甘油磷脂分子中第3位磷酸酯键,其结果是释放磷酸胆碱或磷酸乙醇胺,并余下作用物分子中的其他组分。? 4. 磷脂酶D 主要存在于植物,动物脑组织中亦有,催化磷脂分子中磷酸与取代基团(如胆碱等)间的酯键,释放出取代基团。编辑本段鞘磷脂 鞘脂类(sphingolipid),组成特点是不含甘油而含鞘氨醇(sphingosine)。 按照取代基团X的不同可分为两种:? X为磷酸胆碱称为鞘磷脂(sphingmyelin)? X为糖基称为鞘糖脂(glycosphingolipid)?鞘磷脂的合成 体内的组织均可合成鞘磷脂,以脑组织最为活跃,是构成神经组织膜的主要成分,合成在细胞内质网上进行。? 以脂酰CoA和丝氨酸为原料,消耗NADPH生成二氢鞘氨醇,进而经脂肪酰转移酶作用生成神经酰胺。鞘磷脂的分解 鞘磷脂经磷脂酶(sphingomyelinase)作用,水解产生磷酸胆碱和神经酰胺。如缺乏此酶可引起肝、脾肿大及神经障碍如痴呆等鞘磷脂沉积症。编辑本段卵磷脂的功效及其应用 [1]ufeff卵磷脂的生理功能; 1.组成细胞膜,对细胞活化、生存及功能维持有重要作用,尤其是脑神经系统、心血管、血液、肝脏等重要脏器的功能保持、肌肉、关节的活力和脂肪代谢都有重要作用。 2.卵磷脂是神经信使——乙酰胆碱中胆碱的供体,它的多少决定着住处伟递速度快慢、智力是否发达,是否充满精神、活力。它又是脑细胞的组成成分,人脑30%是磷脂。 3.调节脂肪代谢、防治脂肪肝,预防肝硬化、肝癌。 4.良好的乳化特征,可减少和清除血管壁上胆固醇沉积,降低血液粘稠度、改善血氧供应,延长红血球寿命并增强造血功能。 5.药物载体:卵磷脂质体是由脂质双层分子组成的单层或复层泡囊、极适宜在体内降解,无毒性,无免疫原性。作为载体有降低药物毒性、提高疗效、减少副作用和药物剂量的作用。 卵磷脂的应用: 1.健脑益智:卵磷脂被小肠吸收后,能水解出胆碱来,随着血液进入大脑中,与醋酸结合转化为乙酰胆碱,也就是记忆素。它是一种神经传导物质,其含量越高,传递住处的速度越快,记忆力就越强,所以卵磷脂对智力开发和增强记忆力有独特功效,是知识界必备的“脑的食品”。 2.血管“清道夫”:卵磷脂具有乳化分解油脂的作用,可增进血液循环、改善血清质,清除过氧化物,使血液中的胆固醇及中性脂肪含量降低,减少脂肪在血管内壁的滞留时间。促进粥样硬化斑的消散,防止由胆固醇引起的血管内膜操作,卵磷脂对高血脂和高胆固醇有显著的功效,可预防和治疗动脉硬化。 3.防治老年性痴呆症:老年性痴呆又称阿尔茨海默病,是由于脑部血管病变导致脑缺氧,脑细胞死亡致使住处伟递障碍而引起的意识障碍性疾病。补充卵磷脂可提高脑细胞中乙酰胆碱的含量,活化和再生脑细胞,从而恢复和改善大脑的功能。所以卵磷脂是脑疾患的物美价廉的功能性食品。 4.防治肝病:人体肝脏含磷5%,如含量下降则磷脂载脂体缺乏,脂肪则易囤积于肝脏形成脂肪肝,进而可能形成肝硬化、甚至肝癌。卵磷脂即有亲水性又有亲油性,良好的乳化特性可使脂肪乳化,因此对防治脂肪肝功效显著。 5.防治胆结石:胆固醇和胆红素的沉积是形成结石的基础,卵磷脂的乳化作用可溶解和阻止它的沉积,从根本上治疗和预防胆结石。 6.防治便秘:磷脂的活化细胞功能可促进结肠的蠕动,并将水分送出肠壁,促进毛细管的畅通。从而消除便秘及由其引起的焦虑和疱疹等症状。 7.良好的心理调和剂:社会竞争日趋激烈,人们长期处于紧张的环境和种种压力下,常患有焦虑、急躁、失眠、耳鸣等症,即植物神经紊乱,通常称为神经衰弱,经常补充卵磷脂,可使大脑神经及时得到营养补充,保持健康的工作状态,得消除疲劳,激活脑细胞,改善因神经紧张而引起的焦躁、易怒、失眠等症。 8.糖尿病患者的营养品:卵磷脂不足,会使胰脏功能下降,无法分泌充分的胰岛素,不能有效的将血清中的葡萄糖运送到细胞中,这是导致糖尿病的基本原因之一。卵磷脂构成细胞膜有接收糖分,并使其顺利排出体外的功能,且有促进胰脏释放胰岛素的作用。因此服用卵磷脂可有效地降低血糖,防治糖尿病。 9.利尿、护肾剂:磷脂有利尿作用,可使细胞内的废物和尿一起排出,有助于保护肾脏。 10.美容、防脱发护发:磷脂中有肌醇成分,有维护毛发的作用。其改善发根微循环的作用也使头发获得足够的营养供给起到保发护发的作用。人体肠内积蓄的废物形成肠毒入血可促生青春痘、雀斑、老年斑,造成肌肤粗糙。磷脂可化解肠毒,并排出体外,故可使肌肤光滑柔润,消除青春痘、雀斑、老年斑等。 11.胎、婴儿神经发育的必需品:孕妇体内的羊水中含有大量的卵磷脂,人体脑细胞约有150亿个,其中70%早在母体就已形成。为促进胎儿脑细胞能健康发育,孕妇补充足够的卵磷脂是很重要的。婴、幼儿时期是大脑形成发育最关键时期,卵磷脂可以促进大脑神经系统与脑容积的增长、发育。
请哪位高人帮我回答一下有关细胞生物学的问题
(1)探讨内质网的分布与微管系统分布的方法如下内质网作为一种脂质膜结构,我们可以选用放射性标记的CDP-胆碱作为标记物,CDP胆碱可以用于卵磷脂的合成。然后利用放射自显影技术进行观察。而微管由于可以被紫杉醇结合而抑制解聚,我们可以用罗丹明标记的抗微管蛋白的抗体与微管特异性结合(免疫荧光技术),然后使用荧光显微镜观察。然后对比以上两组观测图像是否具有相关性(2)常使用的方法是将带有罗丹明标记的微管蛋白连续注入体外培养的动物细胞,用荧光显微镜观察。(3)1.可以利用oligo-DT或者oligo-U对提取的总RNA进行亲和层析,提取mRNA,然后用DNA探针或者RNA探针进行southern杂交。2.当然卵清蛋白作为一种蛋白质,自然可以利用免疫荧光技术。(4)利用的是western blot。这个不细说了(5)将M期的hela细胞与其他间期细胞在仙台病毒下诱导融合,并继续培养一段时间。发现与M期hela细胞融合的间期细胞发生了各种形态的染色体凝集,并称之为PCC(早熟染色体凝集)。这种染色体则被称为超前凝集染色体。G1为单线状,S为粉末状,G2为双线染色体状。(6)要观察细胞表面形态结构的变化,毫无疑问利用的是扫描电镜技术。扫描电镜技术是利用电子束光源照射到细胞表面而产生的散射电子,并将其收集成像。其基本过程包括固定,脱水,干燥,镀膜,观察等过程。干燥过程一般选用CO2临界点干燥法,由于不存在气液相面,细胞的原始形态能够得到良好的保持。镀膜是为了得到良好的二次电子信号。扫描电镜成像具有良好的立体感,分辨率达0.7nm。(7)方法是表达融合了绿色荧光蛋白(GFP,Green fluorescence protein)的CENP-E蛋白。提取并注入真核细胞。绿色荧光蛋白不是一种糖蛋白,而且是一种胞质蛋白,可以采用原核如大肠杆菌表达系统进行表达。(8)BrdU incorporation后培养较长一段时间。只有在复制过程中的DNA才会掺入BrdU。掺入后易引起DNA突变,可对特定的某段DNA进行序列分析。(9)虽然不知道Racl基因是为何物,但是目前使用最多的抑制基因表达的方法主要是基因打靶技术和参考中的RNAi技术。当然还有反基因技术(注意:是区别于反义RNA的技术,使用的是DNA片段)(10)可采用荧光共振能量转移或者酵母双杂交实验,具体可以查阅百度百科。(参考中的方法无此方法)呵呵,要给分,就先谢过了
光面内质网的功能-细胞生物学
光面内质网的功能 光面内质网具有很多重要的功能,如类固醇激素的合成、肝细胞的脱毒作用、糖原分解释放葡萄糖、肌肉收缩的调节等。 ■ 糖原分解释放游离的葡萄糖 肝细胞的一个重要功能是维持血液中葡萄糖水平的恒定, 这一功能与葡萄糖-6-磷酸酶的作用密切相关。光面内质网中的葡萄糖-6-磷酸酶将葡萄糖-6-磷酸水解生成葡萄糖和无机磷,释放游离的葡萄糖进入血液供细胞之用 在肝细胞中,糖原裂解释放葡萄糖-1-磷酸,然后再转变成葡萄糖-6-磷酸,由于磷酸化的葡萄糖不能通过细胞质膜,光面内质网上的葡萄糖-6-磷酸酶将葡萄糖-6-磷酸水解为葡萄糖和磷酸后,葡萄糖就可穿过细胞质膜进入血液。 光面内质网是如何参与肝细胞维持血液中葡萄糖水平的恒定? ■ 类固醇激素的合成 分泌类固醇激素的细胞如肾上腺细胞、睾丸间质细胞和黄体细胞都有丰富的光面内质网,并在光面内质网上含有合成胆固醇和将胆固醇转化为激素的全套酶系;所以光面内质网能够合成胆固醇,然后将胆固醇氧化、还原、水解进一步转变成各种类固醇激素。类固醇激素的合成涉及多个途径中的酶,包括存在于胞质溶胶和光面内质网中的酶类。但是合成的起始物质是胆固醇前体物质甲羟戊酸(mevalonate),它的合成是由光面内质网中的HMG-CoA还原酶催化的。 ■ 脂的合成与转运 ● 磷脂的合成 细胞膜所需要的最重要的磷脂也是在光面内质网上合成的。在光面内质网上合成的磷脂先作为内质网膜的构成部分,然后再转运给其他的膜。[医学教育 网 搜集整理] 图9-13 是光面内质网合成磷脂酰胆碱的过程,反应中最先形成的磷脂被包埋在内质网的膜中,但朝向胞质溶胶;合成的终产物磷脂酰胆碱仍然存在于内质网膜中。催化反应的酶类既有存在于胞质溶胶中的,也有存在于内质网中的膜蛋白。图9-13 在光面内质网膜中合成磷脂酰胆碱 首先,内质网膜中脂肪酸与胞质溶胶中的磷酸甘油结合,然后脱磷,并内质网膜中胆碱磷脂转移酶的作用下,将胞质溶胶中的CDP-胆碱与内质网膜中的甘油脂肪酸结合形成磷脂酰胆碱。新合成的磷脂酰胆碱朝向胞质溶胶一侧,但可在内质网膜中磷脂转位酶的作用下翻转到内质网的腔面。 ● 磷脂转位蛋白与翻转酶(flippase) 磷脂的合成都是在内质网的胞质溶胶面,但在内质网上合成的磷脂几分钟之后就由胞质溶胶面转向膜的另一面,即内质网腔面, 磷脂的转位是由内质网膜中磷脂转位蛋白(phospholipid translocator)或称翻转酶帮助的。翻转酶催化的磷脂移动也是有选择性的,如能够翻转磷脂酰胆碱的翻转酶则不能催化其他的磷脂翻转, 这样保证了膜中磷脂分布的不对称。
生物竞赛体 高一(2)
磷脂英语名词:phospholipi所以简称PL磷脂的概念 磷脂是一类含有磷酸的脂类,机体中主要含有两大类磷脂,由甘油构成的磷脂称为甘油磷脂(phosphoglyceride);由神经鞘氨醇构成的磷脂,称为鞘磷脂(sphingolipid)。其结构特点是:具有由磷酸相连的取代基团(含氨碱或醇类)构成的亲水头(hydrophilic head)和由脂肪酸链构成的疏水尾(hydrophobic tail)。在生物膜中磷脂的亲水头位于膜表面,而疏水尾位于膜内侧。 磷脂是重要的两亲物质,它们是生物膜的重要组分、乳化剂和表面活性剂(表面活性剂是能降低液体,通常是水的,表面张力,沿水表面扩散的物质)磷脂的结构 甘油的C(1)和C(2)羟基被脂肪酸酯化,C(3)羟基被磷酸酯化,磷酸又与一极性醇X—OH连接,这就构成甘油磷脂。分子的非极性尾含有两个脂肪酸的长烃链,甘油C(1)连结的常是含16或18个碳原子的饱和脂肪酸,其C(2)位则常被16~20个碳原子的不饱和脂肪酸占据。磷酰—X组成甘油磷脂的极性头,故甘油磷脂可根据极性头醇(X—OH)的不同分类。X=H构成最简单的甘油磷脂,叫做磷脂酸,它在生物膜中仅有少量。通常存在于生物膜中的甘油磷脂都有极性头。重要的甘油磷脂极性头基举例如下。 极性脂在水溶液表面自然形成厚度为一个脂质分子的脂单层,其烃尾避开水朝向大气,而亲水的极性头则指向极性的水相。在水系统中,极性脂自然聚在一起形成分子团(非极性尾朝内)或极薄的脂双层以分开两个水性部分。脂双层脂质分子的非极性尾向内伸展形成一个连续的内部碳氢核心,而极性头朝外,伸入水相中。脂双层较软,易弯曲流动,是生物膜的基本结构,它们依膜的类型不同,占膜重量的20~80%不等。 鞘磷脂的结构和性质见鞘脂。磷脂的分类 磷脂根据骨架的不同可以分为磷酸甘油脂(glycerolphospholiid)和鞘磷脂(sphingolipid)。它们都是极性脂。极性脂由极性部分(叫做极性头)和非极性部分(叫做非极性尾)组成。其中,甘油磷脂又可以根据极性头部集团的不同区分为磷脂酰胆碱(Phosphatidyl cholines,PC)、磷脂酰乙醇氨(Phosphatidyl ethanolamines,PE)、磷脂酰丝氨酸(Phosphatidyl serines,PS)、磷脂酰肌醇(Phosphatidyl inositols,PI)、磷脂酰甘油(PG)、甘油磷脂酸(phosphatidic acid,PA)等。 依照氨基醇的不同可分以下几类:各种甘油磷脂的极性头部和电荷量 (1)、 磷脂酰胆碱(卵磷脂)(PC),HO—CH2CH2N+(CH3)3(胆碱),分布:,植物:大豆等,动物:脑、精液、肾上腺、红细胞,蛋卵黄(8-10%)。作用:控制肝脂代谢,防止脂肪肝的形成。 (2)、 磷脂酰乙醇胺(脑磷脂)(PE),HO—CH2CH2—N+H3(乙醇胺),参与血液凝结。 (3)、 磷脂酰丝氨酸(PS),HO—CH2CH—COO-(丝氨酸), N+H3, 注:(1)—(3)X均为氨基醇。 (4)、 磷脂酰肌醇(PI), (5)、 磷脂酰甘油(PG) (6)、 二磷脂酰甘油(心磷脂)一、甘油磷脂 (一)分类及生理功能 甘油磷脂是机体含量最多的一类磷脂,它除了构成生物膜外,还是胆汁和膜表面活性物质等的成分之一,并参与细胞膜对蛋白质的识别和信号传导。 甘油磷脂基本结构是磷脂酸和与磷酸相连的取代基团(X); 甘油磷脂由于取代基团不同又可以分为许多类,其中重要的有: 胆碱(choline) + 磷脂酸 ——→ 磷脂酰胆碱(phosphatidylcholine)又称卵磷脂(lecithin) 乙醇胺(ethanolamine) + 磷脂酸 ——→磷脂酰乙醇胺(phosphatidylethanolamine)又称脑磷脂(cephain) 丝氨酸(serine) + 磷脂酸 ——→ 磷脂酰丝氨酸(phosphatidylserine) 甘油(glycerol) + 磷脂酸 ——→ 磷脂酰甘油(phosphatidylglycerol) 肌醇(inositol) + 磷脂酸 ——→ 磷脂酰肌醇(phosphatidylinositol) 心磷脂(cardiolipin)是由甘油的C1和C3与两分子磷脂酸结合而成。心磷脂是线粒体内膜和细菌膜的重要成分,而且是唯一具有抗原性的磷脂分子。 除以上6种以外,在甘油磷脂分子中甘油第1位的脂酰基被长链醇取代形成醚,如缩醛磷脂(plasmalogen)及血小板活化因子(plateletactivating factor,PAF),它们都属于甘油磷脂。 (二)甘油磷脂的合成 合成全过程可分为三个阶段,即原料来源、活化和甘油磷脂生成。甘油磷脂的合成在细胞质滑面内质网上进行,通过高尔基体加工,最后可被组织生物膜利用或成为脂蛋白分泌出细胞。机体各种组织(除成熟红细胞外)即可以进行磷脂合成。 1. 原料来源 合成甘油磷脂的原料为磷脂酸与取代基团。磷脂酸可由糖和脂转变生成的甘油和脂肪酸生成(详见甘油三酯合成代谢),但其甘油C2位上的脂肪酸多为必需脂肪酸,需食物供给。取代基团中胆碱和乙醇胺可由丝氨酸在体内转变生成或食物供给。 丝氨酸——→乙醇胺——→胆碱 2. 活化 磷脂酸和取代基团在合成之前,两者之一必须首先被CTP活化而被CDP携带,胆碱与乙醇胺可生成CDP-胆碱和CDP-乙醇胺,磷脂酸可生成CDP-甘油二酯。 3. 甘油磷脂生成 1)磷脂酰胆碱和磷脂酰乙醇胺 这两种磷脂生成是由活化的CDP-胆碱与CDP-乙醇胺和甘油二脂生成。此外磷脂酰乙醇胺在肝脏还可由与腺苷蛋氨酸提供甲基转变为磷脂酰胆碱。不同生物合成磷脂酰胆碱的途径有所不同。 2)磷脂酰丝氨酸 体内磷脂酰丝氨酸合成是通过Ca2+激活的酰基交换反应生成,由磷脂酰乙醇胺与丝氨酸反应生成磷脂酰丝氨酸和乙醇胺。 磷脂酰乙醇胺 + 丝氨酸 ——→ 磷脂酰丝氨酸 + 乙醇胺 3)磷脂酰肌醇、磷脂酰甘油和心磷脂 述三者生成是由活化的CDP-甘油二酯与相应取代基团反应生成。 心磷脂的另一条合成途径。 4)缩醛磷脂与血小板活化因子 缩醛磷脂与血小板活化因子的合成过程与上述磷脂合成过程类似,不同之处在于磷脂酸合成之前,由糖代谢中间产物磷酸二羟丙酮转变生成脂酰磷酸二羟丙酮以后,由一分子长链脂肪醇取代其第一位脂酰基,其后再经还原(由NADPH供H)、转酰基等步骤合成磷脂酸的衍生物。此产物替代磷脂酸为起始物,沿甘油三酯途径合成胆碱或乙醇胺缩醛磷脂。血小板活化因子与缩醛磷脂的不同在于长链脂肪醇是饱和长链醇,第2位的脂酰基为最简单的乙酰基。 (三)甘油磷脂的分解 在生物体内存在一些可以水解甘油磷脂的磷脂酶类,其中主要的有磷脂酶A1、A2、B、C和D,它们特异地作用于磷脂分子内部的各个酯键,形成不同的产物。这一过程也是甘油磷酯的改造加工过程。 1. 磷脂酶A1 自然界分布广泛,主要存在于细胞的溶酶体内,此外蛇毒及某些微生物中亦有,可有催化甘油磷脂的第1位酯键断裂,产物为脂肪酸和溶血磷脂2。 2. 磷脂酶A2 普遍存在于动物各组织细胞膜及线粒体膜,能使甘油磷脂分子中第2位酯键水解,产物为溶血磷脂1及其产物脂肪酸和甘油磷酸胆碱或甘油磷酸乙醇胺等。 溶血磷脂是一类具有较强表面活性的性质,能使红细胞及其他细胞膜破裂,引起溶血或细胞坏死。当经磷脂酶B作用脱去脂肪酸后,转变成甘油磷酸胆碱或甘油磷酸乙醇胺,即失去溶解细胞膜的作用。 3. 磷脂酶C 存在于细胞膜及某些细胞中,特异水解甘油磷脂分子中第3位磷酸酯键,其结果是释放磷酸胆碱或磷酸乙醇胺,并余下作用物分子中的其他组分。 4. 磷脂酶D 主要存在于植物,动物脑组织中亦有,催化磷脂分子中磷酸与取代基团(如胆碱等)间的酯键,释放出取代基团。二、鞘磷脂 鞘脂类(sphingolipid),组成特点是不含甘油而含鞘氨醇(sphingosine)。 按照取代基团X的不同可分为两种: X为磷酸胆碱称为鞘磷脂(sphingmyelin) X为糖基称为鞘糖脂(glycosphingolipid) (一)鞘磷脂的合成 体内的组织均可合成鞘磷脂,以脑组织最为活跃,是构成神经组织膜的主要成分,合成在细胞内质网上进行。 以脂酰CoA和丝氨酸为原料,消耗NADPH生成二氢鞘氨醇,进而经脂肪酰转移酶作用生成神经酰胺。 (二)鞘磷脂的分解 鞘磷脂经磷脂酶(sphingomyelinase)作用,水解产生磷酸胆碱和神经酰胺。如缺乏此酶可引起肝、脾肿大及神经障碍如痴呆等鞘磷脂沉积症。磷脂代谢 磷脂代谢(phospholipid metabolism):磷脂在生物体内可经各种磷脂酶作用水解为甘油、脂肪酸、磷酸和各种氨基醇(如胆碱、乙醇胺、丝氨酸等)。甘油可以转变为磷酸二羟丙酮,参加糖代谢。脂肪酸经β-氧化作用而分解。磷酸是体内各种物质代谢不可缺少的物质。各种氨基醇可以参加体内磷脂的再合成,胆碱还可以通过转甲基作用转变为其他物质。磷脂合成时,乙醇胺或胆碱与atp在激酶的作用下生成磷酸乙醇胺或磷酸胆碱,然后再与ctp作用转变成胞二磷乙醇胺或胞二磷胆碱。胞二磷乙醇胺或胞二磷胆碱再与已生成的甘油二酯(见甘油三酯的生成)合成相应的磷脂。磷脂的功能 磷脂,是含有磷脂根的类脂化合物,是生命基础物质。而细胞膜就由70%左右蛋白质和30%左右的磷脂构成。它是由卵磷脂,肌醇磷脂,脑磷脂等组成。这些磷脂分别对人体的各部位和各器官起着相应的功能。 人体所有细胞中都含有磷脂,它是维持生命活动的基础物质。磷脂对活化细胞,维持新陈代谢,基础代谢及荷尔蒙的均衡分泌,增强人体的免疫力和再生力,都能发挥重大的作用。概括的讲磷脂的基本功用是:增强脑力,安定神经,平衡内分泌,提高免疫力和再生力,解毒利尿,清洁血液,健美肌肤,保持年轻,延续衰老。 磷脂主要作用之一是:乳化作用 分解过高的血脂和过高的胆固醇,清扫清管,使血管循环顺畅,是公认为血管清道夫。还可以使中性脂肪和血管中积压的胆固醇乳化为对人体无害的微分子状态,并溶解于水中排出体外。同时阻止多余脂肪在血管壁沉积,缓解心脑血管的压力。磷脂之所以防治现代文明病,其根本原因之一,就是在于它具有强大的乳化作用。 拿心脑血管疾病来说吧.。日常肉类摄取过多,造成胆固醇,脂类沉积,造成血管通道狭窄,引起高血压。血液中的血脂块及脱落的胆固醇块遇到血管窄小位置,卡住通不过,就造成了堵塞,形成栓塞。而磷脂强大的乳化作用可乳化血管内沉积在血管壁上的胆固醇及脂类,形成乳白色液体,排出体外。 冠心病,结石都是同等道理。 磷脂主要作用之二:增智 人体神经细胞和大脑细胞是由磷脂为主所构成的细胞薄膜包覆,磷脂不足会导致薄膜受损,造成智力减退,精神紧张。而磷脂中含的乙酰进入人体内与胆碱结合,构成乙酰胆碱。而乙酰胆碱恰恰是各种神经细胞和大脑细胞间传递信息的载体。可以加快神经细胞和大脑细胞间信息传递的速度,增加记忆力,预防老年痴呆。 磷脂主要作用之三:活化细胞 磷脂是细胞膜的重要组成部分,肩负着细胞内外物质交换的重任。如果人每天所消耗的磷脂得不到补充,细胞就会处于营养缺乏状态,失去活力。 人的肝脏能合成一些磷脂,但大部分是从饮食中摄取的,特别是三四十岁以后。但是磷脂的活性以25度左右最有效,温度超过摄氏50度后,磷脂活性会大部分失去。因此建议健康的人亚健康的人都可以食用磷脂,会给你带来出乎意料的效果。
请问腺苷,鸟苷,尿苷是不是生物碱,为什么?谢谢,在线等!
生物碱(alkaloid)是存在于自然界(主要为植物,但有的也存在于动物)中的一类含氮的碱性有机化合物,有似碱的性质,所以过去又称为赝碱。腺苷,鸟苷,尿苷都含有含氮碱基,所以应该也算生物碱
生物:是不是细胞膜都有信号分子?详细!
是的,因为细胞与细胞之间需要物质交换与信息交流
化学通讯的细胞生物学
化学通讯是间接的细胞通讯(图),指细胞分泌一些化学物质(如激素)至细胞外,作为细胞信号分子作用于靶细胞,调节其功能。根据化学信号分子可以作用的距离范围,可分为以下4类(图8-6):1. 内分泌(endocrine):内分泌细胞分泌的激素随血液循环输至全身,作用于靶细胞。其特点是:①低浓度,仅为10-8-10-12M;②全身性,随血液流经全身,但只能与特定的受体结合而发挥作用;③长时效,激素产生后经过漫长的运送过程才起作用,而且血流中微量的激素就足以维持长久的作用。2. 旁分泌(paracrine):细胞分泌的信号分子通过扩散作用于邻近的细胞。包括:①各类细胞因子;②气体信号分子(如:NO)3. 突触信号发放:神经递质(如乙酰胆碱)由突触前膜释放,经突触间隙扩散到突触后膜,作用于特定的靶细胞。4. 自分泌(autocrine):与上述三类不同的是,信号发放细胞和靶细胞为同类或同一细胞,常见于癌变细胞。如:大肠癌细胞可自分泌产生胃泌素,介导调节c-myc、c-fos和ras p21等癌基因表达,从而促进癌细胞的增殖。
基因甲基化利于生物的变异吗
基因甲基化利于生物的变异。人的DNA在分化,衰老等生理情况下,以及在疾病等病理情况下,以及在DNA复制过程中,都会发生变化:如DNA的修饰:随着分化的进行,有些基因要大量表达,而有些基因要‘永久封闭",这些都可以由DNA甲基化,磷酸化等修饰来实现。原理DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的方式获得一个甲基基团的化学修饰过程。
生物体内甲基的直接供体是.
生物体内甲基的直接供体是(B)S-腺苷蛋氨酸
基因甲基化利于生物的变异吗
基因甲基化利于生物的变异。人的DNA在分化,衰老等生理情况下,以及在疾病等病理情况下,以及在DNA复制过程中,都会发生变化:如DNA的修饰:随着分化的进行,有些基因要大量表达,而有些基因要‘永久封闭",这些都可以由DNA甲基化,磷酸化等修饰来实现。原理DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的方式获得一个甲基基团的化学修饰过程。
一作+通讯,这篇Nature发现所有生物都可能制造甲烷
第一作者:Leonard Ernst 通讯作者:Leonard Ernst, Ilka B. Bischofs, Frank Keppler 通讯单位:Heidelberg University, Germany;Max-Planck-Institutefor Terrestrial Microbiology, Germany DOI: 10.1038/s41586-022-04511-9 01 背景介绍 甲烷(CH4)是一种影响地球气候的高强度温室气体。大气中约70%的CH4排放源于生物源。长期以来,生物CH4的形成一直被认为是在严格的缺氧条件下发生在属于古生物领域的生物体中。然而,植物、真菌、藻类和蓝藻在有氧的情况下也可以产生CH4。尽管已知产甲烷菌在厌氧能量代谢过程中以酶促方式产生CH4,但对非产甲烷细胞产生CH4的要求和途径知之甚少。 02 本文亮点 1. 本文证明了枯草芽孢杆菌和大肠杆菌形成CH4是由代谢活动产生的游离铁和活性氧(ROS)触发的,氧化应激增强了这些活性氧。 2. ROS诱导的甲基自由基来自含有硫或氮甲基的有机化合物,是最终导致CH4生成的关键中间体。 3. 结果表明,所有活细胞可能都有一个共同的CH4形成机制,该机制基于活性氧、铁和甲基供体之间的相互作用,为理解生化CH4的形成和循环开辟了新的视角。 03 图文解析 在没有酶的情况下,含甲基的有机硫化合物与三价铁(Fe3+)、三价铁还原剂抗坏血酸(ASC)和过氧化氢(H2O2)孵育时,在化学模型体系中会形成CH4。H2O2与还原的亚铁(Fe2+)发生Fenton反应,生成Fe3+、OH和·OH自由基,或氧-铁(IV)配合物([FeIV=O]2+)和水。·OH自由基和[FeIV=O]2+配合物促进亚砜氧化去甲基化生成甲基自由基(·CH3)。甲基自由基最终会转化成CH4,在较小程度上,还会转化成乙烷和/或甲醇。 H2O2是细胞代谢的产物;铁是细胞必需的微量元素,在Fe3+和Fe2+之间进行氧化还原循环。芬顿化学在细胞内稳定地发生,在氧化应激和铁超载条件下,会对细胞的生存不利。许多自然产生的具有硫或氮键甲基的代谢物,包括蛋氨酸、二甲基亚砜(DMSO)或三甲胺(TMA),都可以作为甲基给体来生成CH4。因此,作者认为,基于ROS、铁和甲基供体之间的相互作用,在所有活细胞中都存在芬顿驱动的CH4生成途径(图1)。 图1 生物系统中ROS驱动CH4形成的机制。 为了研究图1的假说,作者详细研究了模式生物枯草芽孢杆菌中CH4的形成。作者使用DMSO作为甲基供体,同位素标记实验表明,活性孢子从DMSO中形成CH4。相比之下,休眠和代谢不活跃的孢子不会形成可检测到的CH4。这些数据表明,代谢活动促进枯草芽孢杆菌(B.subtilis)形成CH4(图2a)。接下来,通过改变基质、铁和氧化剂的供应,研究了促进CH4形成的特定因素。 添加次氯酸盐处理后,CH4生成增加了1.4倍,添加铁处理后增加17倍,联合处理(基质+铁+氧化剂)后增加了35倍 ,而死生物量生成的CH4很少(图2b)。与未处理对照组相比,HOCl的添加提高了ROS和CH4水平(图2c),表明CH4的释放与内源性细胞氧化水平的相对差异有很好的相关性。 图2 枯草芽孢杆菌通过ROS驱动的途径形成CH4。 为了验证甲基前体化合物在体内真实的CH4形成,作者在应激和非应激枯草芽孢杆菌培养中进行了稳定同位素标记实验。作者首先研究了枯草芽孢杆菌是否可以利用甲基化的硫和氮化合物作为生成CH4的外源性基质。无论是添加13C标记的DMSO或DMS,都会导致13C含量明显超标的CH4的形成,这表明这些化合物的甲基基团被转化为CH4,而CH4在氧化应激条件下也得到了增强(图3 a)。内源性细胞CH4的形成可能涉及酶驱动的代谢途径,以形成甲基化的含硫或含氮前体化合物,这些化合物随后在基于Fenton化学的ROS驱动、酶不依赖途径中转化为CH4 (图3b)。 作者研究了是否有其他因素可以增加体内CH4的形成。理论上,某些生物分子可以通过充当Fe3+还原剂或芬顿促进Fe2+螯合剂来促进Fenton驱动的CH4生成(图3c)。作者添加NADH和ATP后发现,CH4水平的数量级发生了增加(图3d)。 图3 细胞中CH4形成的机制。 最后作者研究了来自生命所有领域的细胞,这些细胞以前并不会释放CH4 (图4a)。盐生盐杆菌DSM 670、酵母酿酒酵母S288C和霉菌黑曲霉DSM 821、人HEK293T细胞等生物体中,在DMSO存在下形成CH4,在添加HOCl诱导的氧化应激下,CH4水平增加约1.2至3.2倍(图4b)。 图4 所有生命形式中常见非产甲烷生物的 CH4 形成。 原文链接: https://doi.org/10.1038/s41586-022-04511-9
具有3级结构的多肽链是否都有生物学活性呢
不一定。每一种特定的蛋白质都有其特定的结构,只有具备了特定的结构才能行使其应具有的功能(生物学活性)。“具有3级结构的多肽链是否都有生物学活性呢”这句话错在“都”字。蛋白质不一定都具有三级、四级结构。有的蛋白质合成多肽链之后就具有活性了。扩展资料多肽的生物合成同时,游离在细胞质中的转运RNA(tRNA)把它携带的特定氨基酸放在核糖体的mRNA的相应位置上,然后tRNA离开核糖体,再去搬运相应的氨基酸(amino acid),这样,在合成开始时。总是携带甲硫氨酸的tRNA先进入核糖体,接着带有第二个氨基酸的tRNA才进入,此时带甲硫氨酸的tRNA把甲硫氨酸卸下,放在mRNA的起始密码位置上,然后自己离开核糖体,甲硫氨酸的-COOH端与第二个氨基酸的-NH2形成肽键。接着携带第三个氨基酸的tRNA进入核糖体,第二个氨基酸的-COOH又与第三个氨基酸的-NH2形成肽键。第二个tRNA又离开核糖体,再去搬运相应的氨基酸,第四个氨基酸的tRNA即进入核糖体。tRNA进入核糖体的顺序,是由mRNA的遗传密码决定的。参考资料来源:百度百科-多肽链
是不是所有真核细胞生物中的蛋白质都含有硫元素?
认真分析过, 你的理由是真核生物的起始密码子是甲硫氨酸。这个是正确的。像下面老兄扯到原核生物上去了。除了甲硫氨酸外还有半光氨酸含S 但是蛋白质合成了以后,有些部位是要切除的。比如酶原,要切除自己的一部分肽链才能有活性。他正好把前面切除了呢。所以不绝对。你明白了吗
具有3级结构的多肽链是否都有生物学活性呢
不一定。每一种特定的蛋白质都有其特定的结构,只有具备了特定的结构才能行使其应具有的功能(生物学活性)。“具有3级结构的多肽链是否都有生物学活性呢”这句话错在“都”字。蛋白质不一定都具有三级、四级结构。有的蛋白质合成多肽链之后就具有活性了。扩展资料多肽的生物合成同时,游离在细胞质中的转运RNA(tRNA)把它携带的特定氨基酸放在核糖体的mRNA的相应位置上,然后tRNA离开核糖体,再去搬运相应的氨基酸(amino acid),这样,在合成开始时。总是携带甲硫氨酸的tRNA先进入核糖体,接着带有第二个氨基酸的tRNA才进入,此时带甲硫氨酸的tRNA把甲硫氨酸卸下,放在mRNA的起始密码位置上,然后自己离开核糖体,甲硫氨酸的-COOH端与第二个氨基酸的-NH2形成肽键。接着携带第三个氨基酸的tRNA进入核糖体,第二个氨基酸的-COOH又与第三个氨基酸的-NH2形成肽键。第二个tRNA又离开核糖体,再去搬运相应的氨基酸,第四个氨基酸的tRNA即进入核糖体。tRNA进入核糖体的顺序,是由mRNA的遗传密码决定的。参考资料来源:百度百科-多肽链
生物体中含硫化合物
含硫氨基酸共有蛋氨酸(又名甲硫氨酸)、半胱氨酸和胱氨酸三种。由此三种氨基酸构成的多肽、蛋白质都是含硫有机化合物。 此外还有谷胱甘肽(GSH)、S-腺苷甲硫氨酸(SAM)等。 谷胱甘肽(glutathione,r-glutamyl cysteingl +glycine,GSH)是一种含γ-酰胺键和巯基的三肽,由谷氨酸、半胱氨酸及甘氨酸组成。存在于几乎身体的每一个细胞。谷胱甘肽能帮助保持正常的免疫系统的功能,并具有抗氧化作用和整合解毒作用,半胱氨酸上的巯基为其活性基团(故常简写为G-SH)。 S-腺苷基甲硫氨酸(英语:S-adenosyl methionine,缩写为SAM)带有一个活化了的甲基,是一种参与甲基转移反应的辅酶,存在于所有的真核细胞中。SAM在生物体所有细胞的代谢中均起重要作用,是体内100 多种不同的甲基转移酶催化反应的甲基供体;也是合成谷胱甘肽(GSH)的转硫过程和合成多胺的转氨丙基过程的前体分子,并且还与多种酶的活性相关。
53.微生物能利用天冬氨酸合成赖迄酸、苏氨酸和甲硫氨酸。代谢途径如图所示。已知这些代谢途径存在着酶的
选A 由题目意思可以得到,在氨基酸的互转效应中,酶都发挥着“变构调节作用”。天冬氨酸合成赖氨酸,只有A酶参与,因此赖氨酸是A酶的变构效应的产物,A对天冬氨酸是变构效应的“原料”,它不是效应物,高丝氨酸和赖氨酸才是,因此B不对高丝氨酸量减少时,C、D酶不会丧失活性,反而由于需要发挥调节作用,活性反而会增强;当高丝氨酸量增加时,由于C、D酶要发挥“变构”调节作用,活性会降低,因此CD 都不对
生物化学里SAM是什么的缩写啊?
SAM是S-腺苷甲硫氨酸的缩写,全称是S-adenosyl methionine。它存在于所有的真核细胞中,它是一种辅酶,带有一个活化的甲基,参与甲基转移反应。研究表明定期食用S-腺苷基蛋氨酸可抗抑郁,肝脏疾病,和关节炎/关节疼痛。在美国市场上用SAM-e的名字按营养补品销售,有改善情绪、保养肝脏和舒适关节的功效。S-腺苷甲硫氨酸 ,即S-腺苷-L-蛋氨酸,又名腺苷甲硫氨酸,它是甲硫氨酸(Methionine, Met)的活性形式,在动植物体内广泛存在,它是由底物L-甲硫氨酸和ATP经S-腺苷甲硫氨酸合成酶(S-Adenosyl-L-Methionine Synthetase, EC 2.5.1.6)酶促合成的。甲硫键是高能键,另外其丙基胺部分也加入到多胺化合物中。当胆碱、肌酸及其它甲基化合物生成时它作为甲基供体而起作用。认为甲硫氨酸的分解也经过此物质。扩展资料:SAM在生物体所有细胞的代谢中均起重要作用,是体内100 多种不同的甲基转移酶催化反应的甲基供体;也是合成谷胱甘肽(GSH)的转硫过程和合成多胺的转氨丙基过程的前体分子,并且还与多种酶的活性相关。来源充足的SAM是维持这些代谢途径正常运转的前提,有转甲基作用、转氨丙基作用、转硫作用 。S-腺苷甲硫氨酸是一种改善细胞代谢的生化药物,通过质膜磷脂和蛋白质的甲基化影响其流动性和微粘性,通过转硫基化增加肝内谷胱甘肽(gsh)、硫酸根及牛磺酸水平,对恶性营养不良、肝毒素及酒精性脂肪肝有效,可防止肝脏因胆汁郁积等导致的肝炎、脂肪肝、肝纤维化、肝硬化和肝癌。S-腺苷-L-蛋氨酸是一种良好的肝脏营养剂:可防止酒精、药物和细胞素对肝脏的损伤;防止胆汁积淤;预防慢性活动性肝炎以及其他因素而造成的肝损伤。预防由于缺氧而造成的神经细胞坏死即缺氧症;促进神经细胞和神经纤维的组织再生。预防心脏疾病、癌症以及其他疾病的发生。治疗关节炎等疾病。抗抑郁症,松果体素合成所必需的前提物质。参考资料来源:百度百科-S-腺苷甲硫氨酸
生物化学中,酶的活性中心内的必需基团可以是甲硫氨酸的甲基吗?
酶活性中心的必需基团有结合基团和催化基团,常见的有:组氨酸的咪唑基,丝氨酸的羟基,半胱氨酸的巯基,酸性氨基酸的羧基,碱性氨基酸的氨基。其中没有甲硫氨酸的甲基。