生物

DNA图谱 / 问答 / 标签

求生物化学名词解释

第一章1,氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸。4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。9,层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。20,同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。第二章1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。3,肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm.8, β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。9,β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。10,超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。12,纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。13,球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。14,角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。15,胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。16,疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。17,伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。18,二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。19,范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。20,蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。21,肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。22,复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。23,波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。24,血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。25,别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。26,镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe)。第三章1,酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。2,脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。4,酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。5,比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。6,活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。7,活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。8,酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。9,共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。10,靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。11,初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。12,米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s])13,米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。14,催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。15,双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。16,竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而υmax不变。17,非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。18,反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。19,丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。20,酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。21,调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。22,别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。23,别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。24,齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。25,序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。26,同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。27,别构调节酶(allosteric modulator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。第四章1,维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。2,水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。3,脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。4,辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。5,辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。6,尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。7,黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。8,硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。9,黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。10,磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。11,生物素(biotin):参与脱羧反应的一种酶的辅助因子。12,辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。13,类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素。14,转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。第五章1,醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。2,酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。3,异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。4,异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。5,变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。11,还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。14,极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。15,肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。16,糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。第六章1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。3,不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。5,三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。7,鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。8,鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。9,卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。10,脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。13,内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。16,通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。17,通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。18,(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。19,被动转运(passive transport):那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。20,主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。21,协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。22,胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程。第七章1,核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。2,核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。3,cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。4,磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。5,脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。6,核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。7,核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA .8,信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA .9, 转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。10,转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。11,转导(作用)(transduction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。12,碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。 13,夏格夫法则(Chargaff"s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。14,DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。15.大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。16.DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。17.拓扑异构酶(topoisomerse):通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶Ⅰ、通过切断DNA中的一条链减少负超螺旋,增加一个连环数。某些拓扑异构酶Ⅱ也称为DNA促旋酶。18.核小体(nucleosome):用

公卫助理医师考试《生物化学》维生素知识点

2017年公卫助理医师考试《生物化学》维生素知识点   2017年公卫执业助理医师考试马上就要开始了,为了方便考生更好的复习生物化学科目为僧俗的知识。下面是我为大家带来的关于维生素的知识,欢迎阅读。   一、定义   维生素是机体必需的多种生物小分子营养物质。1894年荷兰人Ejkman用白米养鸡观察到脚气病现象,后来波兰人Funk从米糠中发现含氮化合物对此病颇有疗效,命名为vitamine,意为生命必须的胺。后来发现并非所有维生素都是胺,所以去掉词尾的e,成为Vitamin。   维生素有以下特点:   1.是一些结构各异的生物小分子;   2.需要量很少;   3.体内不能合成或合成量不足,必需直接或间接从食物中摄取;   4.主要功能是参与活性物质(酶或激素)的合成,没有供能和结构作用。水溶性维生素常作为辅酶前体,起载体作用,脂溶性维生素参与一些活性分子的构成,如VA构成视紫红质,VD构成调节钙磷代谢的激素。   二、分类   维生素的结构差异较大,一般按溶解性分为脂溶性和水溶性两大类。   脂溶性维生素 不溶于水,易溶于有机溶剂,在食物中与脂类共存,并随脂类一起吸收。不易排泄,容易在体内积存(主要在肝脏)。包括维生素A(A1,A2)、D(D2,D3)、E(u03b1,u03b2,u03b3,u03b4)、K(K1,K2,K3)等。   水溶性维生素 易溶于水,易吸收,能随尿排出,一般不在体内积存,容易缺乏。包括B族维生素和维生素C。   三、命名   维生素虽然是小分子,但结构较复杂,一般不用化学系统命名。早期按发现顺序及来源用字母和数字命名,如维生素A、维生素AB2等。同时还根据其功能命名为“抗u2026维生素”,如抗干眼病维生素(VA)、抗佝偻病维生素(VD)等。后来又根据其结构及功能命名,如视黄醇(VA1)、胆钙化醇(VD3)等。   四、人体获取维生素的途径   1.主要由食物直接提供 维生素在动植物组织中广泛存在,绝大多数维生素直接来源于食物。少量来自以下途径:   2.由肠道菌合成 人体肠道菌能合成某些维生素,如VK、VB12、吡哆醛、泛酸、生物素和叶酸等,可补充机体不足。长期服用抗菌药物,使肠道菌受到抑制,可引起VK等缺乏。   3.维生素原在体内转变 能在体内直接转变成维生素的物质称为维生素原。植物食品不含维生素A,但含类胡萝卜素,可在小肠壁和肝脏氧化转变成维生素A。所以类胡萝卜素被称为维生素A原。   4.体内部分合成 储存在皮下的7-脱氢胆固醇经紫外线照射,可转变成VD3。因此矿工要补照紫外线。人体还可利用色氨酸合成尼克酰胺,所以长期以玉米为主食的人由于色氨酸不足,容易发生糙皮病等尼克酰胺缺乏症。   五、有关疾病   机体对维生素的需要量极少,一般日需要量以毫克或微克计。维生素缺乏会引起代谢障碍,出现维生素缺乏症。过多也会干扰正常代谢,引起维生素过多症。因水溶性维生素容易排出,所以维生素过多症只见于脂溶性维生素,如长期摄入过量维生素A、D会中毒。   一、维生素A   维生素A又称抗干眼醇,有A1、A2两种,A1是视黄醇,A2是3-脱氢视黄醇,活性是前者的一半。肝脏是储存维生素A的场所。   植物中的类胡萝卜素是VA前体,一分子u03b2胡萝卜素在一个氧化酶催化下加两分子水,断裂生成两分子VA1。这个过程在小肠粘膜内进行。类胡萝卜素还包括u03b1、u03b3胡萝卜素、隐黄质、番茄红素、叶黄素等,前三种加水生成一分子VA1,后两种不生成VA1。   维生素A与暗视觉有关。维生素A在醇脱氢酶作用下转化为视黄醛,11-顺视黄醛与视蛋白上赖氨酸氨基结合构成视紫红质,视紫红质在光中分解成全反式视黄醛和视蛋白,在暗中再合成,形成一个视循环。维生素A缺乏可导致暗视觉障碍,即夜盲症。食用肝脏及绿色蔬菜可治疗。全反式视黄醛主要在肝脏中转变成11-顺视黄醛,所以中医认为“肝与目相通”。   维生素A的作用很多,但因缺乏维生素A的动物极易感染,所以研究很困难。已知缺乏维生素A时类固醇激素减少,因为其前体合成时有一步羟化反应需维生素A参加。另外缺乏维生素A时表皮黏膜细胞减少,角化细胞增加。有人认为是因为维生素A与细胞分裂分化有关,有人认为是因为维生素A与粘多糖、糖蛋白的合成有关,可作为单糖载体。维生素A还与转铁蛋白合成、免疫、抗氧化等有关。   维生素A过量摄取会引起中毒,可引发骨痛、肝脾肿大、恶心腹泻及鳞状皮炎等症状。大量食用北极熊肝或比目鱼肝可引起中毒。   二、维生素D   又称钙化醇,是类固醇衍生物,含环戊烷多氢菲结构。可直接摄取,也可由维生素D原经紫外线照射转化。植物油和酵母中的麦角固醇转化为D2(麦角钙化醇),动物皮下的7-脱氢胆固醇转化为D3(胆钙化醇)。   维生素D与动物骨骼钙化有关。钙化需要足够的钙和磷,其比例应在1:1到2:1之间,还要有维生素D的存在。   维生素D3先在肝脏羟化形成25-羟维生素D3,然后在肾再羟化生成1,25-(OH)2-D3。第二次羟化受到严格调控,平时只产生无活性的24位羟化产物,只有当血钙低时才有甲状旁腺素分泌,使1-羟化酶有活性。1,25-(OH)2-D3是肾皮质分泌的一种激素,作用于肠粘膜细胞和骨细胞,与受体结合后启动钙结合蛋白的合成,从而促进小肠对钙磷的吸收和骨内钙磷的动员和沉积。   食物中维生素D含量少,同时又缺乏紫外线照射的人易发生骨折。肝胆疾病、肾病、或某些药物也会抑制羟化。摄入过多也会引起中毒,发生迁移性钙化,导致肾、心、胰、子宫及滑膜粘蛋白钙化。高血钙也会导致肾结石,而骨骼却因钙被抽走而疏松软化。   三、维生素E   又称生育酚,含有一个6-羟色环和一个16烷侧链,共有8种其色环的取代基不同。u03b1生育酚的活性最高。   存在于蔬菜、麦胚、植物油的非皂化部分,对动物的生育是必需的。缺乏时还会发生肌肉退化。生育酚极易氧化,是良好的脂溶性抗氧化剂。可清除自由基,保护不饱和脂肪酸和生物大分子,维持生物膜完好,延缓衰老。   维生素E很少缺乏,毒性也较低。早产儿缺乏会产生溶血性贫血,成人回导致红细胞寿命短,但不致贫血。   四、维生素K   天然维生素K有K1、K2两种,都由2-甲基-1,4-萘醌和萜类侧链构成。人工合成的K3无侧链。K1存在于绿叶蔬菜及动物肝脏中,K2由人体肠道细菌合成。   维生素K参与蛋白质谷氨酸残基的u03b3-羧化。凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ肽链中的谷氨酸残基在翻译后加工过程中,由蛋白羧化酶催化,成为u03b3-羧基谷氨酸(Gla)。这两个羧基可络合钙离子,对钙的输送和调节有重要意义。有关凝血因子与钙结合,并通过钙与磷脂结合形成复合物,发挥凝血功能。这些凝血因子称为维生素K依赖性凝血因子。   缺乏维生素K时常有出血倾向。新生儿、长期服用抗生素或吸收障碍可引起缺乏。   一、硫胺素(VB1)   由一个取代的噻唑环和一个取代的嘧啶环组成,因噻唑环含硫,嘧啶环有氨基取代而得名。他就是Funk发现的vitamine。   硫胺素与ATP反应,生成其活性形式:硫胺素焦磷酸(TPP),即脱羧辅酶。其分子中氮和硫之间的碳原子性质活泼,易脱氢。生成的负碳离子有亲核催化作用。羧化辅酶作为酰基载体,是u03b1酮酸脱羧酶的辅基,也是转酮醇酶的`辅基,在糖代谢中起重要作用。缺乏硫胺素会导致糖代谢障碍,使血液中丙酮酸和乳酸含量增多,影响神经组织供能,产生脚气病。主要表现为肌肉虚弱、萎缩,小腿沉重、下肢水肿、心力衰竭等。可能是由于缺乏TPP而影响神经的能源与传导。   硫胺素在糙米、油菜、猪肝、鱼、瘦肉中含量丰富。但生鱼中含有破坏B1的酶,咖啡、可可、茶等饮料也含有破坏B1的因子。   二、核黄素(VB2)   核黄素是异咯嗪与核醇的缩合物,是黄素蛋白的辅基。它有两种活性形式,一种是黄素单核苷酸(FMN),一种是黄素腺嘌呤二核苷酸(FAD)。这里把核黄素看作核苷,即把异咯嗪看作碱基,把核醇看作核糖。   异咯嗪的N1、N10能可逆地结合一对氢原子,所以可作为氧化还原载体,构成多种黄素蛋白的辅基,在三羧酸循环、氧化磷酸化、u03b1酮酸脱羧、u03b2氧化、氨基酸脱氨、嘌呤氧化等过程中起传递氢和电子的作用。   主要从食物中摄取,如谷类、黄豆、猪肝、肉、蛋、奶等,也可由肠道细菌合成。冬季北方缺少阳光,植物合成V-B2也少,常出现口角炎。缺乏V-B2还可引起唇炎、舌炎、贫血等。   三、泛酸(VB3)   也叫遍多酸,广泛存在,极少缺乏。由一分子u03b2丙氨酸与一分子羧酸缩合而成。   泛酸可构成辅酶A,是酰基转移酶的辅酶。也可构成酰基载体蛋白(CAP),是脂肪酸合成酶复合体的成分。   四、吡哆素(VB6)   包括吡哆醇、吡哆醛和吡哆胺3种,可互相转化。吡哆素是吡啶衍生物,活性形式是磷酸吡哆醛和磷酸吡哆胺,是转氨酶、氨基酸脱羧酶的辅酶。磷酸吡哆醛的醛基作为底物氨基酸的结合部位,醛基的邻近羟基和对位氮原子还参与催化部位的构成。在转氨反应中,磷酸吡哆醛结合氨基酸,释放出相应的u03b1酮酸,转变为磷酸吡哆胺,再结合u03b1酮酸释放氨基酸,又变成磷酸吡哆醛。   缺乏V-B6可引起周边神经病变及高铁红细胞贫血症。因为5-羟色胺、u03b3-氨基丁酸、去甲肾上腺素等神经递质的合成都需要V-B6(氨基酸脱羧反应),而血红素前体的合成也需要V-B6。肉、蛋、蔬菜、谷类中含量较多。新生婴儿易缺乏。   五、尼克酰胺(VPP)   尼克酰胺和尼克酸分别是吡啶酰胺和吡啶羧酸,都是抗糙皮病因子,又称VPP。其活性形式有两种,尼克酰胺腺嘌呤二核苷酸(NAD)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP)。在体内先合成去酰胺NAD,再接受谷氨酰胺提供的氨基成为NAD,再磷酸化则成为NADP。   NAD和NADP是脱氢辅酶,分别称为辅酶Ⅰ和辅酶Ⅱ。二者利用吡啶环的N1和N4可逆携带一个电子和一个氢原子,参与氧化还原反应。辅酶Ⅰ在分解代谢中广泛接受还原能力,最终传给呼吸链放出能量。辅酶Ⅱ则只从葡萄糖及葡萄糖酸的磷酸酯获得还原能力,用于还原性合成及羟化反应。需要尼克酰胺的酶多达百余种。   人体能用色氨酸合成尼克酸,但合成率极低(60:1),而且需要B1、B2、B6,所以仍需摄取。抗结核药异烟肼的结构与尼克酰胺类似,两者有拮抗作用,长期服用异烟肼时应注意补充尼克酰胺。花生、豆类、肉类和酵母中含量较高。   尼克酸或烟酸肌醇有舒张血管的作用,可用于冠心病等,但可降低cAMP水平,使血糖及尿酸升高,有诱发糖尿病及痛风的风险。长期使用大量尼克酸可能损害肝脏。   六、生物素(biotin)   由杂环与戊酸侧链构成,又称维生素H,缺乏可引起皮炎。在生鸡蛋清中有抗生物素蛋白(avidin),能与生物素紧密结合,使其失去活性。   生物素侧链羧基可通过酰胺键与酶的赖氨酸残基相连。生物素是羧基载体,其N1可在耗能的情况下被二氧化碳羧化,再提供给受体,使之羧化。如丙酮酸羧化为草酰乙酸、乙酰辅酶A羧化为丙二酰辅酶A等都由依赖生物素的羧化酶催化。   花生、蛋类、巧克力含量最高。   以上六种维生素都与能量代谢有关。下面两种维生素与生血有关。   七、叶酸(folic acid,FA)   又称维生素M,由蝶酸与谷氨酸构成。活性形式是四氢叶酸(FH4),即蝶呤环被部分还原。四氢叶酸是多种一碳单位的载体,分子中的N5,N10可单独结合甲基、甲酰基、亚氨甲基,共同结合甲烯基和甲炔基。因此在嘌呤、嘧啶、胆碱和某些氨基酸(Met、Gly、Ser)的合成中起重要作用。缺乏叶酸则核酸合成障碍,快速分裂的细胞易受影响,可导致巨红细胞贫血(巨大而极易破碎)。   叶酸容易缺乏,特别是孕妇。叶酸分布广泛,肉类中含量丰富。苯巴比妥及口服避孕药等药物干扰叶酸吸收与代谢。   八、钴胺素(VB12)   是一个抗恶性贫血的维生素,存在于肝脏。分子中含钴和咕啉。咕啉类似卟啉,第六个配位可结合其他集团,产生各种钴胺素,包括与氢结合的氢钴胺素、与甲基结合的甲基钴胺素、与5u2019-脱氧腺苷结合的辅酶B12等。   一些依赖辅酶B12的酶类催化1,2迁移分子重排反应,即相邻碳原子上氢原子与某一基团的易位反应。例如在丙酸代谢中,催化甲基丙二酰辅酶A转变为琥珀酰辅酶A的变位酶就以辅酶B12为辅助因子。   甲基钴胺素可作为甲基载体,接受甲基四氢叶酸提供的甲基,用于合成甲硫氨酸。甲硫氨酸可作为通用甲基供体,参与多种分子的甲基化反应。因为甲基四氢叶酸只能通过这个反应放出甲基,所以缺乏钴胺素时叶酸代谢障碍,积累甲基四氢叶酸。缺乏钴胺素可导致巨红细胞贫血。   胃粘膜能分泌一种粘蛋白,可与V-B12结合,促进吸收,称为内因子。缺乏内因子时易被肠内细菌及寄生虫夺去,造成缺乏。素食者也易缺乏。   九、抗坏血酸(V-C)   是烯醇式L-古洛糖酸内酯,有较强的酸性。容易氧化,是强力抗氧化剂,也可作为氧化还原载体。   抗坏血酸还参与氨基酸的羟化。胶原中脯氨酸和赖氨酸的羟化都需要抗坏血酸作为酶的辅因子。缺乏抗坏血酸会影响胶原合成及结缔组织功能,使毛细血管脆性增高,发生坏血病。   肾上腺皮质激素的合成也需要V-C参加羟化。V-C可还原铁,促进其吸收;保护A、E及某些B族维生素免遭氧化。   五、辅酶Q   又称泛醌,广泛存在于线粒体中,与细胞呼吸链有关。泛醌起传递氢的作用。   六、硫辛酸   是酵母和一些微生物的生长因子,可以传递氢。有氧化型和还原型。   例题:   (一)A型题   l,下列关于维生素的叙述中,正确的是   A.维生素是一类高分子有机化合物   B.维生素是构成机体组织细胞的原料之一   C.酶的辅酶或辅基都是维生素   D.引起维生素缺乏的唯一原因是摄人量不足   E. 维生素在机体内不能合成或合成量不足   2,脂溶性维生素   A. 是一类需要量很大的营养素 B,易被消化道吸收   C. 体内不能储存,余者由尿排出   D,过少或过多都可能引起疾病   E. 都是构成辅酶的成分   3,维生素A除从食物中吸收外,还可在体内由   A. 肠道细菌合成 . B.肝细胞内氨基酸转变生成   C. u03b2-胡萝卜素转变而来 D.由脂肪酸转变而来   E,由叶绿素转变而来   参考答案   1.E 2. D 3. C ;

生物化学名词解释英文版?

第一章 1,氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。 5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm. 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。 12,纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。 13,球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。 14,角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。 15,胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。 16,疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。 17,伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。 18,二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。 19,范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。 20,蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。 21,肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。 22,复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。 23,波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。 24,血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。 25,别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。 26,镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe)。 第三章 1,酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是 通过降低活化能加快反应的速度。 2,脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。 3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。 4,酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。 5,比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。 6,活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。 7,活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。 8,酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。 9,共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。 10,靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。 11,初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。 12,米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s]) 13,米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。 14,催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。 15,双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。 16,竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而 υmax不变。 17,非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。 18,反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。 19,丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。 20,酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。 21,调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。 22,别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。 23,别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。 24,齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。 25,序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。 26,同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。 27,别构调节酶(allosteric modulator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。 第四章 1,维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。 2,水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。 3,脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。 4,辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。 5,辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。 6,尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。 7,黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。 8,硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。 9,黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。 10,磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。 11,生物素(biotin):参与脱羧反应的一种酶的辅助因子。 12,辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。 13,类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素。 14,转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。 第五章 1,醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。 2,酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。 3,异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。 4,异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。 5,变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。 6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。 7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。 8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。 9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。 10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。 11,还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。 12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。 13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。 14,极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。 15,肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。 16,糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。 17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。 第六章 1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。 2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。 3,不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。 4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。 5,三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。 6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。 7,鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。 8,鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。 9,卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。 10,脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。 11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。 12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。 13,内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。 14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。 15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。 16,通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。 17,通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。 18,(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。 19,被动转运(passive transport):那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。 20,主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。 21,协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。 22,胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程。 第七章 1,核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。 2,核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。 3,cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。 4,磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。 5,脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。 6,核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。 7,核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA . 8,信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA . 9, 转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。 10,转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。 11,转导(作用)(transduction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。 12,碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。 13,夏格夫法则(Chargaff"s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。 14,DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。 15.大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。

求生物化学名词英语缩写

CDP 胞苷二磷酸(cytidine diphosphate)CTP 胞苷三磷酸(cytidine triphosphate)EMP 糖酵解途径(Emoden-Meyerbof-Parnas pathway)GDP 鸟苷二磷酸(guanosine diphosphate)GTP 鸟苷三磷酸(guanosine triphosphate)IU 国际单位(international unit)IF 起始因子(initiation factor)、等电聚焦(isoelectric focusing)NADH 烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)的还原形式NADPH 烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADP+)的还原形式UMP 鸟苷酸(uridine monophosphate)UDP 尿苷二磷酸(uridine diphosphate)UTP 尿苷三磷酸(uridine triphosphate) FAS、ETC、FADF2不确定,以下给你参考FAS 美国科学家联合会(Federation of American Scientists)、TNF受体家族的Fas基因EC 酶学委员会(enzyme commission) ETC 等等(etc.)FA 脂肪酸(fatty acid)FAD 黄素腺嘌呤二核苷酸(flacin adenine dinucleotide)FADH2 还原型黄素腺嘌呤二核苷酸(flavin adenine dinucleotide,reduced)

生物化学中dh2是什么

黄素蛋白,。D=double,加起来就是黄素腺嘌呤二核苷酸(还原型).一分子NADH2产生2.5ATP,一分子FADH2产生1.5ATP,这是现在的算法。FADH2中的H2分离成游离的氢离子(H+)和电子(e-): FADH2→FAD+2H+ +2e- 再往后是电子在多种细胞色素中顺序地进行传递。FADH2是FAD+的还原形式NADH和FADH2都是人体内糖类(葡萄糖、果糖等)无氧酵解和有氧氧化中必须的物质,都是B族维生素的衍生物,参与电子传递和氧化磷酸途径产生ATP。

6、核酸降解的产物核苷酸及其衍生物的作用有哪些?

核酸降解的产物核苷酸及其衍生物的作用有哪些核算逐步降解的产物:核酸在生物体内核酸酶、核苷酸酶、核苷酶等的作用下,分解为氨、尿素、尿囊素、尿囊酸、尿酸等终产物,排泄到体外。知识点延伸:在核酸的分解过程中,产生的核糖可以沿磷酸戊糖途径代谢,产生的核苷酸及其衍生物几乎参与细胞的所有生化过程。如ATP是生物体内的通用能源;腺苷酸还是几种重要辅酶的组成成分;cAMP和cGMP作为激素作用的第二信使,是生物体内物质代谢的重要调节物质。

生物化学英文缩写《急急急急急急》!?_ FAS FAD FADH2 FMN IU IF EC

我只知道FAD是黄素腺嘌呤二核苷酸,FADH2是还原型黄素腺嘌呤二核苷酸,FMN是黄素单核苷酸

生物 土壤中的磷以什么形式被植物细胞吸收 吸收后可用于合成哪些含磷的有机物

  土壤中磷元素存在两种形式,无机磷和有机磷,而主要吸收无机磷,有机磷需要转化才能被吸收,在无机磷中正磷酸盐是其吸收的主要形式。磷酸二氢根最易被吸收,磷酸氢根次之,磷酸根几乎不被吸收。植物主要的含磷核苷酸衍生物: ATP(腺苷三磷酸)   NAD(烟酰胺腺嘌呤二核苷酸,辅酶Ⅰ)   NADP(烟酰胺腺嘌呤二核苷酸磷酸,辅酶Ⅱ)   FAD(黄素腺嘌呤二核苷酸)   FMN(黄素单核苷酸)

三羧酸循环名词解释生物化学

柠檬酸循环(citric acid cycle):也称为三羧酸循环(tricarboxylic acid cycle,TCA循环,TCA),Krebs循环。是用于将乙酰CoA中的乙酰基氧化成二氧化碳和还原当量的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。反应物乙酰辅酶A(Acetyl-CoA)(一分子辅酶A和一个乙酰相连)是糖类、脂类、氨基酸代谢的共同的中间产物,进入循环后会被分解最终生成产物二氧化碳并产生H,H将传递给辅酶I--尼克酰胺腺嘌呤二核苷酸(NAD+) (或者叫烟酰胺腺嘌呤二核苷酸)和黄素腺嘌呤二核苷酸(FAD),使之成为NADH + H+和FADH2。 NADH + H+ 和 FADH2 携带H进入呼吸链,呼吸链将电子传递给O2产生水,同时偶联氧化磷酸化产生ATP,提供能量。真核生物的线粒体基质和原核生物的细胞质是三羧酸循环的场所。它是呼吸作用过程中的一步,之后高能电子在NAHD+H+和FADH2的辅助下通过电子传递链进行氧化磷酸化产生大量能量。

什么可以字母表示生物中的一些词

第一章 1,氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。 5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm. 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。 12,纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。 13,球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。 14,角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。 15,胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。 16,疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。 17,伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。 18,二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。 19,范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。 20,蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。 21,肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。 22,复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。 23,波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。 24,血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。 25,别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。 26,镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe)。 第三章 1,酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是 通过降低活化能加快反应的速度。 2,脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。 3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。 4,酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。 5,比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。 6,活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。 7,活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。 8,酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。 9,共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。 10,靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。 11,初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。 12,米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s]) 13,米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。 14,催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。 15,双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。 16,竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而 υmax不变。 17,非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。 18,反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。 19,丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。 20,酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。 21,调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。 22,别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。 23,别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。 24,齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。 25,序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。 26,同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。 27,别构调节酶(allosteric modulator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。 第四章 1,维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。 2,水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。 3,脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。 4,辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。 5,辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。 6,尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。 7,黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。 8,硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。 9,黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。 10,磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。 11,生物素(biotin):参与脱羧反应的一种酶的辅助因子。 12,辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。 13,类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素。 14,转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。 第五章 1,醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。 2,酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。 3,异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。 4,异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。 5,变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。 6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。 7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。 8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。 9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。 10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。 11,还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。 12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。 13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。 14,极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。 15,肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。 16,糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。 17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。 第六章 1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。 2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。 3,不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。 4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。 5,三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。 6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。 7,鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。 8,鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。 9,卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。 10,脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。 11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。 12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。 13,内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。 14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。 15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。 16,通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。 17,通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。 18,(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。 19,被动转运(passive transport):那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。 20,主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。 21,协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。 22,胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程。 第七章 1,核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。 2,核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。 3,cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。 4,磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。 5,脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。 6,核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。 7,核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA . 8,信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA . 9, 转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。 10,转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。 11,转导(作用)(transduction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。 12,碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。 13,夏格夫法则(Chargaff"s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。 14,DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。 15.大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现

这是什么生物,还从来没见过?

笄蛭涡虫是一种比较低等的陆生扁形动物,涡虫纲,笄蛭科,属扁平动物门。它头部呈扇形,身体扁平不分节,左右对称。一般体长20~30厘米,长的可达60厘米以上。以土壤中的小动物和有机物为食,有个外号叫蚯蚓杀手,碰到蚯蚓后缠杀,再分泌消化液,用在身体中部的开口吸食但是这个的身体是扁平的。它用皮肤呼吸,靠身体上细微的纤毛运动,运动很缓慢。笄蛭涡虫是雌雄同体的一种动物。有意思的是,这种动物有很强的再生能力,如被切成两半,这两半均可再生出失去的另一半,形成两个新的完整的个体。笄蛭涡虫多生活在阴暗潮湿的地方,如砖石块下、土壤中,它虽然喜欢阴暗潮湿的地方,但是水多了它也会不适应,而转移到其它地方。平时多在夜间活动。

请问这是什么水中生物,有点象蚂蟥的,

笄蛭涡虫学名为Bipaliumkewense。笄蛭涡虫拼音:jī zhìwō chóng是一种比较低等的陆生扁形动物,涡虫纲,笄蛭科,属扁平动物门。它头部呈扇形,身体扁平不分节,左右对称。一般体长20~30厘米,长的可达60厘米以上。以土壤中的小动物和有机物为食,有个外号叫蚯蚓杀手,碰到蚯蚓后缠杀,再分泌消化液,用在身体中部的开口吸食但是这个的身体是扁平的。它用皮肤呼吸,靠身体上细微的纤毛运动,运动很缓慢。笄蛭涡虫是雌雄同体的一种动物。有意思的是,这种动物有很强的再生能力,如被切成两半,这两半均可再生出失去的另一半,形成两个新的完整的个体。笄蛭涡虫多生活在阴暗潮湿的地方,如砖石块下、土壤中,它虽然喜欢阴暗潮湿的地方,但是水多了它也会不适应,而转移到其它地方。平时多在夜间活动。

这是什么生物

这是笄蛭(Bipalium) 也称“天蛇”,古称“土蛊”。涡虫纲,笄蛭科。体长20-30厘米,头部作扇状。体黄色,其上有五条黑色纵纹生活于树根旁或墙脚下阴湿的土壤中. 笄蛭涡虫是一种比较低等的陆生扁形动物,涡虫纲,笄蛭科。俗称土蛊、陆涡虫。它头部呈扇形,身体扁平不分节,左右对称。一般体长20~30厘米,长的可达60厘米以上。笄蛭(Bipalium)古称“土蛊”、“陆涡虫”,是一种比较低等的陆生扁形动物,涡虫纲,笄蛭科,属扁平动物门。它头部呈扇形,身体扁平不分节,两侧对称。一般体长20~30厘米,长的可达60厘米以上。以土壤中的小动物和有机物为食,有个外号叫蚯蚓杀手,碰到蚯蚓后缠杀,再分泌消化液,用在身体中部的开口吸食但是这个的身体是扁平的。

请大家帮忙看看,这是什么生物?

这是涡虫的一种:笄蛭涡虫。笄蛭(Bipalium)古称“土蛊”、“陆涡虫”,是一种比较低等的陆生扁形动物,涡虫纲,笄蛭科,属扁平动物门。它头部呈扇形,身体扁平不分节,两侧对称。一般体长20~30厘米,长的可达60厘米以上。以土壤中的小动物和有机物为食。有个外号叫蚯蚓杀手,碰到蚯蚓后缠杀,再分泌消化液,用在身体中部的开口吸食。它用皮肤呼吸,靠身体上细微的纤毛运动,运动很缓慢。在受到刺激时也可以进行像蚂蝗一样的蠕动来逃跑。笄蛭涡虫是雌雄同体的一种动物,雌雄同体是一种比较低等的动物特征,指一种动物兼有雌雄两种性器官。有意思的是,这种动物有很强的再生能力,如被切成两半,这两半均可再生出失去的另一半,形成两个新的完整的个体。

这是什么生物有谁认识?

这是“笄蛭涡虫”。笄蛭涡虫也称“天蛇”,属扁形动物门、涡虫纲、笄蛭科生物。体黄色,身体扁平不分节,左右对称。一般体长20~30厘米,长的可达60厘米以上。以土壤中的小动物和有机物为食,有个外号叫蚯蚓杀手。它用皮肤呼吸,靠身体上细微的纤毛运动,运动很缓慢。笄蛭涡虫是雌雄同体的一种动物。有意思的是,这种动物有很强的再生能力,如被切成两半,这两半均可再生出失去的另一半,形成两个新的完整的个体。体长4-30厘米,头部作扇状。笄蛭涡虫

想问下这是什么生物,有毒吗?

蚂蟥吧!没毒~但会吸血!

高中生物:请问离子一定是主动运输吗?钠钾泵弄得我有点晕。能麻烦简明解释一下钠钾泵吗?离子通道?

  细胞膜是脂质双层膜,对无机盐离子是非通透性,所以无论无机盐离子在膜两侧是什么样的浓度,它们都不可能自由扩散通过细胞膜。无机盐离子必须借助细胞膜上一些特殊的蛋白,才能通过细胞膜,这些特殊的蛋白就是离子泵或者离子通道。

化学键断裂要耗能,为什么生物教材上写ATP高能磷酸键断裂会释放能量?

因为化学键和ATP高能磷酸键是两种不同的概念,化学键的断裂需要一定的能量,将储存的化学成分释放出来,而ATP高能磷酸键有旧键的断裂和新键的生成,但是旧键的吸收能力远小于新键的生成能力,所以才会这么说。

生物体内的高能化合物有哪些?

最主要的是高能磷酸化合物 如ATP 磷酸肌酸 氨甲酰磷酸 PEP就是你说的磷酸烯醇式丙酮酸 3-磷酸甘油酸 然后还有一些高能硫酯化合物 乙酰辅酶A等等还有电子传递系的那些 NADH FADH2

生物体内的高能化合物有哪些?

ATP(三磷酸腺苷)它是各种活细胞内普遍存在的一种高能磷酸化合物。高能磷酸化合物是指水解时释放的能量在20.92kJ/mol(千焦每摩尔)以上的磷酸化合物,ATP水解时释放的能量高达30.54kJ/mol。ATP的分子式可以简写成A-P~P~P。简式中的A代表腺苷①,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键。ATP的水解实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时能够释放出大量的能量,ATP分子中大量的化学能就储存在高能磷酸键中。科学研究表明,ATP分子中远离A的那个高能磷酸键,在一定的条件下很容易水解,也很容易重新形成:水解时伴随有能量的释放;重新形成时伴随有能量的储存。在有关酶的催化作用下,ATP分子中远离A的那个高能磷酸键水解,远离A的那个磷酸基团脱离开,形成磷酸(Pi),同时,储存在这个高能磷酸键中的能量释放出来,三磷酸腺苷就转化成二磷酸腺苷(英文缩写符号是ADP)。在另一种酶的催化作用下,ADP可以接受能量,同时与一个磷酸结合,从而转化成ATP(如图)。ATP在细胞内的含量是很少的。但是,ATP在细胞内的转化是十分迅速的。这样,细胞内ATP的含量总是处在动态平衡之中,这对于构成生物体内部稳定的供能环境,具有重要的意义。ATP水解时释放出的能量,是生物体维持细胞分裂、根吸收矿质元素离子和肌肉收缩等生命活动所需能量的直接来源。脂肪作为储能物质,糖类作为供能物质!

生物合成多肽链需要多少个高能磷酸键?

一共需要801个高能磷酸键。合成多肽链需要核糖体、tRNA和氨基酸。合成过程中每合成一个肽键需要4个高能磷酸键:一、氨基酸和tRNA以酯键结合消耗2个高能磷酸键。在氨酰tRNA合成酶的作用下分两步进行 氨基酸+ATP→氨酰-AMP+PPi 氨酰-AMP+tRNA→氨酰-tRNA+AMP总反应式:氨基酸+ATP+tRNA→氨酰-tRNA+AMP+PPi二、氨酰-tRNA和核糖体的结合消耗1个高能磷酸键。需要氨酰-tRNA结合因子的催化(该因子在细菌中简写为EF-Tu,在真核细胞总简写为EF-1)。 该因子可以结合有氨酰-tRNA和GTP的核糖体形成四元复合物,同时偶联上GTP的水解。随着氨酰-tRNA与核糖体的结合,EF-Tu则与GDP形成复合物核糖体。三、移位消耗1个高能磷酸键。移位的目的是使核糖体沿mRNA移动,使下一个密码子暴露出来以供继续翻译。这一过程由移位因子催化(原核中为EF-G,真核中为EF-2),此过程有GTP的水解。 一共有200个氨基酸,所以需要200X4=800个高能磷酸键。 在最开始,核糖体的大小亚基是分离的,再结合的时候也需要消耗一分子的GTP,即再加一个高能磷酸键,所以,一共需要801个高能磷酸键。 (如果你是分子方面计算的话,有些书上可能会说在多肽形成后从核糖体上水解下来还会需要一个高能磷酸键,不过生化的话就没有。这就需要按情况来了)

ATP是什么缩写?全称是什么?在微生物学中代表什么

ATP是三磷酸腺苷的英文缩写符号,它是各种活细胞内普遍存在的一种高能磷酸化合物。高能磷酸化合物是指水解时释放的能量在20.92 kJ/mol(千焦每摩尔)以上的磷酸化合物,ATP水解时释放的能量高达30.54 kJ/mol。 ATP的分子式可以简写成A- P~P~P。简式中的A代表腺苷①,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键。ATP的水解实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时能够释放出大量的能量,ATP分子中大量的化学能就储存在高能磷酸键中。 参考资料:http://www.sw-sj.com 另外的ATP 国际职业网球联合会(Association of Tennis Professionals,简称ATP)创立于1972年,其目标是保护男子职业网球运动员的利益(女子运动员后来组织了国际女子职业网球协会)。1990年开始国际职业网球联合会成为世界上主要的网球巡回赛的组织者,这些赛事后来被称为ATP巡回赛。

高能磷酸键与磷酸二酯键的区别?高中生物

磷酸二酯键是一个核苷酸和另一个核苷酸之间的连接,位于核糖与磷酸之间。高能磷酸键是指三磷酸核苷的第二个磷酸基团和第三个磷酸基团之间的键,因为这个键断开时会释放很多能量,所以叫高能磷酸键。 举例如下:RNA中核糖与磷酸之间,DNA中脱氧核糖与磷酸之间形成的是3",5"-磷酸二酯键。四种dNTP(dATP,dTTP,dCTP,dGTP)和四种NTP(ATP,UTP,CTP,GTP)都含有高能磷酸键,脱磷酸后变为dNDP或NDP。

高中生物 DNA解旋酶基因,核糖体蛋白基因是所有活细胞都具有的基因吗

是啊。DNA解旋酶主要参与DNA的复制过程,它使得DNA的双链解螺旋形成单链,完成DNA的复制。对于活细胞来讲,DNA的复制活动是频繁的,因此,DNA解旋酶基因肯定存在。而核糖体蛋白基因主要编码核糖体的蛋白,比如说核糖体结构蛋白,这些蛋白在维持核糖体的结构和功能方面是必需的。所以,这种基因也是存在的。当然了,上面的论述仅限于有细胞结构生物。

生物体内所有的化学反应都需要水么?有没有特例?

如果你真的钻牛角尖的话,我可以负责任的告诉你,从逻辑角度,一定有特例的。在一些情况下,水作为一种溶剂,提供一个反应的场所,而不是作为反应物。但是细胞作为一个富含水分的环境,一般细胞内含量最多的物质是水。没有水分就没有活的细胞,但的确有些生理生化反应可以在无水的条件下进行。但是纵观细胞能量代谢、遗传物质合成等活动真的很多都是在有水的环境下进行的

食品卫生微生物学检验中常用的生物化学试验有哪些

食品卫生微生物学检验中常用的生物化学试验有哪些微生物生化反应是指用化学反应来测定微生物的代谢产物,生化反应常用来鉴别一些在形态和其它方面不易区别的微生物。因此微生物生化反应是微生物分类鉴定中的重要依据之一,微生物检验中常用的生化反应介绍如下:一、糖酵解试验不同微生物分解利用糖类的能力有很大差异,或能利用或不能利用,能利用者,或产气或不产气。可用指示剂及发酵管检验。试验方法:以无菌操作,用接种针或环移取纯培养物少许,接种于发酵液体培养基管中,若为半固体培养基,则用接种针作穿刺接种。接种后,置36±1.0°C培养,每天观察结果,检视培养基颜色有无改变(产酸),小倒管中有无气泡,微小气泡亦为产气阳性,若为半固体培养基,则检视沿穿刺线和管壁及管底有无微小气泡,有时还可看出接种菌有无动力,若有动力,培养物可呈弥散生长。本试验主要是检查细菌对各种糖、醇和糖苷等的发酵能力,从而进行各种细菌的鉴别,因而每次试验,常需同时接种多管。一般常用的指示剂为酚红、溴甲酚紫,溴百里蓝和An-drade指示剂。二、淀粉水解试验某些细菌可以产生分解淀粉的酶,把淀粉水解为麦芽糖或葡萄糖。淀粉水解后,遇碘不再变蓝色。试验方法:以18~24h的纯培养物,涂布接种于淀粉琼脂斜面或平板(一个平板可分区接种,试验数种培养物)或直接移种于淀粉肉汤中,于36±1°C培养24~48h,或于20℃培养5天。然后将碘试剂直接滴浸于培养表面,若为液体培养物,则加数滴碘试剂于试管中。立即检视结果,阳性反应(淀粉被分解)为琼脂培养基呈深蓝色、菌落或培养物周围出现无色透明环、或肉汤颜色无变化。阴性反应则无透明环或肉汤呈深蓝色。淀粉水解系逐步进行的过程,因而试验结果与菌种产生淀粉酶的能力、培养时间,培养基含有淀粉量和pH等均有一定关系。培养基pH必须为中性或微酸性,以pH7.2最适。淀粉琼脂平板不宜保存于冰箱,因而以临用时制备为妥。三:V-P试验某些细菌在葡萄糖蛋白胨水培养基中能分解葡萄糖产生丙酮酸,丙酮酸缩合,脱羧成乙酰甲基甲醇,后者在强碱环境下,被空气中的氧氧化为二乙酰,二乙酰与蛋白胨中的胍基生成红色化合物,称V-P(+)反应。试验方法:1)O"Meara氏法:将试验菌接种于通用培养基,于36±1°C培养48h,培养液1ml加O"Meara试剂(加有0.3%肌酸Creatine或肌酸酐Creatinine的40%氢氧化钠水溶液)1ml,摇动试管1~2min,静置于室温或36±1°C恒温箱,若4h内不呈现伊红,即判定为阴性。亦有主张在48~50°C水浴放置2h后判定结果者。2)Barritt氏法:将试验菌接种于通用培养基,于36±1°C培养4天、培养液2.5ml先加入a萘酚(2-na-phthol)纯酒精溶液0.6ml,再加40%氢氧化钾水溶液0.2ml,摇动2~5min,阳性菌常立即呈现红色,若无红色出现,静置于室温或36±1°C恒温箱,如2h内仍不显现红色、可判定为阴性。3)快速法:将0.5%肌酸溶液2滴放于小试管中、挑取产酸反应的三糖铁琼脂斜面培养物一接种环,乳化接种于其中,加入5%α-萘酚3滴,40%氢氧化钠水溶液2滴,振动后放置5min,判定结果。不产酸的培养物不能使用。本试验一般用于肠杆菌科各菌属的鉴别。在用于芽胞杆菌和葡萄球菌等其它细菌时,通用培养基中的磷酸盐可阻碍乙酰甲基醇的产生,故应省去或以氯化钠代替。

原核生物的核糖体在那里形成?

就组成而言,核糖体是一个核酸蛋白复合物,其中蛋白质占其总重量的三分之一,其余部分由 RNA 构成。 核糖体是所有生物进行蛋白质合成的场所,是一个由大小两个亚基组成的精密分子机器。 原核生物的核糖体(原核核糖体)的 70S 由 30S 小亚基和 50S 大亚基组成。 30S 小亚基由 16S rRNA和小亚基核糖体蛋白(S-proteins)组成; 50S 大亚基由 23S rRNA 和 5S rRNA 和大亚基蛋白(L-proteins)组成。 (其中 S 是 Svedberg 沉降系数,代表了其在蔗糖密度梯度离心时的沉降速度。) 广义的核糖体组装过程也被称为核糖体的成熟过程,包括 生物体内 rRNA 、 核糖体蛋白的合成、 直至 产生有蛋白翻译活性的成熟核糖体 的全部过程。所以核糖体的成熟过程应该包括四个内容: ①r RNA 的转录、剪切以及碱基修饰。 ②核糖体蛋白的翻译以及翻译后修饰。 ③rRNA 及核糖体蛋白的正确折叠。 ④核糖体蛋白与rRNA 的结合,形成有翻译活性的核糖体复合物。 由于原核生物无核膜, 所以核糖体在细胞质中形成。 与真核生物的核糖体形成不同(先在细胞核中转录,并形成核糖体亚单位,再通过核孔运送到细胞质中组装) 原核生物的核糖体是在细胞质中 边转录边组装 ,即在这个过程中,rRNA 的转录、加工及修饰与 rRNA 的折叠和核糖体蛋白的结合与修饰同步、并行、交错进行,几个步骤之间相互影响、协调一致,确保核糖体组装准确、高效的进行。

生物体细胞内的生物化学反应都与蛋白质有关是对的吗

应该是对的。1、一方面细胞内生化反应,都有生物酶参与崔化反应,而酶就是一种蛋白质。2、另一方面大多数细胞内生化反应,都是细胞器中进行,细胞器肯定是蛋白质组成的。

生物反应器的原理是什么?

生物反应器听起来有些陌生,基本原理却相当简单。胃就是人体内部加工食物的一个复杂生物反应器。食物在胃里经过各种酶的消化,变成我们能吸收的营养成分。生物工程上的生物反应器是在体外模拟生物体的功能,设计出来用于生产或检测各种化学品的反应装置。或者说,生物反应器是利用酶或生物体(如微生物)所具有的生物功能,在体外进行生化反应的装置系统,是一种生物功能模拟机,如发酵罐、固定化酶或固定化细胞反应器等。在固定化酶广泛应用的基础上,人们发现天然细胞本身就具有多功能的系列化反应系统,采用物理或化学方法将细胞固定化,是利用酶或酶系的一条捷径。一个固定化细胞反应器犹如一台“生命活动功能推动机”。固定化细胞技术开始于20世纪70年代,其实际应用程度已超过固定化酶。如美国、欧洲、日本均采用固定化菌体柱床工艺大规模生产高果糖浆。

生物反应器是什么? 请举几个例子。3Q

生物反应器首先在发酵工业中得到应用.发酵工业中使用的生物反应器,实际上是发酵罐.另一种是以固定化酶或固定化细胞为催化剂的酶反应器.世界上最大的发酵罐高达100米,直径7米,容积为4000立方米.它远远望去,犹如一座壮观的圆形塔. 可以用于制干扰素、胰岛素、生物钢、人生长激素. 好处我也不太清楚. 生物反应器是利用生物催化剂为细胞培养(或发酵)或酶反应提供良好的反应环境的设备,通常称为发酵罐或酶反应器.用于污水生物处理的曝气池或厌气消化罐也可作为生物反应器的一类.生物反应器是生物反应过程中的关键设备,它的结构、操作方式和操作条件对生物技术产品的质量、转化率和能耗有着密切关系. 生物反应器 名称 名称:生物反应器 主题词或关键词:DNA 生命科学 细菌 胰岛素 内容 内容 生物反应器听起来有些陌生,基本原理却相当简单.胃就是人体内部加工食物的一个复杂生物反应器.食物在胃里经过各种酶的消化,变成我们能吸收的营养成分.生物工程上的生物反应器是在体外模拟生物体的功能,设计出来用于生产或检测各种化学品的反应装置.或者说,生物反应器是利用酶或生物体(如微生物)所具有的生物功能,在体外进行生化反应的装置系统,是一种生物功能模拟机,如发酵罐、固定化酶或固定化细胞反应器等. 在固定化酶广泛应用的基础上,人们发现天然细胞本身就具有多功能的系列化反应系统采用物理或化学方法将细胞固定化,是利用酶或酶系的一条捷径.一个固定化细胞反应器犹如一台“生命活动功能推动机”.固定化细胞技术开始于70年代,其实际应用程度已超过固定化酶.如美国、欧洲、日本均采用固定化菌体柱床工艺大规模生产高果糖浆.

核糖体在蛋白质的生物合成过程中起什么作用

核糖体上的蛋白质合成就叫翻译,以mRNA为模板,转运RNA为工具(转运RNA上的碱基与mRNA上的碱基互补配对),将20氨基酸合成肽链(加工后就是蛋白质)。

生物每步生化反应都需要酶吗

所有的生物化学反应都需要酶来催化。我是持否定意见的,如血红蛋白与氧结合的过程就不要酶的参与。

如何根据生理生化反应鉴定微生物

生态学特征以及血清学反应。如是酵母菌,常称为该种生物的生活周期或生活史,还要注意是成醭状。它先后对芽孢杆菌。虽然它们的蛋白质分子结构各异,但可以作为“属”的分类特征。 6。 (3)与温度和氧气的关系 测出适合某种微生物生长的温度范围以及它的最适生长温度、CO2。近年来,在此基础上。 2:在一定的固体培养基上生长的菌落特征、颜色等,包括外形,样品少,同时也有助于微生物间系统发育关系的探索,经过不同的发育阶段;在液体培养基中生长情况,仍无法分辨它们、生活史 生物的个体在一生的生长繁殖过程中、构造、有机酸,将其分为6个细胞壁(cell wall)类型、大小、硝酸盐和铵盐利用情况等)、微量好氧、形状,根据细胞壁(cell wall)的氨基酸组成,寄主范围以及致病的情况),或对同种微生物分型、形状,有人对18个属的放线菌的细胞壁(cell wall)进行了分析、排列等。然而利用抗原与抗体的高度敏感特异性反应。 用已知菌种、DNA碱基比 DNA碱基比[(G+C)mol%]、型或菌株微生物鉴别方法——传统方法 在传统的分类鉴定中。利用这一特性、是否有嗜盐性等)。若两个样品的吸收光谱完全相同,这种方法简便快速,能否使牛奶凝固。 各种生物都有自己的生活史,就可用来鉴别相似的菌种、各种糖类的利用情况等)。 2、边缘、环状还是岛状。 根据有关学者的试验表明。因此、黏稠度。 1,如是否产生H2S,每种物质的化学结构都有特定的红外光谱,孢子的数目,原核生物变化范围是20-78%、生理生化反应特征,把它作为区分“属”的依据之一,各种噬菌体有其严格的宿主范围,培养基的颜色等。 该法常用于肠道菌,与待鉴定的对象是否发生特异性的血清学反应来鉴定未知菌种,细胞构造,能否还原硝酸盐、形态学特征 (1)细胞形态 在显微镜下观察细胞外形大小,看它是好氧、气味、边缘,有无芽孢和荚膜、酵母菌进行分类,我们把这些依据作为鉴定项目、红外光谱IR 一般认为、大肠杆菌(Escherichia coli)、型或菌株制成的抗血清,已将伤寒杆菌、乳酸菌。在自然界的分布情况(pH情况,红外光谱技术被应用到微生物的分类中、隆起情况、隆起。 3、对噬菌体的敏感性 与血清学反应相似、渗透压情况(是否耐高渗、水分程度等),可以初步认为它们是同一种物质,微生物分类鉴定的主要依据是形态学特征、是否分泌水溶性色素等、生理生化反应特征 (1)利用物质的能力 包括对各种碳源利用的能力(能否以CO2为唯一碳源、气相色谱GC 4、高效液相色谱HPLC 5;(A+T+G+C)% 该比值的变化范围很大,可以用某一已知的特异性噬菌体鉴定其相应的宿主、兼性好氧;在一定的斜面培养基上生长的菌苔特征、对噬菌体的敏感性等。但是它也有不足之处。 4、冻化等。 (2)代谢产物的特殊性 这方面的鉴定项目非常多、光泽。利用此法,放线菌和真菌的繁殖器官的形状、微生物鉴别方法——分子生物学方法 1,包括是否产生菌膜。它比单纯用形态进行分类更全面,如黏细菌就是以它的生活史作为分类鉴定的依据、形状、生态学特征 生态学特征主要包括它与其他生物之间的关系(是寄生还是共生,生活史有时也是一项指标、质谱分析MS 三: (G+C)mol%=(G+C)/,反之亦然,借助于红外线光谱区分属内的种和菌株是困难的、细胞壁(cell wall)组分分析 细胞壁(cell wall)组分分析首先应用于放线菌分类中。 二,近年来又应用于放线菌分类中、微生物鉴别方法——新技术新方法 1,均匀浑浊还是发生沉淀。在分类鉴定中、对生长因子的要求(是否需要生长因子以及需要什么生长因子等),不仅可以初步了解各属菌的细胞成分的化学性质。 3、吲哚,结合形态特征提出了相应的科属检索表。在鉴定时、正反面颜色、醇、质地,又根据细胞壁(cell wall)的糖的组成分成4个糖类型、大小、芽孢的大小和位置、血清学反应 很多细菌有十分相似的外表结构(如鞭毛)或有作用相同的酶(如乳酸杆菌属内各种细菌都有乳酸脱氢酶),但在普通技术下(如电子显微镜或生化反应)、肺炎链球菌等菌分成数十种菌型,进行一系列的观察和鉴定工作;在半固体培养基上经穿刺接种后的生长情况、对各种氮源的利用能力(能否固氮、颜色和表面特征等。对氧气的关系,以G+C物质的量分数(mol%)表示,革兰氏染色反应。 (2)群体形态 群体形态通常是指以下情况的特征,有无气泡、鞭毛着生部位和数目。 5、噬菌体和病毒的分类鉴定,包括生长程度、耐氧还是专性厌氧,能否运动、透明度、最低生长温度和最高生长温度,真核生物的变化范围为30%-60%、能源的要求(光能还是化能。这种过程对特定的生物来讲是重复循环的、氧化无机物还是氧化有机物等),结果较好

生物体内的一切生化反应都是以酶作用的催化反应吗?

不是的,应该这样说,大部分是需要的. 生化反应即生物化学反应,就是指在生物的细胞内进行的化学反应.酸碱中和肯定属于细胞内的化学反应,但是HCL和NAOH酸碱中和这些反应并不需要酶.

生物体内的核糖体的蛋白质从何而来?

核糖体的形成真核细胞的大小亚基是在核中形成的,在核仁部位rDNA经RNA聚合酶Ⅰ转录出45S rRNA,是rRNA的前体分子,与胞质运来的蛋白质结合,再进行加工,经酶裂解成28S,18S和5.8S的rRNA,而5S rRNA则在核仁外经RNA聚合酶Ⅲ合成。28S,5.8S及5S rRNA与蛋白质结合,形成RNP分子团。为大亚基前体,分散在核仁颗粒区,再加工成熟后,经核孔入胞质为大亚基,18S rRNA也与蛋白质结合,经核孔入胞质为小亚基。大小亚基在胞质中可解离存在,在需要时也可在>0.001M Mg 存在时,但合成完整单核糖体,才具有合成功能,当Mg4 <0.001M时则又重新解离。参考:百度百科

高中生物,所有的代谢反应都有自由水参与吗?自由水是所有代谢活动的介质吗?

问题1不是,比如氨基酸脱水缩合形成蛋白质,不消耗水产生水。许多生物化学反应需要有水参与但不是全部。问题2 自由水是细胞内良好的溶剂

所有生物都有核糖体吗?

不是所有生物都有核糖体。核糖体(Ribosome),旧称“核糖核蛋白体”或“核蛋白体”,普遍被认为是细胞中的一种细胞器,除哺乳动物成熟的红细胞,植物筛管细胞外,细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体(其中线粒体中的核糖体与细胞质核糖体不相同)。原核生物的核糖体的直径约为20 nm,由65%rRNA和35%核糖体蛋白组成。真核生物核糖体的直径在25到30 nm之间,rRNA与蛋白质的比率接近1。细菌和真核生物的核糖体亚基非常相似。游离核糖体游离核糖体可在细胞质中的任何位置移动,但被排除在细胞核和其它细胞器之外。由游离核糖体生成的蛋白质被释放到细胞质中并在细胞内使用。由于细胞质含有高浓度的谷胱甘肽,它是一种还原性的环境,因此,细胞质中的游离核糖体不能产生由氧化的半胱氨酸残基形成的含有二硫键的蛋白质。

生物化学中的反应大体可分为哪四类?

和普通的化学反应相比,它具有以下的特点: 1、在生物体中所进行的生物化学反应都是远离平衡点的反应,它需要从外界获取能量或向外界输出物质、能量和熵。 2、参与反应的蛋白质一般都是固定在膜上或细胞骨架上,使细胞内每时每刻所进行的成千上万种生物化学反应,犹如行驶在具有立交的高速路上机动车,各行其是,互不干扰。例如细胞核中DNA的复制、转录都必须附着在核骨架上才能正确进行。 3、细胞中生物化学反应的主要类型是氧化还原反应,电子在定位于膜上或骨架上的蛋白质之间进行高速传递。例如电子传递链(内膜嵴)、光合作用(类囊体膜上) 4、由于细胞中的生物化学反应是在膜分隔的空间中进行,因此存在着位置信息效应,即生物大分子只有在特定位置发生反应,其特定功能才能得以发挥。例如,RNA转录、加工只在核中一定区域进行;蛋白质生物合成是在细胞质中进行,线粒体和叶绿体只能合成自己需要的一小部分蛋白质,糖酵解发生在细胞质中,三羧酸循环发生在线粒体基质中。 5、膜的分隔使细胞中的生物化学反应成为一种由浓度梯度驱动的方向性化学反应。例如,溶酶体膜上V-型ATP酶,叶绿体类囊体膜上的F-型ATP酶等都是由H+浓度梯度驱动。 6、细胞内所进行的生物化学反应都需要有酶的催化。酶的催化效率高,反应条件温和,具有方向性,对底物有高度专一性。 7、生物体或细胞中所进行的生物化学反应,在复杂的网络体系中都可以通过正、负反馈得到自动调控。而载着反馈过程蓝本的基因负责调制机体应如何读、如何理解同一基因。 8、在生物体中所进行的生物化学反应,从本质上说都是由一种或几种作用物与受体蛋白等相互选择引起的。例如,激素、神经递质等通过与特定的受体蛋白结合形成复合物,在由后者引发一系列化学或物理的连锁反应、酶对底物的选择等。编辑本段生化反应与水的关系 体内生化反应都由酶催化,酶和反应物溶于内环境的水中,才能发生反应,水为体内物质提供载体和介质。以水作为反应物的生化反应 1)大分子有机物的消化(水解) 2)糖原分解 3)ATP分解 4)有氧呼吸第二阶段 5)光合作用的光反应

高中生物 需要水或生成水生化反应

水既是反应物又是生成物的反应:光合作用,有氧呼吸。生成水的反应:脱水缩合,DNA复制,转录;淀粉的形成,ADP形成ATP等需要水的反应:蛋白质的水解,DNA的水解,RNA的水解。淀粉的水解。ATP的水解。

高中生物生命体内的生化反应是不是基本上都需要酶?

是的,基本上都需要酶来催化。你说的“比如呼吸作用的三个阶段,光合作用的两个阶段是不是都需要酶的催化”基本正确,但是注意“光合作用”的光反应阶段中,色素吸收光能是不需要酶的。如果觉得有帮助,希望采纳和关注!!!

1.激酶在生物体内主要催化哪些生化反应?

生物体内的各种化学反应大都是在酶催化下进行的,故称其为酶促反应。酶是由活细胞生成的生物催化剂,其本质主要是蛋白质,通常按酶的组成将其分为单纯酶和结合酶;根据蛋白酶分子的特点分为单体酶,寡聚酶和多酶复合体;国际酶学委员会(E C)根据酶促反应类型将酶分为六大类;氧化还原玻、转移酶、水解酶、裂解酶、异构酶和成酶。在对酶的研究中,我们发现有为数不少的酶在其名称后面均有 激酶"二字,如肠激酶、尿激酶、链激酶等等。按一述有酶的分类法,激酶是属于哪一类酶呢 除了蛋白激酶,己糖激酶等在生物化学教科书中已明确说明是属于转移酶类外,其它激酶尚无明确分类。在酶的系统命名法的原则中,强调标明酶的底物及催化反应的性质,因此,必须将激酶按其催化反应的性质,将激酶进行分类,才能对激酶的系统命名法,因为在系统命名法中,对每种酶都用四个阿拉伯数字编写,其中一个数字是该酶按酶促反应类型所分的类型,如氧化还原酶类的编号,第一个数字为1,转移酶类的编号第一个数字为2,依次类推。我们将激酶按其对底物作用不同,分为3种,即激活酶原的激酶、改变酶的活性的激酶,直接参与酶促反应的激酶,对3种作用机制分别进行了探讨,同时根据激酶的作用机制不同,确定其反应类型,从而将常见的激酶分别归入国际酶学委员会(E C根据酶反应所分的酶的六大类型之中。1激活酶原的激酶酶原是指没有催化活性的酶的前体,酶原激活的本质是促进酶的活性中心形成或暴露的过程,因此,激酶对酶原的激活就是促进酶的活性中心的形或暴露。有些激酶在对酶原的激活时,通过水解作用,切除酶原的部分肽链,使剩下的肽链重新折叠,形成活性中心。如肠激酶在对胰蛋白酶原的激活对....:

污染物的生物化学转化技术有哪些方法

污染物在生物化学和分子水平上的影响?污染物进入机体后,首先将导致机体一系列的生物化学变化。这些变化广义上说可分为两种:一种是用来保护生物体抵抗污染物的伤害,称之为防护性生化反应;另一种不起保护作用,称之为非防护性生化反应。一、对生物机体酶的影响?(一)酶活性的诱导?至今发现有许多不同化学结构的化合物,能诱导混合功能氧化酶和其他酶。这些化合物包括药物、杀虫剂、多环芳烃和许多其他化合物,其中大量是存在环境中的污染化合物。这些能诱导酶的化合物大都属有机亲脂性化合物,并且在较长的生物半衰期。其诱导作用是增加酶的合成速度,或可能降低酶蛋白的分解。?应用rna和dna代谢抑制剂,发现诱导作用发生在转录水平上,并不需要新的dna合成,有人认为,外源性化合物诱导酶蛋白合成,主要是操纵基因去阻遏作用(depression)。外源性化合物与阻遏物形成复合物,使阻遏作用失效,故操纵基因不受阻遏,结构基因指导酶蛋白合成增加。1.混合功能氧化酶(mfo)(1)混合功能氧化酶是污染物在体内进行生物转化相i过程中的关键酶系。它们对人工合成化学品解毒发挥了重要的作用。(2)存在于大多数组织的细胞内质网上。(3)混合功能氧化酶引起的生物转化的反应特征相同,但底物产物的化学特性差别很大,即具多种催化功能。(4)具有明显的物种差异性和多样性。(5)许多外源性化合物进入体内,经混合功能氧化酶作用后发生各种变化,大多数被转化成低毒易溶的代谢产物排出体外。然而有些则变成高毒甚至变成致癌物。(6)可以利用混合功能氧化酶诱导反应作为分子水平上敏感性的生物指标,来监测污染物对生态系统的早期影响。

生物酶是怎么催化有机化学反应的

生物酶是由活细胞产生的具有催化作用的有机物,大部分为蛋白质,也有极少部分为RNA。生物酶是具有催化功能的蛋白质。像其他蛋白质一样,酶分子由氨基酸长链组成。其中一部分链成螺旋状,一部分成折叠的薄片结构,而这两部分由不折叠的氨基酸链连接起来,而使整个酶分子成为特定的三维结构。生物酶是从生物体中产生的,它具有特殊的催化功能,其特性如下: 高效性:用酶作催化剂,酶的催化效率是一般无机催化剂的10^7~10^13倍。专一性:一种酶只能催化一类物质的化学反应,即酶是仅能促进特定化合物、特定化学键、特定化学变化的催化剂。低反应条件:酶催化反应不象一般催化剂需要高温、高压、强酸、强碱等剧烈条件,而可在较温和的常温、常压下进行,另外,一些特殊的酶在特定条件下催化效率达最大值,如胃蛋白酶在胃液酸性条件下发生作用。易变性失活:在受到紫外线、热、射线、表面活性剂、金属盐、强酸、强碱及其它化学试剂如氧化剂、还原剂等因素影响时,酶蛋白的二级、三级结构有所改变。所以在大生产时,如有条件酶还可以回收利用。可降低生化反应的反应活化能:酶作为一种催化剂,能提高化学反应的速率,主要原因是降低了反应的活化能,使反应更易进行。而且酶在反应前后理论上是不被消耗的,所以还可回收利用。

微生物生理生化实验先加试剂后培养的影响

百度知道微生物的生理生化特点超级机遇家TA获得超过1207个赞关注成为第9位粉丝微生物的特点与作用三,微生物的生物学特点与作用微生物除具有生物的共性外,也有其独特的特点,正因为其具有这些特点,才使得这样微不可见的生物类群引起人们的高度重视.(一)种类繁多,分布广泛(二)生长繁殖快,代谢能力强(三)遗传稳定性差,容易发生变异(一)种类繁多,分布广泛种类极其繁多——已发现的微生物达10万种以上,新种不断发现.分布非常广泛——可以说微生物无处不有,无处不在.极端环境:冰川,温泉,火山口等极端环境;土 壤:土壤是微生物的大本营,一克沃土中含菌量高达几亿甚至几十亿;空 气:空气中也含有大量微生物,越是人员聚集的公共场所,微生物含量越高;水:水中以江,湖,河,海中含量高,井水次之;动植物体表及某些内部器官:如皮肤及消化道等.微生物的多样性已在全球范围内对人类产生巨大影响.土壤中微生物的种类繁多,几乎所有的微生物都能从土壤中分离筛选得到,要分离筛选某中微生物,多数情况都是从土壤采取样品.首先微生物为人类创造了巨大的物质财富,目前所使用的抗生素药物,绝大多数是微生物发酵产生的,以微生物为劳动者的发酵工业,为工,农,医等领域提供各种产品.另外微生物也为人类带来巨大危害,如疫病的传播,并且引起疫病传播的新微生物种类总不断出现.(二)生长繁殖快,代谢能力强大肠杆菌(Escherichia coli)在适宜的条件下,每20分钟即繁殖一代,24小时即可繁殖72代,由一个菌细胞可繁殖到47×1022个,如果将这些新生菌体排列起来,可绕地球一周有余;生理基础:因为微生物的代谢能力很强, 由于微生物个体微小,单位体积的表面积相对很大,有利于细胞内外的物质交换,细胞内的代谢反应较快.极大的物质资源:正因为微生物具有生长快,代谢能力强的特点,才使得微生物能够成为发酵工业的产业大军,在工,农,医等战线上发挥巨大作用;在物质转化中的作用:如果没有微生物,自古以来的动,植物尸体不能分解腐烂,早已是动,植物尸体堆积如山,布满全球.(三)遗传稳定性差,容易发生变异微生物个体微小,对外界环境很敏感,抗逆性较差,很容易受到各种不良外界环境的影响;另外,微生物的结构简单,缺乏免疫监控系统, 很容易变异.微生物的遗传不稳定性,是相对高等生物而言的,实际上在自然条件下,微生物的自发突变频率为10-6左右.微生物的遗传稳定性差,给微生物菌种保藏工作带来一定不便.另一方面,正因为微生物的遗传稳定性差,其遗传的保守性低,使得微生物菌种培育相对容易得多.通过育种工作,可大幅度地提高菌种的生产性能,其产量性状提高幅度是高等动,植物所难以实现的.微生物学及其分支学科一,微生物学及其研究对象二,微生物学的分支学科一,微生物学及其研究对象微生物学概念:概括地讲,微生物学(Microbiology)是研究微生物及其生命活动规律的学科.研究对象:研究的主要内容涉及微生物的形态结构,营养特点,生理生化,生长繁殖,遗传变异,分类鉴定,生态分布以及微生物在工业,农业,医疗卫生,环境保护等各方面的应用.研究微生物及其生命活动规律之目的在于充分利用有益微生物,控制有害微生物,使这些微小生物更好地贡献于人类文明.二,微生物学的分支学科(一)根据基础理论研究内容不同,形成的分支学科微生物生理学(Microbiol Physiology)微生物遗传学(Microbiol Genetics)微生物生物化学(Microbiol Biochemistry)微生物分类学(Microbiol Taxonomy)微生物生态学等(Microbiol Ecology).(二)根据微生物类群不同,形成的分支学科细菌学(Bacteriology)病毒学(Virology)真菌学(Fungi)放线菌学(Actinomycetes)等.(三)根据微生物的应用领域不同,形成的分支学科工业微生物学(Intustrial Microbiology)农业微生物学(Agricultural Microbiology)医学微生物学(Medical Microbiology)药用微生物学(Patherological Microbiology)食品微生物学(Food Microbiology)兽医微生物学(Viterinary Microbiology)等.(四)根据微生物的生态环境不同,形成的分支学科土壤微生物学(Soil Microbiology)海洋微生物学(Marine Microbiology)等.第三节 食品微生物学及其研究内容食品微生物学:食品微生物学是专门研究与食品有关的微生物的种类,特点及其在一定条件下与食品工业关系的一门学科.尽管人类对食品微生物研究的历史很长,但作为微生物学的一门独立的分支学科——食品微生物学,其仍属一门新兴学科.尤其在我国,人们对食品科学的重视仅是改革开放以来,人们解决了温饱问题之后的事情;食品微生物学是随着食品科学的发展而产生的一个重要的学科.食品微生物研究的主要内容包括三个方面:一,在食品工业中有益的微生物及其应用;二,在食品保藏过程中引起食品变质的微生物及其控制;三,与食品卫生有关的微生物.第四节 微生物学的发展简史我们把这个过程分成以下四个阶段加以阐述.一,微生物学的史前时期二,微生物的发现与微生物学的启蒙时期三,微生物学的形成时期四,微生物学的发展时期一,微生物学的史前时期盲目应用时期.人类已经在很多方面利用了微生物,世界各国人民在自己的生产实践中都积累了很多利用有益微生物和防治有害微生物的经验.北魏的贾思勰《齐民要术》一书中,就详细记载了制醋的方法.我国古代劳动人民就利用了盐腌,糖渍,烟熏,风干等.二,微生物发现与微生物学启蒙时期十七世纪,荷兰人吕文虎克(Antony van Leeuwenhock)发明了第一台简易显微镜(200~300倍).于1669年出版了《安东.列文虎克所发现的自然界秘密》.随后在近200年的时期,随着显微镜的不断改进,分辨率的提高,人们对微生物的认识由粗略的形态描述逐步发展到对微生物进行详细的观察和根据形态进行分类研究,形成了启蒙的微生物学.三,微生物学的形成时期由研究微生物形态的启蒙时期到对微生物的生理生化水平研究时期.巴斯德(Louis Pasteur, 1822~1895)通过对酒曲的研究,证明了酒曲发酵是其中的酵母菌代谢作用,这一研究结果把对微生物的研究由形态转向生理生化研究水平,为微生物学的形成和发展奠定了基础.巴斯德还通过大量实验证明了食品的腐败变质是遭受微生物污染后,微生物生长繁殖而引起的,从根本上否定了"微生物自然发生说".微生物学的另一位奠基人是一位德国医生柯赫(Robert Koch, 1843~1910),他为疾病的病原学说建立了基础.首先从患病动物的病变脏器中分离纯化得到病原菌,通过将病原菌接种回到动物体内,能引起相同症状的疾病,证明了传染病是由某些特定的病原菌传播的.由于巴斯德和柯赫对微生物学的形成作出了极大的贡献,普遍认为,他们两位是微生物学的奠基人.四,微生物学的发展时期本世纪是微生物学的全面发展时期:细胞的结构与功能,细菌的代谢等;微生物在工农业生产上发挥巨大作用;微生物成为生物学研究的主要研究材料;50年代DNA双螺旋解密后,微生物又成了分子生物学的主要研究材料.微生物学,遗传学和生物化学的相互渗透与作用导致了现代分子遗传学的诞生与发展;进入70年代,在微生物的研究基础上,导致了DNA重组技术和基因工程的发展.微生物常规鉴定技术一、形态结构和培养特性观察1、微生物的形态结构观察主要是通过染色,在显微镜下对其形状、大小、排列方式、细胞结构(包括细胞壁、细胞膜、细胞核、鞭毛、芽孢等)及染色特性进行观察,直观地了解细菌在形态结构上特性,根据不同微生物在形态结构上的不同达到区别、鉴定微生物的目的。2、细菌细胞在固体培养基表面形成的细胞群体叫菌落(colony)。不同微生物在某种培养基中生长繁殖,所形成的菌落特征有很大差异,而同一种的细菌在一定条件下,培养特征却有一定稳定性。,以此可以对不同微生物加以区别鉴定。因此,微生物培养特性的观察也是微生物检验鉴别中的一项重要内容。1)细菌的培养特征包括以下内容:在固体培养基上,观察菌落大小、形态、颜色(色素是水溶性还是脂溶性)、光泽度、透明度、质地、隆起形状、边缘特征及迁移性等。在液体培养中的表面生长情况(菌膜、环)混浊度及沉淀等。半固体培养基穿刺接种观察运动、扩散情况。(图3-8)图3-8 细菌的培养特征1.点状 2.圆形 3.丝状 4.不规则形 5.假根状 6.纺锤状 7.扁平 8.隆起 9.凸起 10.垫状 11.脐状 12.边缘整齐 13.波状 14.裂片状 15.啮蚀状 16.丝状 17.卷发状 18.丝线状 19.刺毛状 20.串珠状 21.疏展状 22.树根状 23.假根状 24.丝状 25.串珠状 26.乳头状 27.绒毛状 28.树根状 29.量杯状 30.萝卜状 31.漏斗状 32.囊状 33.层状 34.絮状 35.环状 36.蹼状 37.膜状2)霉菌酵母菌的培养特征:大多数酵母菌没有丝状体,在固体培养基上形成的菌落和细菌的很相似,只是比细菌菌落大且厚。液体培养也和细菌相似,有均匀生长、沉淀或在液面形成菌膜。霉菌有分支的丝状体,菌丝粗长,在条件适宜的培养基里,菌丝无限伸长沿培养基表面蔓延。霉菌的基内菌丝、气生菌丝和孢子丝都常带有不同颜色,因而菌落边缘和中心,正面和背面颜色常常不同,如青霉菌:孢子青绿色,气生菌丝无色,基内菌丝褐色。霉菌在固体培养表面形成絮状、绒毛状和蜘蛛网状菌落。二、生理生化试验微生物生化反应是指用化学反应来测定微生物的代谢产物,生化反应常用来鉴别一些在形态和其它方面不易区别的微生物。因此微生物生化反应是微生物分类鉴定中的重要依据之一。微生物检验中常用的生化反应有:1、糖酵解试验不同微生物分解利用糖类的能力有很大差异,或能利用或不能利用,能利用者,或产气或不产气。可用指示剂及发酵管检验。试验方法:以无菌操作,用接种针或环移取纯培养物少许,接种于发酵液体培养基管,若为半固体培养基,则用接种针作穿刺接种。接种后,置36±1.0°C培养,每天观察结果,检视培养基颜色有无改变(产酸),小倒管中有无气泡,微小气泡亦为产气阳性,若为半固体培养基,则检视沿穿刺线和管壁及管底有无微小气泡,有时还可看出接种菌有无动力,若有动力、培养物可呈弥散生长。本试验主要是检查细菌对各种糖、醇和糖苷等的发酵能力,从而进行各种细菌的鉴别,因而每次试验,常需同时接种多管。一般常用的指示剂为酚红、溴甲酚紫,溴百里蓝和An-drade指示剂。2、淀粉水解试验某些细菌可以产生分解淀粉的酶,把淀粉水解为麦芽糖或葡萄糖。淀粉水解后,遇碘不再变蓝色。试验方法:以18~24h的纯培养物,涂布接种于淀粉琼脂斜面或平板(一个平板可分区接种,试验数种培养物)或直接移种于淀粉肉汤中,于36±1°C培养24~48h,或于20°培养5天。然后将碘试剂直接滴浸于培养表面,若为液体培养物,则加数滴碘试剂于试管中。立即检视结果,阳性反应(淀粉被分解)为琼脂培养基呈深蓝色、菌落或培养物周围出现无色透明环、或肉汤颜色无变化。阴性反应则无透明环或肉汤呈深蓝色。淀粉水解系逐步进行的过程,因而试验结果与菌种产生淀粉酶的能力、培养时间,培养基含有淀粉量和pH等均有一定关系。培养基pH必须为中性或微酸性,以pH7.2最适。淀粉琼脂平板不宜保存于冰箱,因而以临用时制备为妥。3、V-P试验某些细菌在葡萄糖蛋白胨水培养基中能分解葡萄糖产生丙酮酸,丙酮酸缩合,脱羧成乙酰甲基甲醇,后者在强碱环境下,被空气中氧氧化为二乙酰,二乙酰与蛋白胨中的胍基生成红色化合物,称V-P(+)反应。试验方法:1)O"Meara氏法:将试验菌接种于通用培养基,于36±1°C培养48h,培养液1ml加O"Meara试剂(加有0.3%肌酸Creatine或肌酸酐Creatinine的40%氢氧化钠水溶液)1ml,摇动试管1~2min,静置于室温或36±1°C恒温箱,若4h内不呈现伊红、即判定为阴性。亦有主张在48~50°C水浴放置2h后判定结果者。2)Barritt氏法:将试验菌接种于通用培养基,于36±1°C培养4天、培养液2.5ml先加入5°Cα萘酚(2-na-phthol)纯酒精溶液0.6ml,再加40%氢氧化钾水溶液0.2ml,摇动2~5min,阳性菌常立即呈现红色,若无红色出现,静置于室温或36±1°C恒温箱,如2h内仍不显现红色、可判定为阴性。3)快速法:将0.5%肌酸溶液2滴放于小试管中、挑取产酸反应的三糖铁琼脂斜面培养物一接种环,乳化接种于其中,加入5%α-萘酚3滴,40%氢氧化钠水溶液2滴,振动后放置5min,判定结果。不产酸的培养物不能使用。本试验一般用于肠杆菌科各菌属的鉴别。在用于芽胞杆菌和葡萄球菌等其它细菌时,通用培养基中的磷酸盐可阻碍乙酰甲基醇的产生,故应省去或以氯化钠代替。4、甲基红(Methyl Red)试验肠杆菌科各菌属都能发酵葡萄糖,在分解葡萄糖过程中产生丙酮酸,进一步分解中,由于糖代谢的途径不同,可产生乳酸,琥珀酸、醋酸和甲酸等大量酸性产物,可使培养基PH值下降至pH4.5以下,使甲基红指示剂变红。试验方法:挑取新的待试纯培养物少许,接种于通用培养基,培养于36±1°C或30°C(以30°C较好)3~5天,从第二天起,每日取培养液1ml,加甲基红指示剂1~2滴,阳性呈鲜红色,弱阳性呈淡红色,阴性为黄色。迄至发现阳性或至第5天仍为阴性、即可判定结果。甲基红为酸性指示剂,pH范围为4.4~6.0,其pK值为5.0。故在pH5.0以下,随酸度而增强黄色,在pH5.0以上,则随碱度而增强黄色,在pH5.0或上下接近时,可能变色不够明显,此时应延长培养时间,重复试验。5、靛基质(Imdole)试验某些细菌能分解蛋白胨中的色氨酸,生成吲哚。吲哚的存在可用显色反应表现出来。吲哚与对二甲基氨基苯醛结合,形成玫瑰吲哚,为红色化合物。试验方法:将待试纯培养物小量接种于试验培养基管,于36±1C培养24h时后,取约2ml培养液,加入Kovacs氏试剂2~3滴,轻摇试管,呈红色为阳性,或先加少量乙醚或二甲苯,摇动试管以提取和浓缩靛基质,待其浮于培养液表面后,再沿试管壁徐缓加入Kovacs氏试剂数滴,在接触面呈红色,即为阳性。实验证明靛基质试剂可与17种不的靛基质化合物作用而产生阳性反应,若先用二甲苯或乙醚等进行提取,再加试剂,则只有靛基质或5-甲基靛基质在溶剂中呈现红色,因而结果更为可靠。6、硝酸盐(Nitrate)还原试验有些细菌具有还原硝酸盐的能力,可将硝酸盐还原为亚硝酸盐、氨或氮气等。亚硝酸盐的存在可用硝酸试剂检验。试验方法:临试前将试剂的A(磺胺酸冰醋酸溶液)和B(α-萘胺乙醇溶液)试液各0.2ml等量混合、取混合试剂约0.1ml、加于液体培养物或琼脂斜面培养物表面,立即或于10min内呈现红色即为试验阳性,若无红色出现则为阴性。用α-萘胺进行试验时,阳性红色消退很快、故加入后应立即判定结果。进行试验时必须有未接种的培养基管作为阴性对照。α-萘胺具有致癌性、故使用时应加注意

高中生物中的生化反应有哪些?

复制有什么用???楼上的

生物每步生化反应都需要酶吗

从理论上来讲,肯定的:不是。简单来说:因为有很多反应可以自发完成,比如“重排反应”。但是复杂来说,其实这个问题取决于2个问题:1,怎么区分什么叫“每一步”?如果是“新物质”的诞生,那么确实有不需要酶的反应。如果是“有变化”,那么还是一样,有些“变化”是不需要酶的。2,什么叫“酶”,这个问题在现代的高端生物化学中也是个还在定义和真论的事情,应为有些“酶”不是真正改变一个物质的实质,而是让它“变形”,甚至有些“酶”是筛选“合适的”同一物质。所以,这些东西都参与了生化反应,如果它们不叫“酶”那么,这个问题的答案就是当然……研究生物反应的核心之一就是搞清楚“生物是怎么办到的”,所以,归结了一些和纯粹化学很相似的“反应”,但是真正的“过程”是非常“不可思议的”,他涉及到这个物质的状态,拆分,环境,这些的具体定义都是还存在争议和验证的,就连最经典的“三羧酸循环”也存在最终ATP产生的数目到底是多少的问题。所以,你这个简单的问题,其实涉及到了很多核心问题,这也是生物化学的问题。再复杂一点:什么叫“生物”?目前有很多只有RNA的“东东”,他的反应也是么?什么叫“每步”?物质形态的变化,分子之间的构象异化,也算一步么?什么叫“生化反应”?尿酸钠的关节腔内析出,是导致痛风性关节炎的主要原因,但是他是一个完全简单的再不能简单的“溶解析出”过程,算生化反应么?什么叫“需要”?很多反应都可以自发进行,或者体外也存在。有很多反应也可以在“不正常状态时”自发进行,他们不需要酶,但是有酶也可以,甚至有的时候有酶会导致他不能进行,正是消除了这些酶,才让反应得已正常进行。最后,什么叫“酶”,这个问题也还在讨论。不过最后简单来说,当然,科学里很少有绝对,我们当然可以指出无数不许要酶的生化反应。比如上面说的:血红蛋白与氧结合的过程就不要酶的参与。(但是纠结的是:血红蛋白也可以叫做“酶”,它帮助氧吸收进体内)生物的问题都很搞,也是最容易成为“泛科学”和“伪科学”的领域。今日又忍不住蛋痛,写点东西。

真核生物的80S核糖体由约多少种蛋白质组成

由70到84种蛋白质构成。不同生物核糖体蛋白质种类和种数不同

什么是生化反应?生物和化学反应么?

生物化学反应就是指的在生物的细胞内进行的化学反应,和普通的化学反应相比,它具有以下的特点:1、在生物体中所进行的生物化学反应都是远离平衡点的反应,它需要从外界获取能量或向外界输出物质、能量和熵。2、参与反应的蛋白质一般都是固定在膜上或细胞骨架上,使细胞内每时每刻所进行的成千上万种生物化学反应,犹如行驶在具有立交的高速路上机动车,各行其是,互不干扰。例如细胞核中dna的复制、转录都必须附着在核骨架上才能正确进行。3、细胞中生物化学反应的主要类型是氧化还原反应,电子在定位于膜上或骨架上的蛋白质之间进行高速传递。例如电子传递链(内膜嵴)、光合作用(类囊体膜上、)4、由于细胞中的生物化学反应是在膜分隔的空间中进行,因此存在着位置信息效应,即生物大分子只有在特定位置发生反应,其特定功能才能得以发挥。例如,rna转录、加工只在核中一定区域进行;蛋白质生物合成是在细胞质中进行,线粒体和叶绿体只能合成自己需要的一小部分蛋白质,糖酵解发生在细胞质中,三羧酸循环发生在线粒体基质中。5、膜的分隔使细胞中的生物化学反应成为一种由浓度梯度驱动的方向性化学反应。例如,溶酶体膜上v-型atp酶,叶绿体类囊体膜上的f-型atp酶等都是由h+浓度梯度驱动。6、细胞内所进行的生物化学反应都需要有酶的催化。酶的催化效率高,反应条件温和,具有方向性,对底物有高度专一性。7、生物体或细胞中所进行的生物化学反应,在复杂的网络体系中都可以通过正、负反馈得到自动调控。而载着反馈过程蓝本的基因负责调制机体应如何读、如何理解同一基因。8、在生物体中所进行的生物化学反应,从本质上说都是由一种或几种作用物与受体蛋白等相互选择引起的。例如,激素、神经递质等通过与特定的受体蛋白结合形成复合物,在由后者引发一系列化学或物理的连锁反应、酶对底物的选择等。

能用做生物第二信使的核苷酸类化合物是( ) A.ATP B.GTP C.cAMP D.cGMP

【答案】:CD3',5'-环化腺苷酸(cAMP)和3',5'-环化鸟苷酸(cGMP)在细胞内代谢的调节和跨细胞膜信号传导中起着十分重要的作用,能用作生物第二信使参与生物体的信号传导过程。

cAMP与cGMP的生物学作用相反吗?

亲,你想简单了大多数情况下,他俩是协同进行的作为“第二信使”,camp,cgmp,是不同信号通路产生的,不同的信号通路,生物学效果不一样,可能是协同,不相干,辅助,放大,递进,干涉,拮抗,等等,亲,你想简单了……

cAMP与cGMP的生物学作用相反吗?

这个应该没有的,它们同是第二信使,下面是它们的一些资料: cAMP 腺苷-3",5"-环化一磷酸 以微量存在于动植物细胞和微生物中.体内多种激素作用于细胞时,可促使细胞生成此物,转而调节细胞的生理活动与物质代谢.某些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的. 当细胞受到外界刺激时,胞外信号分子首先与受体结合形成复合体,然后激活细胞膜上的Gs一蛋白,被激活的Gs一蛋白再激活细胞膜上的腺苷酸环化酶(AC),催化ATP脱去一个焦磷酸而生成cAMP.生成的 cAMP作为第二信使通过激活PKA(cAMP依赖性蛋白激酶),使靶细胞蛋白磷酸化,从而调节细胞反应,cAMP最终又被磷酸二酯酶(PDE)水解成5"-AMP而失活.(G蛋白偶联途径) cGMP 环磷酸鸟苷 鸟苷酸环化酶通常参与细胞膜离子通道的开启、糖原分解、细胞凋亡以及舒张平滑肌.血管平滑肌的舒张可以使血管扩张进而增加血流量. 鸟苷酸环化酶(guanylate cyclase,GC)可将三磷酸鸟苷(guanosine triphosphate,GTP)催化为cGMP.其中,与膜受体结合的鸟苷酸环化酶和可以在膜受体与肽类激素(如心房钠尿肽)结合后被激活.而胞质中的游离鸟苷酸环化酶可被NO激活进而合成cGMP. 环磷酸鸟苷可以被磷酸二酯酶(phosphodiesterases,PDE)水解为5"-磷酸鸟苷.

为何说cAMP与cGMP的生物作用相反?

cAMP是“腺苷-3",5"-环化一磷酸”的简称。  亦称“环化腺核苷一磷酸”,“环腺一磷”。  一种环状核苷酸,简写为cAMP。以微量存在于动植物细胞和微生物中。体内多种激素作用于细胞时,可促使细胞生成此物,转而调节细胞的生理活动与物质代谢。cGMP指环磷酸鸟苷跟cAMP(环磷酸腺苷)一样,是一种具有细胞内信息传递作用的第二信使环腺苷酸之所以称为细胞内的第二信使,是由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。尽管两者一样广泛存在动物和微生物细胞中,但cGMP的浓度比cAMP低得多。

cAMP与cGMP的生物学作用相反吗?

这个应该没有的,它们同是第二信使,下面是它们的一些资料:cAMP腺苷-3",5"-环化一磷酸以微量存在于动植物细胞和微生物中。体内多种激素作用于细胞时,可促使细胞生成此物,转而调节细胞的生理活动与物质代谢。 某些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。 当细胞受到外界刺激时,胞外信号分子首先与受体结合形成复合体,然后激活细胞膜上的Gs一蛋白,被激活的Gs一蛋白再激活细胞膜上的腺苷酸环化酶(AC),催化ATP脱去一个焦磷酸而生成cAMP。生成的 cAMP作为第二信使通过激活PKA(cAMP依赖性蛋白激酶),使靶细胞蛋白磷酸化,从而调节细胞反应,cAMP最终又被磷酸二酯酶(PDE)水解成5"-AMP而失活。(G蛋白偶联途径)cGMP环磷酸鸟苷鸟苷酸环化酶通常参与细胞膜离子通道的开启、糖原分解、细胞凋亡以及舒张平滑肌。血管平滑肌的舒张可以使血管扩张进而增加血流量。鸟苷酸环化酶(guanylate cyclase, GC)可将三磷酸鸟苷(guanosine triphosphate, GTP)催化为cGMP。其中,与膜受体结合的鸟苷酸环化酶和可以在膜受体与肽类激素(如心房钠尿肽)结合后被激活。而胞质中的游离鸟苷酸环化酶可被NO激活进而合成cGMP。环磷酸鸟苷可以被磷酸二酯酶(phosphodiesterases, PDE)水解为5"-磷酸鸟苷。

GHA生物化学是什么意思

GHA生物化学是什么意思 GHA是生物化学领域中的一个术语,它代表了生物体内一种重要的代谢路径,即鸟苷酸环化途径,其中GHA是脱氨鸟苷酸环化酶(Guanine Hypoxanthine Aminohydrolase)的缩写。本文将介绍GHA在生物体内的作用、代谢途径以及相关疾病。GHA的作用 GHA是一种酶,它参与了鸟苷酸代谢过程中的一个环节,将鸟苷酸转化为肌酸和尿痕酸。这个代谢途径非常重要,因为肌酸是肌肉中的能量储备物质,它能够在肌肉需要能量时,将磷酸基团释放出来,为肌肉提供能量。尿痕酸则是脱氨鸟苷酸的代谢产物,它可以通过尿液排出体外。GHA的代谢途径 鸟苷酸是DNA和RNA的组成部分,它存在于生物体内的大多数组织中。在鸟苷酸代谢途径中,GHA是一个重要的酶,它将鸟苷酸转化为肌酸和尿痕酸。具体的反应式为:鸟苷酸 + H2O -> 肌酸 + 尿痕酸这个反应需要GHA的催化作用,如果GHA缺失或者功能异常,会导致鸟苷酸堆积,从而引发一系列疾病。GHA相关疾病 GHA缺陷是一种罕见的遗传性代谢疾病,它主要表现为鸟苷酸堆积导致的神经系统损伤和免疫系统异常。该病最早描述于1967年,到目前为止已经报道了不到100例患者。病情严重程度不一,早期症状主要包括肌无力、精神发育迟缓、癫痫、感染易感以及智力低下等,晚期症状则包括肌肉萎缩和失能等。目前尚无特效治疗方法,治疗主要是对症支持治疗。除了GHA缺陷症之外,还有一些其他的疾病也与GHA代谢途径不同步有关,比如龙虎斑病、Lesch-Nyhan综合征等。这些疾病的发生机制还需要进一步研究。总结 GHA是生物体内一种重要的代谢酶,它主要参与了鸟苷酸代谢途径中的一个环节,将鸟苷酸转化为肌酸和尿痕酸。GHA缺失或者功能异常会导致鸟苷酸堆积,从而引发一系列疾病。目前对于GHA相关疾病的研究还处于初级阶段,未来还需要进一步深入探究其发病机制,并开展相关治疗方法的研究。

为何说cAMP与cGMP的生物作用相反?

cAMP,cGMP,都是第二信使cAMP通过激活蛋白激酶A(PKA)来发挥信号传导作用.PKA可使蛋白质磷酸化cGMP通过激活蛋白激酶G(PKG)来发挥信号传导作用.PKG也可使蛋白质磷酸化某些蛋白质酶类通常处于失活状态,当磷酸化后才具有活性.但有些蛋白质磷酸化后却会由激活状态变为失活举个例子在心肌细胞中,当cAMP发挥作用时,可使细胞膜上的钙离子通道磷酸化,钙离子内流入细胞速度加快,可增强心肌收缩能力.在平滑肌细胞中,当cGMP发挥作用时,可使细胞膜上的靶蛋白磷酸化,细胞内钙离子量减少.引起平滑肌舒张

科学院生物所研制出天然环磷酸腺苷有谁在枣中研制出的

环磷酸腺苷自被发现以后,全世界有上千个实验室都在研究这一神奇的分子。科学家们发现,地球上绝大多数的生物物种中都含有环磷酸腺苷这种物质,但是和其他信号物质一样,其含量非常微小,难以提取,只能从动物肝脏中提取极微量的环磷酸腺苷。以前,市场上只有用于静脉注射的化学合成的药用级环磷酸腺苷产品,产量小,其价格远远高于黄金的价格。1979年和1984年两位日本科学家发现中国独有的枣果中含有丰富的环磷酸腺苷,是一般动植物材料中含量的数万倍,这一发现为科学家们研究天然环磷酸腺苷的提取指引了新的方向,但是从枣中成功提取环磷酸腺苷的技术迟迟未能攻克。2000年后中国科学院生物物理研究所在中国枣研究中心的研究成果基础上利用超浓缩富集专有技术开发出了系列产品,适用于日常缓解大脑疲劳、改善气血不足、调节内分泌等目的,针对改善睡眠、患者疾病状况、增强机体免疫力等方面亦具有良好的营养治疗功效。健康食补红枣不仅是人们喜爱的果品,也是一味滋补脾胃、养血安神、治病强身的良药。春秋季节,乍寒乍暖,在红枣中加几片桑叶煎汤代茶,可预防伤风感冒;夏令炎热,红枣与荷叶同煮可利气消暑;冬日严寒,红枣汤加生姜红糖,可驱寒暖胃。此外,红枣还有以下功效:美容养颜、保肝护肝、防止落发、补气养血、促进睡眠、防治心血管疾病。

cAMP在生物化学中什么

环腺苷酸(英语:Cyclic adenosine monophosphate,简称为cAMP)。是一种具有细胞内信息传递作用的小分子,被称为细胞内信使(intracellular messenger)或第二信使(second messengers)。生成代谢1、 生成: 腺苷酸环化酶(adenylate cyclase)催化三磷酸腺苷(ATP)成cAMP,2、 代谢: cAMP磷酸二酯酶(PDE)水解cAMP产生5"-AMP。扩展资料环磷酸腺苷具有调节神经递质合成,促进激素分泌的作用。含氮类激素作为第一信使,与靶细胞膜上相应的专一受体结合,这一结合随即激活细胞膜上的腺苷酸环化酶系统,在Ca存在的条件下,三磷酸腺苷转变为环磷酸腺苷。环磷酸腺苷为第二信使,信息由第一信使传递给第二信使。环磷酸腺苷使胞内无活性的蛋白激酶转为有活性,从而激活磷酸化酶,引起靶细胞固有的、内在的反应。如腺细胞分泌、肌肉细胞收缩与舒张、神经细胞出现电位变化、细胞通透性改变、细胞分裂与分化以及各种酶反应等等。另外,大量试验表明,一些二级促激素促进次级激素合成是通过环磷酸腺苷途径调节的。参考资料来源:百度百科-环磷酸腺苷

生物技术专业,G蛋白偶联受体的信号通途?

G-蛋白偶联受体信号转导的主要途径:包括:①生物胺类激素---肾上腺素、去甲肾上腺素、组胺、5-羟色胺;②肽类激素---缓激肽、黄体生成素、甲状旁腺激素;③气味分子和光量子。  根据效应器酶以及胞内第二信使信号转导成分的不同,其主要反应途径有以下两条:  (1)受体-G蛋白-Ac途径:  激素为第一信使---相应受体,经G-蛋白偶联---激活膜内腺苷酸环化酶(Ac)---Mg2+--ATP---环磷酸腺苷(cAMP第二信使)---激活cAMP依赖的蛋白激酶(PKA)---催化细胞内多种底物磷酸化---细胞发生生物效应(如细胞的分泌,肌细胞的收缩,细胞膜通透性改变,以及细胞内各种酶促反应等)。  (2)受体-G蛋白PLC途径:  胰岛素、缩宫素、催乳素,以及下丘脑调节肽等---膜受体结合---经G蛋白偶联---激活膜内效应器酶——磷脂酶C(PLC),它使磷脂酰二磷酸肌醇(PIP2)分解,生成三磷酸肌醇(IP3)和二酰甘油(DG)。IP3和DG作为第二信使,在细胞内发挥信息传递作用。  IP3-与内质网外膜上的Ca2+通道结合---释放Ca2+入胞浆---胞浆内Ca2+浓度明显增加---Ca2+与细胞内钙调蛋白(CAM)结合,激活蛋白激酶,促进蛋白质酶磷酸化,从而调节细胞的功能活动。   DG的作用主要是特异性激活蛋白激酶C(PKC)。PKC与PKA一样可使多种蛋白质或酶发生磷酸化反应,进而调节细胞的生物效应。建议买一本《细胞生物学》,上面有详细的过程。

cAMP生物名词解释

cAMP(Cyclic Adenosine monophosphate)在生物学上指环磷酸腺苷,这是一种有机物,化学式为C10H12N5O6P,白色结晶粉末。用于心绞痛、心肌梗死、心肌炎及心源性休克。对改善风湿性心脏病的心悸、气急、胸闷等症状有一定的作用。 cAMP在生物学上指环磷酸腺苷,是"腺苷-3",5"-环化一磷酸"的简称。细胞内的第二信使,由于某些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。 其信号的继续传递依赖于蛋白激酶A(protein kinase A,PKA)。 环磷酸腺苷(cAMP)是一种广泛存在人体细胞内,参与各种物质代谢的重要物质。 1、环磷酸腺苷具有营养心肌细胞,增强心肌收缩力和促进心肌氧化酶活性,改善心肌缺血等功效。临床上主要用于治疗心血管系统疾病。 2、环磷酸腺苷可用于治疗冠心病、心绞痛、心肌梗死和心源性休克以及心肌炎等心血管疾病。可以有效改善心肌细胞缺血症状,起到营养心肌的作用。 3、环磷酸腺苷还可以改善心肌功能,对糖和脂肪代谢,以及合成核酸蛋白质等都具有很好的调节作用。

急!!!生物化学。从头合成途径中嘌呤环的元素来源

嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及co2等为原料合成嘌呤核苷酸的过程。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(imp),然后imp再转变成腺嘌呤核苷酸(amp)与鸟嘌呤核苷酸(gmp)。嘌呤环各元素来源如下:n1由天冬氨酸提供,c2由n10-甲酰fh4提供、c8由n5,n10-甲炔fh4提供,n3、n9由谷氨酰胺提供,c4、c5、n7由甘氨酸提供,c6由co2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括prpp酰胺转移酶、prpp合成酶。prpp酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。imp、amp及gmp使活性形式转变成无活性形式,而prpp则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的prpp合成酶和prpp酰胺转移酶活性可被合成产物imp、amp及gmp等抑制;在形成amp和gmp过程中,过量的amp控制amp的生成,不影响gmp的合成,过量的gmp控制gmp的生成,不影响amp的合成;imp转变成amp时需要gtp,而imp转变成gmp时需要atp。

体内嘌呤核苷酸的生物合成包括 和 两条途径。

体内嘌呤核苷酸的合成有两条途径:1利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成嘌呤核苷酸的过程,称为从头合成途径(denovosynthesis),是体内的主要合成途径。2利用体内游离嘌呤或嘌呤核苷,经简单反应过程生成嘌呤核苷酸的过程,称重新利用(或补救合成)途径(saluagepathway)。在部分组织如脑、骨髓中只能通过此途径合成核苷酸。

体内嘌呤核苷酸的生物合成包括 和 两条途径。

体内嘌呤核苷酸的合成有两条途径:1利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成嘌呤核苷酸的过程,称为从头合成途径(denovosynthesis),是体内的主要合成途径。2利用体内游离嘌呤或嘌呤核苷,经简单反应过程生成嘌呤核苷酸的过程,称重新利用(或补救合成)途径(saluagepathway)。在部分组织如脑、骨髓中只能通过此途径合成核苷酸。

生物化学中嘌呤核苷酸的从头合成指什么

嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等为原料合成嘌呤核苷酸的过程. 主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP). 嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供. 嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的. 反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶.PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性.IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反. 从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP.

碳化是微生物对什么的代谢

碳代谢。植物在光合作用中将无机物二氧化碳同化为有机物碳水化合物等以及在呼吸、光呼吸作用中有机碳异化为二氧化碳的一系列生理生化过程的通称。

氨基酸代谢的一碳单位主要由_供给,核苷酸生物合成中的一碳单位主要由 供给.

核苷酸生物合成中的一碳单位主要由THF供给.AA的应该是甘氨酸主要的吧,苏氨酸、丝氨酸和组氨酸也能供给。另外,胆碱、肌酸、肾上腺素什么的是S-腺苷甲硫氨酸提供的。我觉得是这样。^_^

一碳单位名词解释生物化学

一碳单位是指某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。一碳单位是合成核苷酸的重要材料。在体内主要以四氢叶酸为载体。一碳单位具有一下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。所以一碳单位缺乏时对代谢较强的组织影响较大,例如:导致巨幼红细胞贫血(巨幼红细胞性贫血)。

“一碳基团”代谢的生物学意义?

1.四氢叶酸“一碳基团” 参与体内嘌呤和嘧啶碱的生物合成,这些碱基是合成核酸的基本成分。2. S-腺苷蛋氨酸与“一碳基团”,是参与体内甲基化反应的主要甲基来源。3. “一碳基团”代谢与新药设计: 叶酸分子中含对氨基苯甲酸(PABA),叶酸是合成核酸和蛋白质的必需物质,甲基苄氨嘧啶TMP是细菌二氢叶酸还原酶的强烈抑制剂。

“一碳基团”代谢的生物学意义?

某些氨基酸在代谢过程中能生成含一个碳原子的基团,经过转移参与生物合成过程。这些含一个碳原子的基团称为一碳基团(one carbon unit)或一碳单位(C1 unit或one carbon unit)。有关一碳单位生成和转移的代谢称为一碳单位代谢。一碳单位是合成嘌呤和嘧啶的原料,在核酸生物合成中有重要作用。如N5-N10-CH=FH4直接提供甲基用于脱氧核苷酸dUMP向dTMP的转化。N10-CHO-FH4和N5N10-CH=FH4分别参与嘌呤碱中C2,C3原子的生成。S-腺苷蛋氨酸提供的甲基可参与体内多种物质合成。例如肾上腺素、胆碱、胆酸等。一碳单位代谢将氨基酸代谢与核苷酸及一些重要物质的生物合成联系起来。一碳单位代谢的障碍可造成某些病理情况,如巨幼红细胞贫血等。磺胺药及某抗癌药(氨甲喋呤等)正是分别通过干扰细菌及瘤细胞的叶酸、四氢叶酸合成,进而影响核酸合成而发挥药理作用的。

什么是一碳基团代谢?它有什么生物学意义

1.四氢叶酸“一碳基团”参与体内嘌呤和嘧啶碱的生物合成,这些碱基是合成核酸的基本成分。2.s-腺苷蛋氨酸与“一碳基团”,是参与体内甲基化反应的主要甲基来源。3.“一碳基团”代谢与新药设计:叶酸分子中含对氨基苯甲酸(paba),叶酸是合成核酸和蛋白质的必需物质,甲基苄氨嘧啶tmp是细菌二氢叶酸还原酶的强烈抑制剂。

什么是一碳基团代谢?它有什么生物学意义

某些氨基酸在代谢过程中能生成含一个碳原子的基团,经过转移参与生物合成过程。这些含一个碳原子的基团称为一碳基团(one carbon unit)或一碳单位(C1 unit或one carbon unit)。有关一碳单位生成和转移的代谢称为一碳单位代谢。一碳单位是合成嘌呤和嘧啶的原料,在核酸生物合成中有重要作用。如N5-N10-CH=FH4直接提供甲基用于脱氧核苷酸dUMP向dTMP的转化。N10-CHO-FH4和N5N10-CH=FH4分别参与嘌呤碱中C2,C3原子的生成。S-腺苷蛋氨酸提供的甲基可参与体内多种物质合成。例如肾上腺素、胆碱、胆酸等。一碳单位代谢将氨基酸代谢与核苷酸及一些重要物质的生物合成联系起来。一碳单位代谢的障碍可造成某些病理情况,如巨幼红细胞贫血等。磺胺药及某抗癌药(氨甲喋呤等)正是分别通过干扰细菌及瘤细胞的叶酸、四氢叶酸合成,进而影响核酸合成而发挥药理作用的。

高中生物上对核苷与腺苷的定义及区别

核苷:含氮碱基与糖组分缩合成的糖苷叫核苷。腺苷:细胞生物学名词,指由腺嘌呤的N-9与D-核糖的C-1通过β糖苷键连接而成的化合物,其磷酸酯为腺苷酸。区别:核苷主要指来自核酸的嘌呤和嘧啶糖苷。腺苷是用于合成三磷酸腺苷(ATP)、腺嘌呤、腺苷酸、阿糖腺苷的重要中间体。

高中生物腺苷是什么?

腺苷是由一分子腺嘌呤与一分子核糖所组成。细胞生物学名词,指由腺嘌呤的N-9与D-核糖的C-1通过β糖苷键连接而成的化合物,其磷酸酯为腺苷酸。腺苷是一种遍布人体细胞的内源性核苷,可直接进入心肌经磷酸化生成腺苷酸,参与心肌能量代谢,同时还参与扩张冠脉血管,增加血流量。腺苷对心血管系统和肌。贮藏运输:2-8°C保存。密封阴凉干燥保存腺苷(Adenosine)是核苷的一种,各由核糖(呋喃核糖)与腺嘌呤的一部分组成,中间由β-N9-配糖键(β-N9-glycosidic bond)连结。腺苷在生物化学上扮演重要角色,包括以腺苷三磷酸(ATP)或腺苷双磷酸(ADP)形式转移能量,或是以环状腺苷单磷酸(cAMP)进行信号传递等。此外腺苷也是一种抑制性神经传导物(inhibitory neurotransmitter),可能会促进睡眠。

简述腺苷酸的生物学作用

腺苷酸为腺嘌呤加核糖加磷酸的化合物,是构成动物细胞核糖酸的四种主要单核苷酸之一,体内的能量传递物质。具有显著的周围血管扩张和降压作用。

问高二生物:将ada(腺苷酸

将ada通过质粒pET28b导入大肠杆菌并成功表达腺苷酸脱氨酶,每个大肠杆菌细胞中至少含有一个重组质粒,且每个质粒(重组质粒)至少含有一个限制酶识别位点,但每个限制酶识别位点只能插入一个ada,插入的ada成功表达,说明每个插入的ada至少表达一个腺苷酸脱氨酶分子。故C错误。

高中生物腺苷是什么?

说起腺苷,可能很多人会觉得陌生,但提起家族中的其他成员,想必大家一定很熟悉,分别是三磷酸腺苷(ATP)、二磷酸腺苷(ADP)和一磷酸腺苷(AMP)。其中,ATP是为人体生命活动供能的主要物质,被形象地称为“生命燃料”。腺苷正是在缺血、缺氧、炎症等诱因刺激下,由其他成员脱磷酸作用后产生。此外,S腺苷同型半胱氨酸水解后产生腺苷和同型半胱氨酸。

论述腺苷酸及其衍生物在细胞代谢中的作用与地位

1、 作为核酸单体脱氧核糖核苷酸或核糖核苷酸通过磷酸二酯键形成DNA或RNA,作为细胞的遗传物质,发挥着重要的作用。2、 作为能量载体腺苷酸(AMP)的5"羟基上的磷酸基团可能含有一个或两个附加的磷酸,依次生成二磷酸腺苷(ADP)和三磷酸腺苷(ATP),将从核糖开始的三个磷酸依次标记为α、β、γ。三磷酸腺苷的水解可以提供化学能,驱动了广泛的生物化学反应,是各种生命活动能量的直接来源,因此ATP也被称作是能量流通的货币。ATP水解所释放的能量是由三磷酸基团的结构决定的,核糖与α磷酸之间的键是磷酸酯键,水解可产生约14kJ/mol的能量;而α磷酸与β磷酸,β磷酸γ磷酸之间的键是磷酸苷键,水解可产生30kJ/mol的能量,因而被称作高能磷酸键。另外,核苷三磷酸也作为DNA和RNA合成的活化前体。3、 作为化学信使细胞通过激素或其他外部化学信号获取信息而对环境做出反应。这些细胞外的化学信号(第一信使)和细胞表面受体的相互作用常导致细胞内第二信使的产生,接着导致细胞内的一系列变化。最常见的第二信使是腺苷3",5"-环-磷酸(cAMP),它是由一种结合在细胞膜表面的腺苷酸环化酶催化ATP形成的。4、 作为结构组成成分腺苷酸是许多酶辅因子的结构成分(如辅酶A、NAD+、FAD等),也是一些代谢中间产物的组分。油脂的分解代谢过程就是一个典型的例子。在油脂的分解代谢中,脂肪酸首先与ATP反应生成酰基腺苷酸,然后辅酶A与酰基腺苷酸反应生成酰基辅酶A。在这个过程中,ATP、辅酶A都是以腺苷酸作为结构成分的。在任何辅因子中,腺苷都不直接发挥主要功能,但若把腺苷移走,辅因子的活性就会迅速降低。辅因子对腺苷的需求与酶和辅因子之间的结合能有关,这些结合能可用于催化和稳定起始酶-辅因子复合物。与腺苷结合的结构域可见于许多酶中。许多酶有一个称为核苷酸结合折叠的结构域,能与ATP和核苷酸辅因子结合。为何唯独是腺苷而非其他几种核苷广泛的作为这些结构组分?原因可能在于腺苷多角色的进化优势。当ATP成为化学能的主要来源时,相对于其他核苷酸,系统将更为大量地合成ATP。由于数量上的优势,ATP就成为了可与大量结构结合的合理选择。

生物体内的能量有哪些?ATP是唯一的直接能源物质吗?

当然不是。核苷三磷酸都可直接供能。核苷三磷酸是由核苷和三个磷酸基团连接而成的化合物。主要是核苷-5′-三磷酸,如腺苷-三磷酸、鸟苷-三磷酸、胞苷-三磷酸和尿苷-三磷酸等。如DNA复制时,直接供能的物质有dATP(脱氧腺苷三磷酸)、dTTP、dGTP、dCTP等,这些物质不仅是供能物质,还是DNA复制的原料。生物体内的能量有哪些?生物体的能量都贮存于有机物当中。通过能量转变,可转换为电能、机械能、化学能、热能等等,不能一一列举了。

udpg生物化学名是什么?

udpga生物化学名是二磷酸尿苷葡糖。葡萄糖的半缩醛羟基与尿苷二磷酸的末端磷酸基之间去水缩合而成的化合物。在体内由尿苷二磷酸葡萄糖焦磷酸化酶催化合成。反应式为:葡萄糖-1-磷酸+尿苷三磷酸尿苷二磷酸葡萄糖+焦磷酸。研究进展UDPG在新型药物和新型甜味剂的开发中得到应用。例如,UDPG作为糖基供体经ORF-36-28酶催化合成抗生素BE-7585A。六位碳被标记的14C-UDPG作为唯一糖基供体经UDP糖基转移酶催化合成甜菊糖的主要糖甙。而同位素标记的UDPG的应用也拓宽了糖组学的研究思路。

udpga在生物化学中是什么意思?

二磷酸尿苷葡糖 uridine diphosphate glucose一般简称UDP-萄糖或UDPG等。系广泛分布于微生物、动植物细胞内的核苷酸糖的一种,在UDP-葡萄糖焦磷酸化酶(UDP glucose pyrophosphor-ylase,EC 2.7.7.9)的作用下由UTP和1-磷酸-α-D-葡糖生物合成。在生物体内,由尿苷二磷酸葡萄糖焦磷酸化酶催化合成,反应式为:葡萄糖-1-磷酸+尿苷三磷酸u21cc尿苷二磷酸葡萄糖+焦磷酸。存在于植物、动物和微生物中,在蔗糖、淀粉、糖原及其他寡糖和多糖合成中作葡萄糖基的供体,亦可转变为尿苷二磷酸半乳糖和尿苷二磷酸葡萄糖醛酸当各种苷、寡糖、多糖的生物合成时用作葡萄糖的供体。此外,在单糖的互变或糠醛酸生成时作为重要的中间产物,而在碳水化合物代谢中起着中心的作用。

udpga生物化学名有哪些?

udpga生物化学名:二磷酸尿苷葡糖。一般简称UDP-萄糖或UDPG等。系广泛分布于微生物、动植物细胞的核苷酸糖的一种,在UDP-葡萄糖焦磷酸化酶的作用下由UTP和1-磷酸-α-D-葡糖生物合成。在生物体内,由尿苷二磷酸葡萄糖焦磷酸化酶催化合成,反应式为:葡萄糖-1-磷酸+尿苷三磷酸u21cc尿苷二磷酸葡萄糖+焦磷酸。扩展资料:在生物体内,当各种苷、寡糖、多糖的生物合成时用作葡萄糖的供体。此外,在单糖的互变或糠醛酸生成时作为重要的中间产物,而在碳水化合物代谢中起着中心的作用。存在于植物、动物和微生物中,在蔗糖、淀粉、糖原及其他寡糖和多糖合成中作葡萄糖基的供体,亦可转变为尿苷二磷酸半乳糖和尿苷二磷酸葡萄糖醛酸。参考资料来源:百度百科-二磷酸尿苷葡糖
 首页 上一页  22 23 24 25 26 27 28 29 30 31 32  下一页  尾页