细胞

DNA图谱 / 问答 / 标签

什么是生化反应?什么是动物细胞的有丝分裂?

生物化学反应就是指的在生物的细胞内进行的化学反应,动物细胞有丝分裂是指动物细胞分裂期间的染色质凝集成染色体、复制的姐妹染色单体在纺锤丝的牵拉下分向两极,产生两个相同的子细胞

每个细胞都有核糖体蛋白基因?什么是核糖体蛋白基因

每个细胞都有核糖体这一细胞器,当然就有核糖体蛋白基因。编码核糖体蛋白的DNA片段就是核糖体蛋白基因。

每个细胞都有核糖体蛋白基因?

1 核糖体蛋白基因是控制核糖体蛋白合成的DNA片段。2 每个细胞都有(原核,真核),核糖体是由核糖体蛋白和核糖体RNA组成的。核糖体负责合成蛋白质,由于细胞的细胞膜都有蛋白质成分,所以是需要细胞自身合成的,因此都有。

核糖体的蛋白质是在细胞核里面还是细胞质里面合成的

蛋白质的合成都是在细胞质里面合成的,而核糖体的蛋白质在合成后需要回到细胞核的核仁中和转录形成的核糖体RNA组装!

视网膜的细胞组成

(rod, R):1.25亿/单眼,视紫红质,对弱光敏感,一个光量子可引起一个细胞兴奋,5个光量子就可使人眼感觉到一个闪光,不能分辨颜色。猫头鹰只有视杆细胞。光照,视紫红质中的顺式视黄醛变构成全反式视黄醛,视蛋白与之分离,视黄醛在酶作用下还原成Va,在暗处,在酶作用下由全反式生成顺式。构象变化激活了转导蛋白(T)一个光量子所激活的视紫红质分子能与约500个转蛋白的分子相互作用,使信号放大,转导蛋白转而激活磷酸二酯酶(PDE),PDE又使cGMP降解为非活性的GMP,一个PDE分子每秒钟可使2000个cGMP分子分解,cGMP含量的下降,造成了Na+不能再流入细胞内,于是此细胞电位变得更负,超极化的视杆细胞不再继续释放神经递质,递质释放量下降,无论刺激多强,只能给出分级的超极化电位,不产生动作电位(无冲动神经元),经过这一系列级联反应,一个光量子信号放大了约1亿倍。 (ipRGC): 也称作自主感光神经节细胞。150多年来, 科学家始终认为杆状细胞和锥状细胞是人眼唯一的感光细胞, 通过杆状和锥状细胞与大脑视皮质之间的神经信号传递来解释人的视觉体验。直到2002年,美国Brown大学的Berson等人发现了哺乳动物视网膜的第三类感光细胞,非常稀少的“视网膜特化感光神经节细胞”(ipRGC)。它包含一种新发现的感光蛋白—视黑质。这种细胞并不形成视觉,而是连接到视交叉上核(SCN),参与调解昼夜节律,例如激素的分泌和兴奋程度,甚至还有瞳孔的扩张和缩小。ipRGCs可根据树突形态和分层位置的差异分为五个不同的亚型,其轴突主要投射到视交叉上核、橄榄顶盖前核等脑区,参与调控昼夜节律、瞳孔对光反射等非成像视觉功能。此外,部分ipRGCs的轴突投射到外侧膝状体和上丘,可能在调节成像视觉中发挥功能。 这类感光细胞能参与调节许多人体非视觉生物效应,包括人体生命体征的变化,激素的分泌和兴奋程度。研究表明,新感光细胞不仅参与调节人体的生物周期节律,同时会影响人体褪黑激素的分泌,褪黑激素水平不仅影响人们的睡眠质量,同时还与抑制癌细胞的生长有关。Braninard (2002)测定了一条光谱生物响应曲线 ,用以表征人体对于不同光谱所引起生物效应的强弱程度,谱线峰值在464nm处,较暗视觉507nm更向短波方向偏移。感受器细胞的总数是视网膜节细胞的100倍,外膝体神经元则与神经节细胞数目几乎相等,视皮层17区第4层的细胞数几乎为外膝体细胞数的40倍。所以在17区的第4层,即视皮层的信息入口处存在很大的信息处理容量,从而为视皮层内第一级的精细信息加工创造了条件。视网膜功能减退:血压长期升高使得视网膜动脉发生狭窄和玻璃样病变。

影响细胞周期的因素有哪些?

1、遗传因素是内因,起决定作用,不同生物的细胞周期不同。2、外界因素,如温度,细胞分裂是生理活动,离不开细胞中一系列化学变化,温度影响酶的活性。

细胞内信号传导cAMP、cGMP是什么意思

cGMp是3‘·5"鸟昔一磷酸(Cyclic Guanos‘ne3",5"一Monophospha,e)的缩写。是环核昔酸的一种。cAMP是细胞膜上的一种特异性腺昔酸环化酶催化细胞内的三磷酸腺昔(ATP)分解产生;cGMP则由特异的鸟昔酸环化酶催化三磷酸鸟昔(GPT)生成。其来源于组织细胞(主要是肺和小肠),血液里几乎全部存在于血浆中,因此cAMP和cGMP是两种具有重要生物活性的生物信息物质,不仅能传递生物信息,调节细胞代谢和机能活动,而且与多种疾病的发生和发展有关。

cGMP的结构性质以及在细胞中的作用

环腺嘌呤核苷酸(cAMP)是最重要的一种调控信号分子。许多激素的信息都需要通过cAMP对代谢酶的激活而起作用。 cAMP的主要功能是激活cAMP-依赖蛋白激酶。cAMP-依赖蛋白激酶是一种四聚蛋白酶,含有两个调控亚基和两个催化亚基。当cAMP-依赖蛋白激酶的调控亚基结合时,激酶解离成两个具有催化活性的蛋白激酶(由催化亚基形成)和一个二聚的调控亚基(图8.2)。 cAMP-依赖蛋白激酶被活化后,它解离出来的活性蛋白酶能够催化ATP分子与目标代谢酶分子的磷酸化反应。一般是代谢酶的Ser或Thr残基的羟基被ATP磷酸化,其结果是代谢酶被抑制或激活。磷酸化代谢酶可在蛋白磷酸酶作用下去磷酸化而激活或失活。cAMP即是通过上述机制实现对代谢酶活性的调控。 cAMP是多种激素的第二信使。肾上腺素、胰高血糖素、促肾上腺皮质激素、促性腺激素、甲状旁腺激素、降钙素及加压素等都是通过cAMP而起调控作用。 cAMP还可以通过核膜进入细胞核内,调节核酸的转录和翻译,并最终影响代谢酶的合成。

哪项不属于细胞内信息传递分子:A环腺苷酸 B环鸟苷酸 C钙离子 D乙酰胆碱 为什么答案是D?

哪项不属于细胞内信息传递分子:A环腺苷酸 B环鸟苷酸 C钙离子 D乙酰胆碱 为什么答案是D?! A环腺苷酸 B环鸟苷酸 这两个是第二信息系统的要件,属于细胞内信息传递分子; C钙离子 不用说吧; D乙酰胆碱 胆碱能神经递质,用于细胞间信息传递,不属于细胞内信息传递分子.

你好,看到你回答的 细胞对信号是如何整合与调控的?

不同的信号分子细胞的反应不同,同一信号分子作用于不同的细胞产生的效应也不同。这与信号分子与细胞表面受体结合后引起细胞反应有关。外界信号(如光、电、化学分子)作用于细胞表面受体,引起胞内信使的浓度变化,进而导致细胞应答反应的一系列过程。脂溶性信号分子通过基因表达途径引起细胞效应(如类固醇激素等脂溶性激素的受体。核受体的本质是一些转录调节因子,其一级结构具有很高的同源性,并具有相同的功能域,即N末端区(A/B区)、DNA结合区(C区)、连接区(D区)和激素结合区(E区,位于C末端) 信号转导过程:激素与受体E区结合,核受体被激活,其DNA结合区与靶基因的激素反应元件结合,继而与靶基因的转录因子相互作用,调节靶基因的表达,引起生物学效应。),水溶性信号分子通过第二信使途径引起细胞反应,第二信使途径相关信号转导通路有:AC偶联通路、cGMP磷酸二酯酶偶联通路、磷脂酶C偶联通路、磷脂酶A2偶联通路以及对离子通道直接或间接的调节等。AC偶联通路又称cAMP系统、PKA系统, cAMP是目前研究最广泛、最深入的第二信使。胞外信息与受体结合后,通过调节胞内cAMP的浓度,将细胞外信号转变为细胞内信号。cAMP信号途径可表示为:激素→ G蛋白耦联受体→G蛋白→腺苷酸环化酶→cAMP→依赖cAMP的蛋白激酶A(PKA)→①直接作用于底物蛋白,使底物蛋白的丝氨酸和苏氨酸磷酸化,底物蛋白构象变化,从而调节酶活性、通道开闭和受体的反应性等。②进入细胞核,使基因调控蛋白磷酸化→基因转录。该通路主要由5部分组成:①激活型受体(Rs)或抑制型受体(Ri);②活化型G蛋白(Gs)或抑制型G蛋白(Gi);③ 腺苷酸环化酶AC:跨膜12次。在Mg2+或Mn2+的存在下,催化ATP生成cAMP。在哺乳动物中,至少发现了8种AC(AC1-AC8),它们都能被胞内的Gs激活,不同的AC还受到胞内其它分子的激活和抑制作用。④蛋白激酶A(Protein Kinase A,PKA):由两个催化亚基和两个调节亚基组成。cAMP与调节亚基结合,使调节亚基和催化亚基解离,释放出催化亚基,激活PKA发挥效应。如在脊髓背角神经元中,α2-肾上腺素受体通过AC-cAMP-PKA通路上调GlyR;在纹状体神经元上,D1受体通过AC-cAMP-PKA通路和一系列复杂的途径上调DMNAR。此外cAMP可以直接作用于离子通道产生快速效应,如环核苷酸门控离子通道HCN可被胞内cAMP上调或直接激活。 ⑤环腺苷酸磷酸二酯酶(PDE):降解cAMP形成5"-AMP,起终止信号的作用。目前已发现7种磷酸二酯酶PDE,除V型和VI型是cGMP特异性的外,其余5中均为cAMP特异性的。环鸟苷酸信使系统 又称cGMP系统:胞内cGMP水平较cAMP低得多。鸟苷酸环化酶GC催化GTP形成cGMP,GC有2大类①胞浆可溶性GC,由NO激活,NO-cGMP信号通路是NO发挥众多生理作用的主要机制;②膜结合型GC,为跨膜受体,属于受体中的与酶相关的单跨膜受体亚类,如心钠素ANP受体,其胞外区与心钠素ANP结合,胞内区具有鸟苷酸环化酶GC活性。(当心房内压力升高时,心房肌合成心钠素,作用于心钠素受体,在心血管内环境稳定中起重要作用。)cGMP信号途径可表示为:鸟苷酸环化酶→cGMP→依赖cGMP的蛋白激酶G(PKG)→细胞效应磷脂酶C偶联通路:信号通路:受体- G蛋白(Gq)- PLC-β- IP3&DAG胞外信号分子与细胞表面G蛋白耦联受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成两个第二信使IP3(1,4,5-三磷酸肌醇)和DAG(二酰基甘油)。(一) IP3 介导的信号通路——胞内Ca++动员 IP3 内质网膜上的IP3受体(离子通道型受体的环核苷酸受体亚类) 打开Ca++通道,Ca++由内质网进入胞浆,该胞内钙库释放的Ca++介导了钙动员的最初反应,随后会引起长时间的外钙内流,使胞内钙浓度升高, Ca++进一步激活Ca++/CAM依赖性蛋白激酶,使特异的蛋白质磷酸化,引起细胞效应。(二) DAG介导的信号通路——蛋白激酶C(PKC)的激活 DAG可激活蛋白激酶C(PKC), PKC进一步磷酸化下游蛋白而发挥生理效应。 PKC为单体酶,由一条肽链构成。其调节区具有DAG、磷脂和Ca++结合部位,目前至少发现10种PKC亚型,多数PKC的激活需要DAG和Ca++ 的协同作用,因此IP3/Ca++和DAG/PKC两个反应系统共同调节PKC的活性。PKC能使底物蛋白的Ser-OH 和Thr-OH残基磷酸化,许多被PKC磷酸化的蛋白都是膜蛋白,如胰岛素受体、离子通道等。磷脂酶A2偶联通路:信号通路:受体- G蛋白(Go)- PLA2- AA-前列腺素&血栓素(环氧合酶)和白三烯等(脂氧合酶)。①受体(α1-肾上腺素受体、缓激肽受体等)和配体结合后激活Go蛋白, 活化的Go激活 PLA2;②任何能使胞内Ca++浓度升高的递质都能增强PLA2通路

一碳单位代谢障碍产生巨幼红细胞贫血的系生化机理是什么?

一碳单位的主要生理功用是作为合成嘌呤和嘧啶的原材料。(生化书的)由于之前2者是合成DNA以及RNA的重要材料,缺乏这些材料,RBC在复制之后没有办法利用嘌呤和嘧啶合成模板,从而可以复制,但是无法分裂,所以RBC就越来越大,但是还是没有办法形成成熟的RBC,形成巨大的未成熟RBC,但是不具有成熟RBC功能,造成巨幼贫。

干细胞丰额头还是玻尿酸效果好

玻尿酸是一种比较流行的注射填充方法。它可以解决多个部位出现的问题。如皱纹、唇型等。可以有效的去除颜面皮肤的皱纹,保湿,五官的整形,凹陷的暂时充填等效果。玻尿酸注射在进行填充时,其常用的部位是额头,眼角和眉间,玻尿酸配合其它药物使用效果更佳。玻尿酸注射还可以用于颜面部填充美容,如上眼睑皱纹或眼窝凹陷,唇吻,鼻面纹,口角纹,隆鼻根,面部塑形,水痘及皮肤凹陷填充,干燥皮肤美容等。近些年来玻尿酸丰额头也被广泛的应用着。 玻尿酸丰额头是利用多层次或点状的打法,让额头、太阳穴看起来很均匀、平滑、饱满。而且注射丰额的小伤口会藏在发际、眉间。打玻尿酸是一种非常轻松的方式,利用0。2公分的小伤口,将大分子玻尿酸注射在凹陷的部位,或者是用点状法,把中分子的玻尿酸均匀的打在额头上,而且费用较整形手术也相对低廉得多。像大分子玻尿酸在皮肤表面形成一层透气的薄膜,使皮肤光滑湿润,并可阻隔外来细菌、灰尘、紫外线的侵入,保护皮肤免受侵害。所以玻尿酸丰额头是很安全的。

简述细胞内腺苷酸之间的转化对呼吸代谢的调节。

【答案】:保持细胞内一定的ATP/ADP比率是调节体内呼吸代谢平衡的主要因素。细胞内需能反应(如细胞分裂、物质合成等)愈强,ATP/ADP比率愈低,愈有利于提高呼吸速率,增加ATP的合成;反之,则会因能荷高,ATP积累多,呼吸速率会下降,ATP的合成会减少。

论述腺苷酸及其衍生物在细胞代谢中的作用与地位

1、 作为核酸单体脱氧核糖核苷酸或核糖核苷酸通过磷酸二酯键形成DNA或RNA,作为细胞的遗传物质,发挥着重要的作用。2、 作为能量载体腺苷酸(AMP)的5"羟基上的磷酸基团可能含有一个或两个附加的磷酸,依次生成二磷酸腺苷(ADP)和三磷酸腺苷(ATP),将从核糖开始的三个磷酸依次标记为α、β、γ。三磷酸腺苷的水解可以提供化学能,驱动了广泛的生物化学反应,是各种生命活动能量的直接来源,因此ATP也被称作是能量流通的货币。ATP水解所释放的能量是由三磷酸基团的结构决定的,核糖与α磷酸之间的键是磷酸酯键,水解可产生约14kJ/mol的能量;而α磷酸与β磷酸,β磷酸γ磷酸之间的键是磷酸苷键,水解可产生30kJ/mol的能量,因而被称作高能磷酸键。另外,核苷三磷酸也作为DNA和RNA合成的活化前体。3、 作为化学信使细胞通过激素或其他外部化学信号获取信息而对环境做出反应。这些细胞外的化学信号(第一信使)和细胞表面受体的相互作用常导致细胞内第二信使的产生,接着导致细胞内的一系列变化。最常见的第二信使是腺苷3",5"-环-磷酸(cAMP),它是由一种结合在细胞膜表面的腺苷酸环化酶催化ATP形成的。4、 作为结构组成成分腺苷酸是许多酶辅因子的结构成分(如辅酶A、NAD+、FAD等),也是一些代谢中间产物的组分。油脂的分解代谢过程就是一个典型的例子。在油脂的分解代谢中,脂肪酸首先与ATP反应生成酰基腺苷酸,然后辅酶A与酰基腺苷酸反应生成酰基辅酶A。在这个过程中,ATP、辅酶A都是以腺苷酸作为结构成分的。在任何辅因子中,腺苷都不直接发挥主要功能,但若把腺苷移走,辅因子的活性就会迅速降低。辅因子对腺苷的需求与酶和辅因子之间的结合能有关,这些结合能可用于催化和稳定起始酶-辅因子复合物。与腺苷结合的结构域可见于许多酶中。许多酶有一个称为核苷酸结合折叠的结构域,能与ATP和核苷酸辅因子结合。为何唯独是腺苷而非其他几种核苷广泛的作为这些结构组分?原因可能在于腺苷多角色的进化优势。当ATP成为化学能的主要来源时,相对于其他核苷酸,系统将更为大量地合成ATP。由于数量上的优势,ATP就成为了可与大量结构结合的合理选择。

细胞中需要能量的生命活动都是由ATP直接提供能量吗

细胞中需要能量的生命活动不是均由ATP直接提供能量。新陈代谢所需要的能量是由细胞内的ATP直接提供的,ATP是新陈代谢所需能量的直接来源,但体内有些合成反应不一定都直接利用ATP供能,而可以利用其他三磷酸核苷。例如UTP(三磷酸尿苷)用于多糖合成、CTP(三磷酸胞苷1用于磷脂合成、GTP(三磷酸鸟苷)用于蛋白质合成等。但物质氧化时释放的能量大都是必须先合成ATP。ATP可使UDP、CDP或GDP生成相应的UTP、CTP或GTP。

细胞中需要能量的生命活动都是由ATP直接提供能量吗

细胞中需要能量的生命活动大多数是由ATP直接提供能量的,除此之外,肌肉中储藏着多种能源物质,主要有三磷酸腺苷(ATP)、磷酸肌酸(CP)、肌糖原和脂肪等。ATP是三磷酸腺苷的英文名称缩写。ATP分子的结构式可以简写成A-P~P~P,其中A代表腺苷,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键,高能磷酸键断裂时,大量的能量会释放出来。ATP可以水解,这实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时释放的能量多达30.54 kJ/mol,所以说ATP是细胞内的一种高能磷酸化合物。ADP转化成ATP所需要的能量,对于动物、人、真菌和大多数细菌来说,均来自细胞进行呼吸作用时有机物分解所释放的能量;对于绿色植物来说,除了依赖呼吸作用所释放的能量外,在叶绿体内进行光合作用时,ADP转化为ATP还利用了光能。扩展资料1、萤火虫尾部的发光细胞中含有荧光素和荧光素酶。荧光素接受ATP提供的能量后就被激活。2、吸能反应一般与ATP水解的反应相联系,由ATP水解提供能量;放能反应一般与ATP的合成相联系,释放的能量储存在ATP中。也就是说,能量通过ATP分子在吸能反应和放能反应之间流通。3、植物、动物、细菌和真菌的细胞内,都是以ATP作为能量“通货”的,这说明了生物界的统一性。参考资料来源:百度百科-腺嘌呤核苷三磷酸

真核细胞中的mrna帽子结构是

真核细胞中的mrna帽子结构是7-甲基鸟嘌呤核苷三磷酸。1、它位于mRNA的5"端,并在转录后即刻被添加。这个帽子结构对于稳定mRNA、促进翻译起始以及免遭内切酶降解都非常重要。2、这是一个关于真核细胞中mRNA帽子结构的陈述。它说明了真核细胞中mRNA帽子结构的组成成分是7-甲基鸟嘌呤核苷三磷酸,并解释了这个帽子结构的重要作用,包括稳定mRNA、促进翻译起始以及免遭内切酶降解。3、核苷是由嘌呤或嘧啶碱基与核糖形成的缩合物,这种缩合物的核糖上的五位羟基再与三聚磷酸成脂,就形成三磷酸核苷。核苷三磷酸定义:1、核苷三磷酸(NTP)是一种含有三个磷酸基团的核苷酸。自然界常见的型态包括腺苷三磷酸(ATP)、鸟苷三磷酸(GTP)、胞苷三磷酸(CTP)、胸腺苷三磷酸(TTP)以及尿苷三磷酸(UTP)等。2、这些分子中包含一个核糖,若是将核糖替换常去氧核糖,那么会使核甘三磷酸变成去氧核苷三磷酸,写成dNTP,如去氧腺苷三磷酸(dATP)、去氧鸟苷三磷酸(dGTP)等。3、ATP分子式C10H16N5O13P3,化学简式C10H8N4O2NH2(OH)2(PO3H)3H,分子量507.184。三个磷酸基团从腺苷开始被编为α、β和γ磷酸基。4、ATP的化学名称为5"-三磷酸-9-β-D-呋喃核糖基腺嘌呤,或者5"-三磷酸-9-β-D-呋喃核糖基-6-氨基嘌呤。

在细胞中哪些结构能产生ATP

动物细胞中能产生ATP的结构有细胞质基质和线粒体。植物细胞中能产生ATP的结构有细胞质基质、线粒体和叶绿体。生成ATP的途径主要有两条:一条是植物体内含有叶绿体的细胞,在光合作用的光反应阶段生成ATP;另一条是所有活细胞都能通过细胞呼吸生成ATP。ATP的全称是adenosinetriphosphate,中文名称是三磷酸腺苷。A代表adenosine腺苷;T代表tri-,意为三;P代表-phosphate,也就是磷酸。顾名思义,一个ATP由一个腺苷和三个磷酸组成,其中腺苷由一个核糖和一个腺嘌呤组成。扩展资料细胞呼吸与ATP合成:生物氧化是有机物如糖类、脂类、蛋白质等在活细胞内氧化分解,生成COu2082和Hu2082O并释放能量合成ATP的的过程,因为在此过程中消耗氧并产生COu2082,故又称细胞呼吸。通常情况下,糖类物质的氧化是细胞能量的主要来源,人体所需的能量中约50%~80%的能量由糖类提供。脂类、蛋白质也可以通过生物氧化为细胞提供能量,当脂类、蛋白质转变为糖代谢途径中的中间产物后,也可通过糖有氧氧化途径中的三羧酸循环和氧化磷酸化彻底氧化为COu2082和Hu2082O,并合成ATP。细胞呼吸最常利用的物质是葡萄糖。生物氧化过程中,葡萄糖先在细胞质基质中分解为丙酮酸。无氧条件下,丙酮酸在细胞质基质中转化成乳酸或乙醇(酵母菌中);有氧条件下,丙酮酸进入线粒体,彻底氧化分解为COu2082和Hu2082O。参考资料来源:百度百科-腺嘌呤核苷三磷酸

高三生物教案:细胞的代谢

高三生物教案 细胞的代谢 细胞的代谢 1.内容: (1)酶在代谢中的作用 Ⅱ (2)ATP在能量代谢中的作用Ⅱ (3)光合作用的 基本过程 Ⅱ (4)影响光和作用速率的环境因素 Ⅱ (5)细胞呼吸Ⅱ (6)探究影响酶活性的条件 (7)绿叶中色素的提取和分离 (8)探究酵母菌细胞呼吸的方式 2.解读: 在历年的高考中对ATP、酶的考查多以选择题形式出现,非选择题主要考查与酶有关的实验设计以及酶在生产、生活中的应用。光合作用和细胞呼吸是高考中最重要的考点,其试题常考常新,考题数量多、分值高、区分度大,《考试说明》中规定的各类能力均可设置考查。较常见的题型是结合生产、生活中的实践性问题以实验或简答得形式考查。关于酶与代谢部分可以从以下几个方面进行突破: (1)准确记忆酶的产生、功能、特性、化学本质和种类等知识。 (2)通过列表的方式比较酶、激素和维生素。 (3)理顺各种因素对酶催化效率的影响,探究或验证与酶催化特性想关的实验设计原理、过程及结果预测与分析。 ATP部分可联系生物体内的各种能源物质,结合细胞的结构和功能,生物的代谢,掌握细胞内产生ATP的结构及相应的生理活动;而关于光合作用的复习可以采取以下策略: (1)全面系统复习光合作用的基础知识和实验要点。 (2)重视实验与探究能力的培养,形成试验操作的基本能力。 (3)加强对高考试题的分析,重视对标准答案的学习,学习标准答题。 对于细胞呼吸,(1)充分利用教材掌握细胞呼吸的概念、类型、过程、特点、能量等问题。(2)运用列表法分析比较光合作用与细胞呼吸、有氧呼吸与无氧呼吸。(3)运用知识解决实际问题。(4)培养实验与探究能力。 第一课时 酶与ATP 1.酶的概念 酶是由活细胞产生的,具有催化效应的生物大分子。 2.酶的化学本质 绝大多数酶是蛋白质,少数酶是RNA。 3.酶的性质 1.具有一般催化剂的性质 (1)反应前后酶的数量不变 (2)只改变反应的速率,不改变反应的平衡点 2.酶的特性 (1)具有高效性:酶的催化效率一般是无机催化剂的107——1013倍 (2)具有专一性:一种酶只能催化一种或一类底物 (3)反应条件温和 4.影响酶活性的因素 (1)温度 (2)PH值 5.影响酶促反应速率的因素 (1)温度 (2)PH (3)酶的浓度 (4)底物的浓度 二、ATP 1.ATP的结构简式: A-P~P~P 中文名称:三磷酸腺苷,~代表高能磷酸键,通常原理腺苷的那个高能磷酸键易断裂释放能量,形成ADP 2.ATP与ADP的相互转化 注意:此反应不是可逆反应原因有:(1)反应过程中的酶不同(2)ATP释放的能量不能再用于合成ATP(3)反应的场所不同 3.ATP合成的场所: 在动物细胞中可以在线粒体和细胞质基质中产生,在植物细胞中除了线粒体和细胞质基质,叶绿体也可以产生ATP 4.ATP的去路 ATP水解释放能量,可以转化成热能、光能、电能、机械能、渗透能等用于生物体的各种生命活动。注意,光合作用产生的ATP只能用于其暗反应阶段不能用于其它生命活动。 例1. 右图表示酶活性与温度的关系。下列叙述正确的是 A.当反应温度由t2调到最适温度时,酶活性下降 B.当反应温度由t2调到最适温度时,酶活性上升 C.酶活性在t2时比t1高,故t2时更适合酶的保存 D.酶活性在t1时比t2低,表明t1时酶的空间结构破坏更严重 答案:B 解析:在最适宜的温度下,酶的活性。温度偏高或偏低,酶活性都会明显降低。当反应温度t2调到最适温度时,酶活性上升。温度过高,还会使酶的空间结构遭到破坏,使酶永久失活,0左右的低温虽然使酶的活性明显降低,但能使酶的空间结构保持稳定,在适宜的温度下酶的活性可以恢复,酶适于在低温下保存,故C,D错误。 第二课时 细胞呼吸 一、细胞的概念 有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过程 二、有氧呼吸 第一阶段 第二阶段 第三阶段 场所 细胞质基质 线粒体基质 线粒体内膜 反应物 葡萄糖 丙酮酸和水 H和O2 生成物 丙酮酸 H CO2 H H2O 生成ATP 数量 少量 少量 大量 需氧与否 否 否 是 酶 反应式:C6H12O6+6O2+6H2O 6CO2+12H2O+能量 注意:(1)反应式中前后的水不可消去 (2)不能用等号,要用箭头 (3)反应式后面的能量不能写成ATP (4)条件是酶不可省去 三、无氧呼吸 第一阶段 第二阶段 场所 细胞质基质 细胞质基质 反应物 葡萄糖 丙酮酸 生成物 丙酮酸 H 酒精和CO2 或乳酸 生成ATP 数量 少量 少量 反应式:在人或哺乳动物的细胞中以及马铃薯的块茎中:C6H12O6 C3H6O3(乳酸)+少量能量 在酵母菌或植物的根中:C6H12O6 C2H6O+CO2+少量能量 四、影响细胞呼吸的因素 1.水分:自由水含量越低,细胞呼吸越慢 2.O2浓度: 3.温度 例2. 按下表设计进行实验,分组后,在相同的适宜条件下培养8~10小时,并对实验结果进行分析。 实验材料 取样 处理 分组 培养液 供氧情况 适宜浓度 酵母菌液 50 mL 破碎细胞 (细胞不完整) 甲 25 mL 75 mL 无氧 乙 25 mL 75 mL 遇氧 50 mL 未处理 丙 25 mL 75 mL 无氧 丁 25 mL 75 mL 通氧 下列叙述正确的是 A. 甲组不产生CO2而乙组产生 B. 甲组的酒精产量与丙组相同 C. 丁组能量转换率与丙组相同 D. 丁组的氧气消耗量大于乙组 答案:D 解析:酵母菌在有氧的条件下能将葡萄糖分解成CO2和水,无氧的条件下将葡萄糖分解成CO2和酒精。依题意,甲组、丙组进行无氧呼吸,乙组、丁组进行有氧呼吸。甲组、乙组两组都产生CO2,由于甲组细胞不完整,甲组的酒精产量较丙组少,丁组能量转换率较丙组高,丁组的氧气消耗量大于乙组。故D正确。 第三课时 光合作用 一、捕获光能的色素 1.绿叶中色素的提取和分离 (1)可以利用无水乙醇提取绿叶中的色素,在研磨时还应加入少许二氧化硅和碳酸钙,其中前者有助于研磨充分,后者可防止研磨中色素别破坏。 (2)分离的原理是利用色素在层析液中的溶解度不同,溶解度大的再滤纸上扩散的快,反之则慢。 2.色素的种类 二、光合作用发现的历程 1.1771年,英国科学家普利斯特利通过实验证实植物可以更新空气 2.1779年,荷兰科学家英格豪斯通过实验发现,普利斯特里的实验只有在阳光照射下才能成功,植物体只有绿叶才能更新浑浊的空气。 31845年,德国科学家梅耶指出,植物在进行光合作用时把光能转化成了化学能储存起来 4.1864年,德国科学家萨克斯实验成功证明了光合作用的产物除O2外还有淀粉。 5.1839年英国的科学家鲁宾和卡门利用同位素标记法对光和作用过程进行了研究,证明光合作用释放的O2来自水。 三、光合作用的过程 1. 光反应 (1) 场所:叶绿体的类囊体薄膜上 (2) 条件:光,色素,酶等 (3) 物质变化:将水分解为H和O2,将ADP和Pi合成ATP (4) 能量变化:光能转化为活跃的化学能 2. 暗反应 (1) 场所:叶绿体的基质中 (2) 条件:酶,ATP,H (3) 物质变化: CO2的固定:CO2+C5 2C3 C3的还原:2C3+H CH2O+C5 (4) 能量变化:ATP中活跃的化学能转变为有机物中稳定的化学能 四、影响光合作用的因素 1.温度 2.光照强度 3.CO2 浓度 4.水量 5.矿质元素的量 6.叶龄 单元测试题 一、选择题 1.(09重庆卷)下列有关酶的叙述,正确的是 A. 高温和低温均能破坏酶的结构使其失去活性 B. 酶是活细胞产生并具有催化作用的蛋白质 C. 细胞质基质中的催化葡萄糖分析的酶 D. 细胞质中没有作用于DNA的解旋酶 2.(09广东卷)水稻细胞内合成的某物质,能够在常温下高效分解淀粉,该物质 A. 在4℃条件下易变性 B.只含有C、H C.也能催化淀粉合成 D.含有羧基 3.(09江苏卷)加工橘子罐头,采用酸碱处理脱去中果皮(橘络),会产生严重污染。目前使用酶解法去除橘络,可减少污染。下列生长在特定环境中的4类微生物,可以大量产生所用酶的有 A.生长在麦麸上的黑曲霉 B.生长在酸奶中的乳酸菌 C.生长在棉籽壳上的平菇 D.生长在木屑上的木霉 4.(09辽宁、宁夏卷)右图表示酶活性与温度的关系。下列叙述正确的是 A.当反应温度由t2调到最适温度时,酶活性下降 B.当反应温度由t2调到最适温度时,酶活性上升 C.酶活性在t2时比t1高,故t2时更适合酶的保存 D.酶活性在t1时比t2低,表明t1时酶的空间结构破坏更严重 5.(09上海卷)将刚采摘的乱玉米立即放入沸水中片刻,可保持其甜味。这是因为加热会 A. 提高淀粉酶活性 B. 改变可溶性糖分子结构 C. 防止玉米粒发芽 D. 破坏将可溶性糖转化为淀粉的酶 6.(09海南卷)能使植物细胞壁和细胞膜结构均破坏的一组酶是 A. 淀粉酶、纤维素、溶菌酶 B. 纤维素酶、果胶酶、蛋白酶 C. 果胶酶、溶菌酶、纤维素酶 D. 磷脂酶、淀粉酶、蛋白酶 7.(09全国卷Ⅱ)下列关于细胞呼吸的叙述,错误的是 A.细胞呼吸必须在酶的催化下进行 B.人体硬骨组织细胞也进行呼吸 C.酵母菌可以进行有氧呼吸和无氧呼吸 D.叶肉细胞在光照下进行光合作用,不进行呼吸作用 8.(09天津卷)按下表设计进行实验,分组后,在相同的适宜条件下培养8~10小时,并对实验结果进行分析。 实验材料 取样 处理 分组 培养液 供氧情况 适宜浓度 酵母菌液 50 mL 破碎细胞 (细胞不完整) 甲 25 mL 75 mL 无氧 乙 25 mL 75 mL 遇氧 50 mL 未处理 丙 25 mL 75 mL 无氧 丁 25 mL 75 mL 通氧 下列叙述正确的是 A. 甲组不产生CO2而乙组产生 B. 甲组的酒精产量与丙组相同 C. 丁组能量转换率与丙组相同 D. 丁组的氧气消耗量大于乙组 9.(09浙江卷)破伤风梭状芽孢杆菌侵入了人体深部的组织细胞并大量繁殖,下列关于该菌的细胞呼吸类型和消灭该菌首先要通过的免疫途径的叙述,正确的是 A.无氧呼吸和体液免疫 B.无氧呼吸和细胞免疫 C.有氧呼吸和体液免疫 D.有氧呼吸和细胞免疫 10.(09广东理基)在密闭容器内,酵母菌利用葡萄糖产生酒精,此过程不生成 A.ATP B.乳酸 C.三碳化合物 D. 11.(09广东卷)利用地窖贮藏种子、果蔬在我国历史悠久。地窖中的 浓度较高,有利于 A.降低呼吸强度 B.降低水分吸收 C.促进果实成熟 D.促进光合作用 释放量 吸收量 a 10 0 b 8 3 c 6 4 d 7 7 12.(09上海卷)在a、b、c、d条件下,测得某植物种子萌发时 和 体积变化的相对值如右表。若底物是葡萄糖,则下弄叙述中正确的是 A. a条件下,呼吸产物除 外还有酒精和乳酸 B. b条件下,有氧呼吸消耗的葡萄糖比无氧呼吸多 C. c条件下,无氧呼吸最弱 D. d条件下,产生的 全部来自线粒体 13.(09浙江卷)下列关于植物光合作用和细胞呼吸的叙述,正确的是 A.无氧和零下低温环境有利于水果的保鲜 B. 的固定过程发生在叶绿体中, 分解成 的过程发生在线粒体中 C.光合作用过程中光能转变为化学能,细胞呼吸过程中化学能转变为热能和ATP D.夏季连续阴天,大棚中白天适当增加光照,夜晚适当降低温度,可提高作物产量 14.(09广东理基)在晴天中午,密闭的玻璃温室中栽培的玉米,即使温度及水分条件适宜,光合速率仍然较低,其主要原因是 A. 浓度过低 B. 浓度过高 C. 浓度过低 D. 浓度过高 15.(09广东理基.将在黑暗中放置一段时间的叶片均分4块,置于不同的试管中,按下表进行实验,着色最浅叶片所在的试管是 试管编号 ① ② ③ ④ 实验 处理 CO2溶液 + + + + 光照 白光 蓝光 红光 绿光 碘液 + + + + 注:“+”表示具有该条件 A.① B.② C.③ D.④ 16.(09广东文基)从高等植物叶片中分离出4种光合色素,其中呈橙黄色的是 A.叶绿素a B.叶绿素b C.胡萝卜素 D.叶黄素 17.(09北京卷)小麦和玉米的CO2固定量随外界CO2浓度的变化而变化(如右图)。下列相关叙述不正确的是 A. 小麦的CO2固定量与外界CO2浓度呈正相关 B.CO2浓度在100mgu2022L-1时小麦几乎不固定CO2 C.CO2浓度大于360 mgu2022L-1后玉米不再固定CO2 D.C4植物比C3植物更能有效地利用低浓度CO2 18.(09上海卷)下列关于叶肉细胞能量代谢的叙述中,正确的是 A. 适宜光照下,叶绿体和线粒体合成ATP都需要 B. 只要提供 ,线粒体就能为叶绿体提供 和ATP C. 无光条件下,线粒体和叶绿体都产生ATP D. 叶绿体和线粒体都有ATP合成酶,都能发生氧化还原反应

细胞中需要能量的生命活动都是由ATP直接提供能量吗?

  不是。细胞中绝大多数需要能量的生命活动都是由ATP直接提供能量的,但不是全部。直接能源还有磷酸肌酸、UTP、GTP、CTP等。  三磷酸腺苷(ATP)是以次黄嘌呤核苷酸为底物,经生物发酵的技术制得的高能化合物,三磷酸腺苷是体内组织细胞一切生命活动所需能量的直接来源,被誉为细胞内能量的“分子货币”,储存和传递化学能,蛋白质、脂肪、糖和核苷酸的合成都需它参与,可促使机体各种细胞的修复和再生,增强细胞代谢活性,对治疗各种疾病均有较强的针对性。  在生物化学中,三磷酸腺苷(Adenosinetriphosphate,ATP)是一种核苷酸(又叫腺苷三磷酸),作为细胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。ATP是三磷酸腺苷的英文名称缩写。ATP分子的结构是可以简写成A-P~P~P,其中A代表腺苷,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键,高能磷酸键断裂时,大量的能量会释放出来。ATP可以水解,这实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时释放的能量多达30.54kJ/mol,所以说ATP是细胞内一种高能磷酸化合物。  在ATP与ADP的转化中,ATP的第2个高能磷酸键位于末端,能很快地水解断裂,释放能量。同样,在提供能量的条件下,也容易加上第3个磷酸使ADP又转化为ATP。对于动物和人类来说,ADP转化成ATP时所需要的能量,来自呼吸作用;对于绿色植物来说,ADP转化成ATP时所需要的能量,来自呼吸作用和光合作用。构成生物体的活细胞,内部时刻进行着ATP与ADP的相互转化,同时也就伴随有能量的释放和储存。因其是能量“携带”和“转运”者,生物学家形象地称ATP为“能量通货”。

实验:培养细胞如何照射紫外线?急

紫外线的保健作用 过度接触紫外线,会烧伤皮肤,或引起老年性白内障,甚至引起皮肤癌等。但适量的紫外线对人体却有许多好处: 杀菌消毒人体的表皮中分布着一种基底细胞,这种细胞含有“黑色素原” 是一种酪氨酸物质 ,在紫外线的作用下,“黑色素原”变为黑色,沉着于被晒的皮肤表面,使皮肤呈均匀的黑褐色。这就是日光晒黑皮肤的重要原因。这种沉着的色素可吸收较多的光能,迅速转变为热能,并刺激汗腺分泌而散热。晒太阳能杀死皮肤上的细菌,预防疖疮、毛囊炎等皮肤病。室内常进阳光,勤晒被褥,可减少疾病的传播。 促进钙磷代谢人体皮肤中含有固醇类物质,这种物质经阳光中的紫外线照射可变为维生素D。维生素D进人血液后改善钙、磷的代谢,有抗佝偻病、骨软化和老年骨质疏松的作用。 增强机体的免疫能力阳光中紫外线的照射,能刺激机体的造血机能,使红血球的数量增多,血色素增加,改善红细胞质量,改善肌肉的活动状态,还能降低血压、血糖、胆固醇、增加机体免疫能力,促进机体细胞吸氧能力和新陈代谢,减轻气喘病和关节疼痛,舒筋活血,增强体质。 那么,应在什么时间接受紫外线?盛夏时11-17时不宜接受阳光晒,因为这段时间红外线太强,一般能达到每分钟每立方米1.5卡以上,所产生的温度是37℃-45℃。春秋季节7-10点,或15-16点,这段时间,阳光中紫外线强,红外线弱。 紫外线对人体的伤害 在炎热的夏季,太阳光所含有的紫外线对人体的照射是难以避免的。过量的日光紫外线照射可对人体的皮肤、眼睛、免疫系统等造成伤害。紫外线能破坏人体皮肤细胞,导致皱纹、色斑,使皮肤未老先衰,严重时产生日光性皮炎及晒伤,或皮肤和黏膜的日光性角化症,引起癌变。眼睛是紫外线的敏感器官,紫外线能对晶状体造成损伤,是老年性白内障致病因素之一。 在骄阳似火的夏季,上午10时至下午3时,阳光中的紫外线强度最强,室外活动应避开这段时间,以免紫外线对人体的伤害,即使需要在这段时间户外活动,也不要忘记撑遮阳伞,戴遮阳帽或遮阳镜,使用有正规厂家生产的护肤素和防晒霜,并尽量着白色或浅色衣服,以减轻紫外线照射,对人体造成不必要的损伤。 虽然紫外线过量对人体造成伤害,但人体的健康成长又离不开紫外线。皮肤中7-脱氢胆固醇经光照射转变成维生素D3,维生素D3对维持人体细胞内外钙离子浓度,调节钙磷代谢具有重要的生理功能。在日照不足的国家,婴幼儿的佝偻病和成人的骨质软化和骨质疏松症的发病多,婴儿的茁壮成长离不开适量的日光浴,人体需要适量的紫外线,因此,适量的光照还是必要的。 红外线(Infrared rays)是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现,又称为红外热辐射(Infrared radiation)。太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm 之间。近年来,由于检测设备的完善及研究的深入,人们对红外线的物理性能及其生物学效应有了比较全面的认识,获得了许多进展。红外线特别是远红外线已被广泛运用在医疗保健产业中,与日常生活有关的各种红外线产品也大量出现。本文在此主要对红外线的生物学效应机理及其临床应用研究的现况进行介绍。 一、红外线生物学效应的机理 红外线是一种电磁波,当它通过放射方式辐射到物体时,被物体吸收的辐射能传递给物体内的原子、分子等粒子,使这些粒子发生不规则运动,引起物体的升温作用,称为远红外线的一次效应,也称为增温效应。产生一次效应的同时,物体也随之发生其他的化学、物理等改变,这称之为物体吸收远红外线辐射后产生的二次效应,也称为继发效应。 红外线对人体皮肤、皮下组织具有强烈的穿透力。外界红外线辐射人体产生的一次效应可以使皮肤和皮下组织的温度相应增高,促进血液的循环和新陈代谢,促进人的健康[1] 。红外线理疗对组织产生的热作用、消炎作用及促进再生作用已为临床所肯定,通常治疗均采用对病变部位直接照射。近红外微量照射治疗对微循环的改善效果显著,尤以微血流状态改善明显。表现为辐照后毛细血管血流速度加快,红细胞聚集现象减少,乳头下静脉丛淤血现象减轻或消失,从而对改善机体组织、重要脏器的营养、代谢、修复及功能有积极作用[2]。 红外线对人体产生二次效应的机理目前尚未完全清楚。 有学者认为远红外线可对细胞产生共振作用,主要是引起细胞内外水分子的振动,使细胞活化,发生一系列有益于健康的细胞生物化学及细胞组织化学改变[1]。也有人认为波长8~14微米的远红外线可称为“生命光线”,能够显著改善人体微循环。它作用于人体水分子时可对人体内老化了的大分子团产生共振使之裂化,重新组合成较小的水分子团,在这个过程中,吸附在老化的分子团表面的污染物质得以去除,水的比重上升,附着于细胞膜表面的水分子增加,增强了细胞的活性和表面张力。由于渗透细胞膜的水分子增加,细胞内钙离子活性加强,因此增强了人体细胞的正常机能,使杀菌能力、免疫能力等均有所提高。此外,生命光线还可以使血液中不饱和脂肪酸的二重键或三重键被切断,饱和脂肪酸不容易再被氧化成血脂[过氧化脂质],减少了血管内脂质的沉积,使血管壁光滑,从而减少动脉硬化、白内障等心血管疾病或眼科疾病的发生,对人体健康起着良好的促进功效[3]。 庞小峰研究了由ATP 分子水解释放的生物能量传递的机制和特点,认为红外线对生物(包括人)所具有的生物效应和医学功能主要来自红外线的非热生物效应。1~7μm 的红外线波可以透射过皮肤到细胞上,被蛋白质分子吸收。蛋白质分子能够而且也只能吸收或发射出1~3.5μm 和5~7μm 波长 的红外线,这一范围波长的红外线吸收后能导致蛋白质分子中的酰胺键的量子振动,从而可使生物能量顺利地从一处传递到另一处,使生命体处于正常状态,保持生命体的生长、发育及健康。维持生命系统正常运行的生物能量是由ATP 的水解提供的,但是,一旦ATP 分子或ATP 酶(ATP 的水解需要酶的参与) 或水不足,或者蛋白质的结构和构象改变或畸变等等原因,便可使提供的生物能量不足以引起酰胺键的正常振动或生物能量不能正常传递. 生物组织在得不到足够能量时,便不能正常生长,会诱发出各种疾病. 在这种情况下,若能用具有上述波长的红外线照射,并能被蛋白质吸收,就可以使蛋白质分子恢复正常和正常传递生物能量,从而可能使生物组织从病态恢复到正常状态,使疾病得到治疗. 在红外线医疗仪的临床试验中也证明,对生物体或人有一定医疗效果的红外线也正好是在此波长范围内, 即0.8~1.6μm 和4.8~7μm[4]。 红外线对机体免疫功能影响的研究还处于刚起步状态,在各波段的红外线中以中波红外线更易作用于免疫细胞,促进其生物学功能。红外线的作用除与其波长有关外, 还与其发射的光子数目有关, 即与辐射强度和辐射时间有关, 过量的红外线辐射还可能对机体造成不良的影响, 其详细机制有待进一步阐明。曹志然等认为红外线照射对机体免疫系统具有间接作用和直接作用。间接作用是指红外线辐射可调节机体其它系统如神经系统和内分泌系统的状态, 从而达到调节免疫系统的目的。直接作用是指红外线被机体吸收后能增强免疫细胞和免疫器官周围的生物场, 使其活性及相互调控作用增强,红外光子可直接作用于免疫细胞的受激点, 这些受激点包括免疫细胞表面的受体(如T 细胞表面的PHA-R, TCR, L-2R 等) 和一些酶类, 从而激活细胞, 使细胞增殖和分化 [5]。毛文等推测其作用机理在于红外线可能激活组织深部感受器,其生理生化效应一方面通过神经—体液反射途径,另一方面可能通过目前尚未十分了解的经络传导途径,对生物大分子、细胞及脏器的活动产生了积极的影响,从而有整体良性效应[2]。 二、红外线对人体可能造成的不利影响 热辐射又称红外辐射,钢铁冶金企业高温作业环境的主要特点是强热辐射性高温。特别是在钢铁冶炼、红钢热轧和中型烧结机,是典型的红外热辐射接触作业。波长0.8~1.2μm的短波红外线可透过角膜进入眼球、房水、虹膜、晶状体和玻璃体液吸收一部分红外线而导致白内障,称之为“红外线白内障”,国内外均首先见于玻璃工、钢铁冶炼工人。曹多志等发现铁冶金各炉前作业热辐射危害仍十分严重,随作业工龄增加视力有明显下降趋势,晶体混浊检出率达9.46% ,并发现与热源距离及本岗位工龄有关[6]。有研究也指出紫外线(UVR) 和红外线( IFR) 对眼及皮肤的损伤是电焊作业职业损害的一个重要方面,电焊作业时的紫外线和红外线可引起角膜和晶体损伤[7]。 太阳光中的红外线对皮肤的损害作用不同于紫外线。紫外线主要引起光化学反应和光免疫学反应, 而红外线照射所产生的反应是由于分子振动和温度升高所引起的。红外线引起的热辐射对皮肤的穿透力超过紫外线。其辐射量的25%~65% 能到达表皮和真皮, 8%~17% 能到达皮下组织。红外线通过其热辐射效应使使皮肤温度升高, 毛细血管扩张, 充血, 增加表皮水分蒸发等直接对皮肤造成的不良影响。其主要表现为红色丘疹、皮肤过早衰老和色素紊乱。皮肤温度升高, 毛细血管扩张充血, 增加表皮水分蒸发等直接对皮肤造成不良影响。 红外线还能够增强紫外线对皮肤的损害作用, 加速皮肤衰老过程。使用同样的防晒产品和同样能量的紫外线强度下, 在户外自然阳光下所测到的SPF 值(防晒系数)明显低于在实验室人工光源下所测得的防晒效能,这是由于在自然阳光下, 皮肤受到紫外线和红外线的双重作用而引起的。红外线和紫外线在加速组织变性中的作用是一样的。红外线也能促进紫外线引起的皮肤癌的发展[8]。 三、红外线生物学效应的临床应用研究 红外线可被体表浅表组织吸收, 有显著干燥脱水作用, 使局部组织血液循环加快, 起到消炎镇痛作用。临床上采用局部外用红花油加远红外线照射来治疗褥疮,发现疗效好且见效快[9]。利用远红外线对带状疱疹进行治疗,结果止痛、止疱和结痴时间均短于对照组[10]。有实验表明,生物陶瓷远红外线对烧伤治疗具有显著疗效。对损伤疼痛的治疗,以慢性软组织损伤疗效最好[11]。临床护理观察发现,在传统的纺织品材料中加入超细陶瓷微粒制成的远红外线护具如护腰、护膝、护肘、护腕、颈围等,在消炎、消肿、活血、止痛、通经活络、改善微循环方面有显著效果。比硫酸镁湿热敷、热水袋热敷及药物封闭等方法效果好,同时可以避免因封闭给病人带来的痛苦[12]。新生儿红臀和溃疡以往多采用外用消毒药物洗涤及保持干燥等方法加以防治,疗效差且易复发。采用远红外线辐射加温床对红臀和臀部溃疡患儿进行治疗,治疗组和对照组相比,平均治愈时间缩短,有效率更高[13]。新生儿硬肿症治疗中的复温问题是治疗能否成功的重要环节,过去采用普通暖箱逐渐复温效果较差,现在采用远红外线快速复温后患儿病死率明显下降,抢救成功率显著提高[14]。 皮瓣坏死是整形外科等临床上常见的术后并发症, 主要是因为微循环障碍,目前尚无理想的防治办法。姜平等通过活体直接观察大鼠背部随意皮瓣的微循环变化,探讨了2.5~15μm 波段的远红外线对皮瓣成活的影响。发现远红外线局部辐射具有类似于血管扩张剂的生物学作用,能改善微循环提高皮瓣成活率,且在治疗剂量范围内无明显副作用[15]。 日本有学者报道使用直线偏振光红外线治疗多种类型的斑秃有明显疗效[16]。 直线偏振光近红外线用于风湿性关节炎引起的颞下颌关节痛治疗疗程短、疗效好[17]。变形性关节炎采用点式直线偏振光近红外线治疗仪照射治疗和传统的局部神经阻滞治疗相比较, 虽然近红外线组治疗次数多于传统神经阻滞组, 但治疗范围广,可避免局部神经阻滞治疗给病人带来的痛苦,显效率较高,作用持久不易复发。其机理可能为光照起到光电能的刺激作用,电磁波作用及光化学作用,因而能抑制神经的兴奋、松弛肌肉、舒张血管、增加血流,促进淋巴循环,促进活性因子的产生,从而起到治疗作用[18]。 有人对66例心脑血管病人经低温激发远红外线治疗前后的血液粘度进行观察,发现低温激发远红外线具有以低温热功率效应为主的广泛的生物学效应,能降低心脑血管疾病患者的血液粘度、防止血栓形成,改善微循环,减轻胸闷、心悸、头昏、麻木等症状[19]。 近红外线治疗对CAH 患者免疫功能有一定调节作用,患者SG、IgG、γ-球蛋白下降,ANA、RF转阴, SA、CH50、C3上升, 体液免疫有正常化趋向[20]。红外线辐射还能促进Con-A 诱生产生L-2 的作用,显著提高大鼠脾细胞的ADCC 效应,使小鼠对PHA 刺激的T淋巴细胞转化率增高, 脾指数增大,提高小鼠外周血中淋巴细胞的数目和脾内巨噬细胞的数目[5],对机体自由基代谢及N K 细胞活性也有良好影响[2]。 应用红外线照射膀胱区治疗尿潴留和其它药物疗法相比,产妇无痛苦, 不增加产后出血量, 易被产妇接受。红外线作用于皮肤后, 被吸收的能量转化为热能引起皮温升高, 刺激皮肤内热感受器, 通过丘脑反射使血管平滑肌松弛, 血管扩张, 血循环加强, 促使渗出液吸收, 利于炎肿消退, 减轻肌肉的紧张和痉挛, 因而对尿潴留治疗效果明显 [21]。 盖启凤等用波长2~25μm的远红外线照射下腹部压痛区(包括气海、关元、带脉等穴位)来治疗盆腔炎性包块,患者62 例,均经妇产科临床检查与B超确诊,均有下腹部疼痛及压痛,妇科检查均触到囊性包块,痊愈显效率88.6 % ,总有效率96.6 %。采用远红外线照射治疗盆腔炎性包块可以增加局部的微循环功能,增强白细胞的游走和吞噬能力,促进炎症吸收[22]。 有人采用远红外线照射治疗小儿肠痉挛208 例,发现其疗效明显优于药物治疗, 且简便易行, 无副作用, 儿童乐于接受[23]。 红外辐射对糖尿病兔的高血糖症有明显的缓解作用,其代谢调节机制为对环核苷酸环化酶(AC) 活性抑制的同时激活磷酸二酯酶(PDE)活性,使环磷酸腺苷(cAMP)合成受阻而水解加速,cAMP 水平下降,血糖随之降低[24]。 有人通过体内实验探讨了远红外线对荷瘤鼠S180大脑内源性鸦片类物质的影响,发现应用中远红外线治疗各组大脑β—内啡肽、亮氨酸脑啡肽含量明显增加。脑啡肽能中间神经元被认为能与痛觉传入轴突形成轴—轴突触,能产生有力的抑痛作用。这为临床上应用中远红外线治疗和减轻肿瘤患者疼痛和缓解带状疱疹、肢体疼痛提供了理论依据[25]。 在许多疾病状态下,由于活性氧产生过度或抗氧化酶类活性降低,可引起脂质过氧化反应损伤细胞膜并进而导致了细胞死亡。有资料表明,肿瘤宿主清除自由基的能力降低,表明天然抗氧化剂的抗氧化酶不足。滕艳杰等通过体内实验,探讨了中远红外线治疗对荷瘤鼠肝脏自由基代谢的变化,发现应用中运红外线治疗,肝脏SOD、GSH-Px活性明显升高,MDA含量明显降低。MDA是双键脂肪酸过氧化产物,它的含量反应了脂质过氧化物的浓度。中远红外线由于活化细胞而使荷瘤鼠肝脏组织MDA含量明显减少,肝脏SOD和GSH—Px活力明显升高,从而使肿瘤宿主清除自由基的能力增强,抑制肿瘤细胞的生长、增殖[26]。 微量元素在体内生物化学过程中起着十分重要的作用。它们作为机体多种物质的重要组成部分、与机体生长发育、心脑血管疾病、免疫功能、机体衰老等有着十分密切的关系,然而对各种疾病引起的微量元素的过多或减少,目前尚无肯定的治疗方法。王建杰等研究了全科广谱治疗仪照射对小鼠肝脏微量元素的影响,发现峰值波长7~10μm的中远红外线照射对微量元素的失衡能够进行双向调节,对于正常含量也可促进其吸收,起到很好的防病、治病、保健作用[27]。

低分化鳞状细胞癌怎么治疗?

我叔叔确诊为腰椎转移性低分化鳞状细胞癌 四位一体疗法 综合治疗和调养,通过治疗一方面可以起到加快身体恢复的作用,另一方面可以达到全面预防和控制肿瘤复发或转移,最终达到高质量长期生存的目的。鳞状细胞癌是皮肤表皮细胞的一种恶性肿瘤。发病率约为眼睑恶性肿瘤的8%。多见于50岁上老年人。男性多于女性。好发于眼睑皮肤结膜交界处的皮肤棘细胞层。开始呈结节状,与基底细胞癌很相似,但角质丰富,随肿瘤之发展,可出现疼痛,特别是当肿瘤侵及眶上、下神经时。 鳞状细胞癌临床上可分为二种类型: 溃疡型:溃疡底部坚硬、充血、溃疡较深 ,高低不平,边缘高起,甚至外翻,有时呈火山口状。 菜花状或乳头状:肿瘤向表面发展,可以很大,表面呈菜花状或乳头状,表面有破溃感染则有腥臭味。 鳞状细胞癌恶性程度较基底细胞癌大,生长快,破坏范围广,可以破坏眼睑、眼球、眼眶、鼻窦及面部等。一般易沿淋巴组织转移到附近组织,如耳前及颌下淋巴结甚至全身。这是它与基底细胞癌的不同点。 鳞状细胞的诊断:表皮角化,肿瘤由鳞状上皮细胞团块所组成,不规则地向真皮内浸润,棘细胞呈瘤性增生,呈条索状或巢状细胞团,边缘以基底细胞层,中心部有角化性癌珠,在癌细胞团内有很多分裂象,周围淋巴细胞和浆细胞浸润。 1、注意发病年龄、癌肿部位、职业。有无长期风吹日晒或海上生活史,有无吸烟嗜好及慢性热刺激,有无不稳定性瘢痕、慢性骨髓炎、慢性溃疡病史。 2、注意病变是否粗糙、脱屑、溃破等,邻近淋巴结及区域淋巴结有无肿大、固定。 3、胸部X线摄片检查,疑有骨质破坏时尚应作骨X线摄片。 4、邻近淋巴结切除送病理检查。 中医认为正不抑邪是 肿瘤复发转移 的关键。经过手术、放疗、化疗等治疗后,体内仍有可能存在微小的肿瘤病灶,即中医所谓的 余邪,加之治疗后机体免疫功能的下降,即中医所谓的正虚,随着正气的耗散,正虚进一步加重,癌毒的致病力超过正气的抗病力,疾病进展,出现临床症状和体征,癌毒发生扩散,从而出现肿瘤的复发转移。运用中医药,扶正与祛邪并举,消灭滋生癌细胞的温床,从而抵抗肿瘤的复发转移,使一些有残存癌灶的患者,亦可获得较长期生存,提高远期效果。 恶性肿瘤病人免疫力低下,中医的扶正固本法可以提高机体的免疫力,增强细胞免疫功能,减轻放化疗毒副作用,抗突变,对细胞内的核酸,蛋白质合成和环核苷酸的代谢和产生有影响。在临床上扶正固本法可以提高恶性肿瘤病人的免疫功能,减轻放,化疗的毒副作用,防止复发转移,提高治疗效果,延长生存期。 临床资料及实验证明,中医扶正培本与增强或调整机体免疫功能有关。前已述及机体的免疫状态与肿瘤的发生、发展有密切的关系,特别是细胞免疫水平的降低和巨噬细胞吞噬能力的抑制,是肿瘤发病的重要内在因素,当机体免疫功能低下时,常导致肿瘤发生率增高,或使已存在的肿瘤迅速发展。扶正补虚药可提高肿瘤患者的免疫功能,对细胞免疫、体液免疫均有促进作用,又多有促进垂体肾上腺系统功能的作用,有的还能增加细胞中环磷酸腺苷,及调节环磷酸腺苷与环磷酸鸟苷的比值,从而抑制肿瘤的生长。

细胞膜上的通道蛋白

(二)通道蛋白(channel protein)是跨膜的亲水性通道,允许适当大小的离子顺浓度梯度通过,故又称离子通道.有些通道蛋白长期开放,如钾泄漏通道;有些通道蛋白平时处于关闭状态,仅在特定刺激下才打开,又称为门通道(gated channel).主要有4类:电位门通道,配体门通道,环核苷酸门通道,机械门通道.Ion ChannelsIon Channels--------oror--------1,配体门通道(ligandgated channel) 特点:受体与细胞外的配体结合,引起门通道蛋白发生构象变化,"门"打开.又称离子通道型受体.可分为阳离子通道,如乙酰胆碱,谷氨酸和五羟色胺受体,和阴离子通道,如甘氨酸和γ-氨基丁酸受体.Ach受体是由4种不同的亚单位组成的5聚体蛋白质,形成一个结构为α2βγδ的梅花状通道样结构,其中的两个α亚单位是同两分子Ach相结合的部位.Nicotinic acetylcholine receptorThree conformation of the acetylcholine receptor2,电位门通道(voltage gated channel)特点:细胞内或细胞外特异离子浓度或电位发生变化时,致使其构象变化,"门"打开.K+电位门有四个亚单位,每个亚基有6个跨膜α螺旋(S1-S6) ,N和C端均位于胞质面.连接S5-S6段的发夹样β折叠(P区或H5区),构成通道的内衬,大小可允许K+通过.K+通道具有三种状态:开启,关闭和失活.目前认为S4段是电压感受器.Na+,K+,Ca2+三种电压门通道结构相似,在进化上是由同一个远祖基因演化而来.Voltage gated K+channel KK++channelchannel4th subunit not shownIon-channel linked receptors in neurotransmission神经肌肉接点由Ach门控通道开放而出现终板电位时,可使肌细胞膜中的电位门Na+通道和K+通道相继激活,出现动作电位;引起肌质网Ca2+通道打开,Ca2+进入细胞质,引发肌肉收缩.3,环核苷酸门通道CNG通道与电压门钾通道结构相似,也有6个跨膜片段.细胞内的C末端较长,上面有环核苷酸的结合位点.CNG通道分布于化学感受器和光感受器中,与膜外信号的转换有关.-如气味分子与化学感受器中的G蛋白偶联型受体结合,可激活腺苷酸环化酶,产生cAMP,开启cAMP门控阳离子通道(cAMP-gated cation channel),引起钠离子内流,膜去极化,产生神经冲动,最终形成嗅觉或味觉.4,机械门通道感受摩擦力,压力,牵拉力,重力,剪切力等.细胞将机械刺激的信号转化为电化学信号,引起细胞反应的过程称为机械信号转导(mechanotransduction).目前比较明确的有两类机械门通道,其一是牵拉活化或失活的离子通道,另一类是剪切力敏感的离子通道,前者几乎存在于所有的细胞膜(如:血管内皮细胞,心肌细胞,内耳毛细胞),后者仅发现于内皮细胞和心肌细胞.牵拉敏感的离子通道的特点:对离子的无选择性,无方向性,非线性以及无潜伏期.为2价或1价的阳离子通道,有Na+,K+,Ca2+,以Ca2+为主.5,水通道水扩散通过人工膜的速率很低,人们推测膜上有水通道.1991年Agre发现第一个水通道蛋白CHIP28 (28 KD ),他将CHIP28的mRNA注入非洲爪蟾的卵母细胞中,在低渗溶液中,卵母细胞迅速膨胀,5 分钟内破裂.细胞的这种吸水膨胀现象会被Hg2+抑制.2003年Agre与离子通道的研究者MacKinnon同获诺贝尔化学奖.目前在人类细胞中已发现的此类蛋白至少有11种,被命名为水通道蛋白(Aquaporin,AQP).2003年,美国科学家彼得·阿格雷和罗德里克·麦金农,分别因对细胞膜水通道,离子通道结构和机理研究而获诺贝尔化学奖.Peter Agre Roderick MacKinnon

no作为气体信号分子的传递过程。大二细胞生物学期末考。大神快来帮帮忙

二、NO作为气体信号分子进入靶细胞直接与酶结合主要过程:血管神经末梢释放Ach-作用于GPCR (G蛋白偶联受体)活化G蛋白激活PLC (磷脂酶C)通过对第二信使PIP2水解生成IP3和DAG两个第二信使+ IP3开启Ca2+通道Ca2+从内质网进入细胞质基质+CaM-N0合酶- +催化精氨酸氧化为瓜氨酸释放N0激活GC ( 鸟苷酸环化酶)cGMP. 上升抑制肌动肌球蛋白复合物的形成平滑肌舒张,降压

为何激活鸟苷酸环化酶(cGMP)增加血管平滑肌细胞内的cGMP的含量,可使平滑肌舒张?求作用机理

其作用机制是当硝普纳与血管内皮细胞和红细胞接触时,其分子即分解释放出NO,后者激活血管平滑肌细胞及血小板的鸟苷酸环化酶,使CGMP形成增加,而导致血管平滑肌舒张。  冬季天气寒冷,人在呼吸时,牙齿会间接接触到冷空气,容易引起牙周炎、牙龈出血等病症。特别是冷热交替的情况,牙痛的发生率更会大大提高。诺贝尔牙科医生  因此,当遭遇气温骤降的天气,或有大风时,外出应戴上口罩,加强防护意识,避免牙齿受凉。从寒冷的室外进到屋内,应休息片刻,喝一点热水,再吃热的食物,避免冷热交替的刺激。平时漱口时应尽量采用温水,避免凉水对牙齿的刺激。诺贝尔牙科医生

GEF是什么细胞

鸟苷酸转换因子。鸟苷酸转换因子 guanine nucleotide exchange factor (GEF) 又称鸟苷酸释放因子(guanine nucleotide release factor, GRF),是有助于小G蛋白上的GDP和GTP相互转换,从而活化Ras和Rho等小G蛋白的一类蛋白。

高一生物必修1知识点归纳:细胞的能量“通货”-ATP

【 #高一# 导语】以下是 考 网为大家推荐的有关高一生物必修1知识点归纳:细胞的能量“通货”-ATP,如果觉得很不错,欢迎点评和分享~感谢你的阅读与支持!   一、基本知识整理   1、糖类是生物体内主要能源物质,脂肪是生物体内储存能量的物质,太阳能是几乎所有生命系统中能量的最终来源,ATP是新陈代谢所需能量的直接来源。   2、ATP的化学组成和结构特点   ⑴化学组成:由一分子腺嘌呤、一分子核糖和三个相连的磷酸基团构成。   ⑵结构特点:①ATP的中文名称叫三磷酸腺苷,结构简式A—P~P~P,其中A代表腺苷即腺嘌呤+核糖,T表示3个,P代表磷酸基团,“~”代表高能磷酸键。ATP中大量的能量储存在高能磷酸键中,高能磷酸键水解释放的能量达到30.54kJ/mol。②1个ATP分子中含有一个腺苷、三个磷酸基团和2个高能磷酸键。其中远离腺苷的高能磷酸键易于断裂释放出其中的能量,吸收能量后也易于形成。③当ATP的一个高能磷酸键水解,形成二磷酸腺苷(ADP)和磷酸(Pi);当ATP的两个高能磷酸键同时水解时,形成焦磷酸(PPi)和一磷酸腺苷(AMP)即腺嘌呤核糖核苷酸,是RNA的基本单位之一。   二、重点知识归纳   1、ATP与ADP的相互转换   在酶的作用下,ATP中远离A的高能磷酸键水解,释放出其中的能量,同时生成ADP和Pi;在另一种酶的作用下,ADP接受能量与一个Pi结合转化成ATP.其反应式如下:ATPADP+Pi+能量。   反应式中物质可逆,能量不可逆,是一个不可逆反应。原因有如下三个:   (1)反应条件不同:ATP的分解是水解反应,催化反应的是水解酶;而ATP是合成反应,催化该反应的是合成酶。(2)能量的来源是不同的:ATP水解释放的能量是储存在高能磷酸键中的化学能;而合成ATP的能量主要是太阳能和化学能。(3)合成与分解的场所不尽相同:ATP合成的场所是细胞质基质、线粒体(呼吸作用)和叶绿体(光合作用);而ATP分解的场所较多。   2、ATP的形成途径:对于动物和人来说,ADP转化成ATP时所需要的能量,来自细胞内有机物氧化分解释放出的化学能,生理过程是呼吸作用。对于绿色植物来说,ADP转化成ATP时所需要的能量,来自有机物氧化分解释放出的化学能和太阳能,生理过程是呼吸作用和光合作用。   三、难点知识突破   1、ATP在能量代谢中的作用:   ⑴细胞内糖类、脂类等较稳定能源物质中的能量不能直接利用,需通过呼吸作用,分解有机物释放能量并传递给ATP,成为活跃的化学能直接供细胞进行各项生命活动。故ATP是生物体内各项生命活动的直接能源物质。   ⑵ATP在细胞内的含量很少且含量相对稳定。因ATP与ADP在细胞内的相互转化十分迅速的,其消耗与再生的速度是相对平衡的,使ATP的含量维持在一个相对稳定的、动态平衡的水平。   ⑶细胞中的化学反应有些是吸能反应,有些是放能反应。ATP水解是放能反应,它放出的能量用于肌肉收缩、神经细胞等生命活动。吸能反应一般与ATP水解的反应相联系,由ATP水解提供能量。ATP合成是一个吸能反应,所需能量来自细胞中的放能反应如糖的氧化等,故放能反应一般与ATP合成的相联系,释放的能量储存在ATP中。   2、ATP与ADP的相互转化及在能量代谢中的作用的模型构建   点拨:1、在ATP的合成中,绿色植物:能量来自于呼吸作用和光合作用;人、高等动物、真菌和大多数细菌:能量来自于呼吸作用。2、ATP中的能量可以直接转化成其他各种形式的能量,用于各项生命活动,其中主要转化如下六种形式的能:⑴渗透能:用于主动运输等活动;⑵机械能用于肌细胞的收缩等活动;⑶电能用于神经冲动在神经纤维上的传导和生物电等活动;⑷化学能用于物质合成等活动;⑸光能用于萤火虫的发光等活动;⑹热能用于动物体温的维持等活动。   【同步练习题】   1.下面是ATP在酶的作用下水解后的产物及释放能量,表述正确的是()   A.A—P~P+Pi+能量   B.A—P—P+Pi+能量   C.A~P—P+Pi+能量   D.A~P~P+Pi+能量   答案:A   2.ATP在细胞中能够释放能量和储存能量,从其化学结构看原因是()   ①腺苷很容易吸收能量和释放能量   ②第三个高能磷酸键很容易断裂和再结合   ③第三个磷酸基团很容易从ATP上脱离,第二个高能磷酸键断裂,使ATP转变成ADP;反之,亦容易形成ATP   ④ADP可以在酶作用下迅速与一分子磷酸结合,吸收能量形成第二个高能磷酸键,使ADP转变成ATP   A.①③B.②④   C.③④D.①③④   答案:C   解析:解该题,要熟悉ATP的结构简式:A—P~P~P,其简式中含有两个高能磷酸键,并非三个;在酶作用下,远离腺苷的高能磷酸键断裂,形成ADP和Pi(磷酸),该键又可在接受能量的时候,加上一分子磷酸再次形成ATP。在这里,高能磷酸键的断裂和再形成,保证了能量的释放和储存。   3.ATP之所以能作为能量的直接来源,是因为()   A.ATP在细胞内数量较多   B.ATP中高能磷酸键很稳定   C.ATP中高能磷酸键储存能量多且很不稳定   D.ATP是生物体内惟一的可以释放能量的化合物   答案:C   4.运动员在百米赛跑时,为骨骼肌细胞直接提供能量的物质是()   A.葡萄糖B.脂肪   C.ATPD.蛋白质   答案:C   解析:为生物体各项生命活动直接提供能量的物质是ATP。   5.在人体细胞内同时存在两个过程:ATPADP+Pi+能量,以下对①过程和②过程中能量的叙述正确的是()   A.①过程和②过程中的能量均来自糖类等有机物的氧化分解   B.①过程和②过程中的能量均供人体各项生命活动直接利用   C.①过程的能量供人体各项生命活动利用,②过程的能量来自糖类等有机物的氧化分解   D.①过程的能量来自于糖类等有机物氧化分解,②过程的能量供人体各项生命活动利用   答案:C   解析:人体细胞中,ATP分解后释放的能量用于各种生命活动的进行;而生成ATP的能量主要来自有机物的氧化分解。

病毒入侵细胞过程是怎样的

根据病毒的种属不同,病毒表面的蛋白衍生物对靶细胞的细胞膜上脂蛋白或糖蛋白特异性或非特异性的结合,结合后一方面病毒的蛋白衍生物打开某种信号通路,释放通道蛋白抑制局部灭活靶细胞细胞膜表面的蛋白活性,开放转移通道。一、病毒与正常细胞接触,然后病毒的外壳与正常细胞的细胞壁(上面有糖蛋白)融合,然后病毒将其遗传物质注入到正常细胞,并在里面利用正常细胞的物质实现的复制(复制遗传物质和蛋白质外壳)二、另一方面遗传物质通过靶细胞的物质转运通道浸润靶细胞内部,然后与靶细胞DNA整合, 在靶细胞内复制遗传物质及蛋白质外壳,当细胞死亡后释放,再次循环。个别的病毒甚至可以通过靶细胞的胞饮方式进入细胞。扩展资料:对身体无害处的细菌:①乳杆菌类(如嗜酸乳杆菌、干酪乳杆菌、詹氏乳杆菌、拉曼乳杆菌等);②双歧杆菌类(如长双歧杆菌、短双歧杆菌、卵形双歧杆菌、嗜热双歧杆菌等);③革兰氏阳性球菌(如粪链球菌、乳球菌、中介链球菌等)。病毒的基本结构 :病毒的蛋白质外壳称为衣壳,遗传物质多为RNA或DNA。衣壳与核酸分子统称为核衣壳。但以HIV为例,病毒表面还包裹着类似细胞膜的胞膜和刺突结构,与衣壳共同决定病毒的特异性。此外还有一些酶:如逆转录酶。参考资料来源:百度百科-生物病毒

医学细胞生物学相关内容中,有哪些获得诺贝尔奖

医学细胞生物学领域诺贝尔奖:2008年:生理学或医学奖:德国科学家哈拉尔德u2022楚尔u2022豪森发现人乳突淋瘤病毒引发子宫颈癌。弗朗索瓦丝u2022巴尔-西诺西、吕克u2022蒙塔尼发现人类免疫缺陷病毒。2007年:生理学或医学奖:英国Martin J. Evans因干细胞研究获得此奖项。2006年:生理学或医学奖:美国科学家安德鲁u2022法尔和克雷格u2022梅洛,他们发现了核糖核酸(RNA)干扰机制。2005年:生理学或医学奖: 澳大利亚巴里u2022马歇尔和罗宾u2022沃伦,革命性地改变了世人对这些疾病的认识。2002年:生理学或医学奖:英国科学家悉尼u2022布雷内、约翰u2022苏尔斯顿和美国科学家罗伯特u2022霍维茨。化学奖:美国科学家约翰u2022芬恩日本科学家与田中耕一“发明了对生物大分子进行确认和结构分析的方法”和“发明了对生物大分子的质谱分析法”。2001年:生理学或医学奖:美国科学家利兰u2022哈特韦尔、英国科学家保罗u2022纳斯和蒂莫西u2022亨特。他们发现了导致细胞分裂的关键性调节机制。

为什么DNA分子难以通过核膜和细胞器膜?

DNA分子量太大,无法自由扩散通过生物膜;DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP 脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP 脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP 脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP 脱氧鸟苷)。而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白质的合成。读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。在细胞内,DNA能与蛋白质结合形成染色体,整组染色体则统称为染色体组。对于人类而言,正常的体细中含有46条染色体。染色体在细胞分裂之前会先在分裂间期完成复制,细胞分裂间期又可划分为:G1期-DNA合成前期、S期-DNA合成期、G2-DNA合成后期。对于真核生物,如动物、植物及真菌而言,染色体主要存在于细胞核内;而对于原核生物,如细菌而言,则主要存在于细胞质中的拟核内。染色体上的染色质蛋白,如组织蛋白,能够将DNA进行组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录。

热门美剧《英雄》中各位英雄的超能力令人炫目,其中能够细胞再生,有不死之身的是

最早拥有这个能力的是拉拉队员Claire Bennet 也就是常说的C熊第二季的Adam剑圣Sylar在第三季开脑C熊后也学会此技能Peter原先在第一季曾复制C熊技能并学会,在第三季被其父亲夺走其所有能力

细胞里因子复合蛋白除了细胞因子群,还有哪些成分呀?

细胞里因子复合蛋白除了细胞因子群,还含有以下成分:天然免疫蛋白:IgG、IgA、IgM、IgD、IgE等。具有生物活性的天然免疫蛋白,是由细胞接受到抗原刺激信息后分泌的抗体。天然免疫蛋白可以特异性的识别带有抗原信息的外源物质,增强人体免疫力及提高身体对外源性物质侵入的抵抗力。人体必需氨基酸:赖氨酸、色氨酸、苯丙氨酸、亮氨酸、苏氨酸,缬氨酸等人体必需氨基酸。氨基酸是构建细胞、修复组织的基础材料,是合成神经介质不可缺少的前提物质,能够为机体和大脑活动提供能源,是一切生命之元。氨基酸可以改善中枢神经及大脑神经,改善睡眠,是大脑与睡眠生化机制间信息往来的神经传导,认知能力所必需的大脑重要神经递质,具有调节情绪,刺激神经系统的作用,还可改善记忆力,提高思维敏捷度,同时能预防脂肪肝、高血压、类风湿关节炎等疾病,还具有延缓衰老的作用。微量元素及矿物质、维生素:铁、锌、钙、镁、硒、叶酸、生物素、维生素A、B1、B2、维生素C、D、E等。维生素和微量元素是直接参与体内代谢供给大脑神经充足的营养,对睡眠有促进作用,对神经衰弱也会有一定的改善和治疗作用,是维持神经系统,特别是中枢神经系统不可缺少的营养成分。(应用维生素B1、维生素B6、维生素B3和维生素E可协助机体调节新陈代谢,改善睡眠。维生素B6在体内参与氨基酸代谢,可使氨基酸转变为γ-氨基丁酸。GABA是脑内中枢神经的抑制性递质,可促进睡眠。如果维生素B6不足,就可能造成失眠现象。)以及孕酮(P4)和雌二醇(E2)。孕酮(P4)是一种孕激素因子,有保护女性子宫内膜的作用,能够促进子宫内膜的发展,使胚胎更容易着床,孕酮低容易流产。对于未孕女性来说,孕酮主是保证正常生理活动的必要物质,例如维持月经的稳定及规律。雌二醇(E2)是最重要的性激素因子,能增进和调节女性器官及副性征的正常发育。临床用于卵巢机能不全或卵巢激素不足引起的各种症状,主要是功能性子宫出血、原发性闭经、绝经期综合征等;在男性方面,雌二醇转化为前列腺素在调节男性生殖以及性功能(如调节性欲、勃起等)过程中也扮演着关键的角色。细胞里因子复合蛋白中包括细胞因子群在内的这些成分,为人体干细胞和组织细胞提供必需的营养成分,激活休眠干细胞,修复受损细胞,保持细胞活性,从而助力人体健康。

试分析哪些因素影响离体细胞发生凋亡

1) PS(磷脂酰丝氨酸)在细胞外膜上的检测:PS从细胞膜内侧转移到外侧在细胞受到凋亡诱导后不久发生,可能作为免疫系统的识别标志。AnnexinV,一个钙依赖性的磷脂结合蛋白,能专一性的结合暴露在膜外侧的PS,再通过简单的显色或发光系统进行检测。由于这是一种凋亡早期的活细胞检测(悬浮细胞和贴壁细胞都适用),可与DNA染料或别的晚期检测方法相结合来标记凋亡的发展阶段。美国著名生物试剂公司CLONTECH和Invitrogen公司分别开发了多种标记的Annexin V产品,简便快速,10分钟就可完成检测。其中带荧光标记的Annexin V-EGFP(Enhanced Green Fluorescent Protein)及Annexin V-FITC,灵敏度高,可作为FACS(流式细胞分选)方法筛选凋亡细胞的基础。由于融合蛋白Annexin V-EGFP,EGFP与PS 的结合比例为1:1,还可进行定量检测。除此之外,还提供生物素偶联的Annexin V,可通过常用的酶联显色反应来检测。另外,MACS公司将磁珠包被Annexin V,可采用磁分选方法筛选凋亡细胞。2)细胞内氧化还原状态改变的检测:这反应了细胞凋亡研究中相对较新的趋势,研究什么样的氧化还原环境引起下游事件的发生。CLONTECH公司的ApoAlertTM GlutathioneDetection Kit通过荧光染料monochlorobimane(MCB)体外检测凋亡细胞细胞质中谷光苷肽的减少来检测凋亡早期细胞内氧化还原状态的变化。正常状态下,谷光苷肽(glutathione:GSH)作为细胞的一种重要的氧化还原缓冲剂。细胞内有毒的氧化物通过被GSH还原而定期去除,氧化型的GSH又可被GSH还原酶迅速还原。这一反应在线粒体中尤为重要,许多呼吸作用中副产物的氧化损伤将由此被去除。在Jurcat和一些其它类型的细胞中,细胞膜中有可被凋亡信号启动的ATP依赖的GSH转移系统。当细胞内GSH的排除非常活跃时,细胞液就由还原环境转为氧化环境,这可能导致了凋亡早期细胞线粒体膜电位的降低,从而使细胞色素C(三羧酸循环中的重要组分)从线粒体内转移到细胞液中,启动凋亡效应器caspase的级联反应。由于 GSH与氧化还原作用及线粒体功能密切相关,此项检测除了对研究细胞凋亡的起始非常有用外,还可用于心脏病、中风等疾病治疗的研究。但有些细胞如:HeLa 和3T3细胞凋亡时没有明显的GSH水平的变化,不能用此法检测。3)细胞色素C的定位检测细胞色素C作为一种信号物质,在细胞凋亡中发挥着重要的作用。正常情况下,它存在于线粒体内膜和外膜之间的腔中,凋亡信号刺激使其从线粒体释放至细胞液,结合Apaf-1 (apoptoticprotease activating factor-1)后启动caspase级联反应:细胞色素C/Apaf-1复合物激活caspase-9,后者再激活caspase-3和其它下游caspase。细胞色素C氧化酶亚单位Ⅳ(cytochrome c oxidase subunit Ⅳ:COX4)是定位在线粒体内膜上的膜蛋白,凋亡发生时,它保留在线粒体内,因而它是线粒体富集部分的一个非常有用的标志。ApoAlertTMCell Fractionation Kit不用超离心,可从凋亡和非凋亡细胞中快速有效分离出高度富集的线粒体部分,再进一步通过Western杂交用细胞色素C抗体和COX4抗体标示细胞色素C和COX4的存在位置,从而判断凋亡的发生。4) 线粒体膜电位变化的检测:在凋亡研究的早期,从形态学观测上线粒体没有明显的变化。随着凋亡机制研究的深入,发现线粒体凋亡也是细胞凋亡的重要组成部分,发生很多生理生化变化。例如,在受到凋亡诱导后线粒体转膜电位会发生变化,导致膜穿透性的改变。MitoSensorTM,一个阳离子性的染色剂,对此改变非常敏感,呈现出不同的荧光染色。正常细胞中,它在线粒体中形成聚集体,发出强烈的红色荧光。凋亡细胞中,因线粒体穿膜电位的改变,它以单体形式存在于细胞液中,发出绿色荧光。用荧光显微镜或流式细胞仪可清楚地分辨这两种不同的荧光信号。CLONTECH公司的ApoAlert Mitochondrial Membrane Sensor Kit就采用这种原理来检测线粒体膜电位的变化。但是,这种方法不能区分细胞凋亡或其他原因导致的线粒体膜电位的变化。 细胞凋亡晚期中,核酸内切酶(某些Caspase的底物)在核小体之间剪切核DNA,产生大量长度在180-200 bp 的DNA片段。对于这一现象的检测通常有以下两种方法:1) TUNEL(Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling)通过DNA末端转移酶将带标记的 dNTP (多为dUTP)间接(通过地高辛)或直接接到DNA片段的3"-OH端,再通过酶联显色或荧光检测定量分析结果。美国Intergen公司提供多种标记方法,直接荧光标记,地高辛介导荧光标记或过氧化物酶联显色,可做细胞悬液、福尔马林固定或石蜡处理的组织、细胞培养物等多种样本的检测。其中,直接标记步骤少,操作简便。而间接标记有信号放大的作用,检测灵敏度高。2) LM-PCR Ladder (连接介导的PCR检测)当凋亡细胞比例较小以及检测样品量很少(如活体组织切片)时,直接琼脂糖电泳可能观察不到核DNA的变化。CLONTECH公司的ApoAlert?LM-PCR Ladder Assay Kit通过LM-PCR(ligation-mediated PCR),连上特异性接头,专一性地扩增核小体的梯度片段,从而灵敏地检测凋亡时产生的核小体的梯度片段。此外,LM-PCR 检测是半定量的,因此相同凋亡程度的不同样品可进行比较。上述两种方法都针对细胞凋亡晚期核DNA断裂这一特征,但细胞受到其它损伤(如机械损伤,紫外线等)也会产生这一现象,因此它对细胞凋亡的检测会受到其它原因的干扰。3) Telemerase Detection (端粒酶检测)这是相对来说推出较早,用得较多的一种方法。端粒酶是由RNA和蛋白组成的核蛋白,它可以自身RNA为模板逆转录合成端粒区重复序列,使细胞获得“永生化”。正常体细胞是没有端粒酶活性的,每分裂一次,染色体的端粒会缩短,这可能作为有丝分裂的一种时钟,表明细胞年龄、复制衰老或细胞凋亡的信号。研究发现,90%以上的癌细胞或凋亡细胞都具有端粒酶的活性。Invitrogen公司的TRAP-eze Telemerase Detection Kit在1996年率先推出。它提供特定的寡核苷酸底物,分别与底物及端粒重复序列配对的引物。如果待测样本中含有端粒酶活性,就能在底物上接上不同个数的6碱基(GGTTAG)端粒重复序列,通过PCR反应,产物电泳检测就可观察到相差六个碱基的DNA Ladder现象(参见图4)。此外,Intergen公司还提供用酶联免疫法(ELISA)检测的试剂盒.同样,这种检测方法也不专对细胞凋亡,检测结果也不纯反应细胞凋亡的发生。 根据凋亡细胞固有的形态特征,人们已经设计了许多不同的细胞凋亡形态学检测方法。1.光学显微镜和倒置显微镜1. 未染色细胞:凋亡细胞的体积变小、变形,细胞膜完整但出现发泡现象,细胞凋亡晚期可见凋亡小体。贴壁细胞出现皱缩、变圆、脱落。2. 染色细胞:常用姬姆萨染色、瑞氏染色等。凋亡细胞的染色质浓缩、边缘化,核膜裂解、染色质分割成块状和凋亡小体等典型的凋亡形态。2.荧光显微镜和共聚焦激光扫描显微镜一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。常用的DNA特异性染料有:HO 33342 (Hoechst 33342),HO 33258 (Hoechst 33258),DAPI。三种染料与 DNA的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的蓝色荧光。Hoechst是与DNA特异结合的活性染料,储存液用蒸馏水配成1mg/ml的浓度,使用时用PBS稀释成终浓度为2~5mg/ml。DAPI为半通透性,用于常规固定细胞的染色。储存液用蒸馏水配成1mg/ml的浓度,使用终浓度一般为0.5 ~1mg/ml。结果评判:细胞凋亡过程中细胞核染色质的形态学改变分为三期:Ⅰ期的细胞核呈波纹状(rippled)或呈折缝样(creased),部分染色质出现浓缩状态;Ⅱa期细胞核的染色质高度凝聚、边缘化;Ⅱb期的细胞核裂解为碎块,产生凋亡小体。3.透射电子显微镜观察结果评判:凋亡细胞体积变小,细胞质浓缩。凋亡Ⅰ期(pro-apoptosis nuclei)的细胞核内染色质高度盘绕,出现许多称为气穴现象(cavitations)的空泡结构;Ⅱa期细胞核的染色质高度凝聚、边缘化;细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。细胞凋亡在胚胎发育、造血、免疫系统的成熟以及维护正常组织和器官的细胞恒定与生长平衡,乃至机体衰老方面都起着重要作用。因此,有关凋亡的研究在临床和基础等各个领域已经广泛开展,凋亡细胞的检测方法显得非常重要。流式细胞仪( Flow cytometry ,FCM) 将流体喷射技术、激光光学技术、电子技术和计算机技术等集于一体,较其它方法有不可比拟的优越性,既可定性又可定量,且具有简单、快速和敏感性高的特点,可进行多参数和活体细胞分析。在APO 的研究得到较为广泛的应用,开辟了新途径。1 光散射法在FCM 系统中,被检细胞在液流中通过仪器测量区时,经激光照射,细胞向空间360°立体角的所有方向散射光线,其中前向散射光( FSC) 的强度与细胞大小有关,而侧向散射光(SSC) 的强度与质膜和细胞内部的折射率有关。细胞凋亡时,细胞固缩,体积变小,核碎裂形成,细胞内颗粒往往增多,故凋亡细胞FSC 降低而SSC 增高。细胞坏死由于胞体肿胀,细胞核亦碎裂分解故FSC 和SCC 均增高。正常细胞FSC 高而SSC 低。根据光散射特性检测凋亡细胞最主要的优点是可以将光散射特性与细胞表面免疫荧光分析结合起来,用以区别辩认经这些特殊处理发生选择凋亡的淋巴细胞亚型,也可用于活细胞分类。值得注意的是,根据FSC 和SSC 判断凋亡细胞的可靠性受被测细胞形态上的均一性和核细胞浆比率影响很大,因此在某些淋巴细胞凋亡中,用光散射特性检测凋亡的可靠性较好而在肿瘤细胞凋亡中其可靠性较差。2  细胞DNA 含量的测定细胞凋亡时,核酸内切酶激活,导致DNA 断裂,这是凋亡的特征性表现,也为FCM 鉴别凋亡细胞奠定了基础。而检测细胞凋亡DNA 断裂的方法中,最常用、最简便的就是细胞DNA 含量分析。当细胞用乙醇、TrtionX—100 处理后细胞膜上出现漏洞,小片段DNA 从细胞内释放出来,使其DNA 含量低于正常细胞的二倍体。用碘化丙啶( PI) 染色后分析,可在二倍体C0/ G1 ,峰前出现“亚二倍体”峰,即细胞凋亡峰(APO峰) ,根据APO 峰可测出凋亡细胞百分率,该法简单易行,可大批定量检测凋亡标本,亦可同时分析细胞的细胞周期位置。另外,应用FCM 方法通过对DNA 和RNA 的联合检测可以鉴别出G0 期细胞,因此,可分析细胞凋亡与G1 或G0 细胸的关系。DNA 降解的程度取决于凋亡的阶段、细胞的类型和凋亡诱发因子的特性。染色过程中DNA 的逸出量变化也影响FCM 检测结果。据研究,将高浓度的磷酸盐———枸椽酸盐缓冲液加入漂洗液中,可增高降解DNA 的逸出量,从而提高鉴别凋亡细胞与正常细胞的能力。DNA 含量测定在检测细胞凋亡中的局限性在于其特异性和敏感性均不高。特异性不高是因为APO 峰代表了一组细胞群体,包括凋亡细胞、机械损伤细胞、低DNA 含量的细胞或不同染色体结构的细胞,在上述情况下,DNA 与荧光染料的结合量均小。另外,非固定的细胞在低渗溶液中被溶解时,可导致大量的核碎片出现,此时APO 峰的细胞数目只代表了核碎片的数目,并不代表凋亡细胞数目。敏感性较差的原因是细胞凋亡早期只有DNA 断裂点出现,但尚未出现DNA 片段的大量丢失,所以该法不能检出早期凋亡细胞和发生于S 期或G2/ M 期的凋亡细胞,因为其实际含量不低于二倍体细胞所含的DNA ,因此该法进行凋亡细胞分析时应结合其它形态或生化方法,以期更准确地分析细胞的凋亡状态。3  Y 啶橙染色法( Acridine Orange ,AO)AO 可将细胞或细胞核中的双链DNA 和变性DNA 染成不同颜色的荧光。AO 插入双链DNA 中时,发绿色荧光;AO也可与单链或通过变性而产生的DNA 单链发生作用,这时发出红色荧光,因此,通过FCM 检测不同的荧光,可判断凋亡的发生。在测定被标准化后,绿色和红色荧光强度的量与总DNA 含量成比例,红色荧光与总体细胞(红色加绿色) 荧光的比率表示细胞中变性DNA 的比例,因此,这种方法可用于评价DNA 对原位变性的敏感性。有时候,凋亡细胞DNA 降解不明显,依赖于DNA 降解来检测细胞凋亡的方法如细胞DNA含量测定、DNA 末端标记等就难以检测到细胞凋亡变化。AO法检测凋亡的原理不依赖于DNA 片断的产生,因此其最主要的优点是可应用于寡核小体片段与凋亡不相平衡等情况,但AO 染色法不能有效区分有丝分裂细胞和凋亡细胞。4  若丹明( Rh123) 染色法细胞生活状态下,胞膜上的钠- 钾泵、钙泵等的作用,使细胞膜内外维持着不同离子的浓度梯度,包括Na + , K+ ,Cl - ,Ca2 + 等,形成细胞膜电位。FCM 可以检测亲脂性离子荧光染料在胞膜内外的分布,来测量膜电位的高低,以评价细胞的活力。Rh123 是一种亲脂性阳离子荧光染料,对细胞膜具有通透性,线粒体膜尤敏感。细胞存活状态时,若丹明123 通过细胞膜,积聚于线粒体发出绿色荧光。在细胞凋亡时,线粒体膜的转运能力下降,电负性降低,故细胞线粒体积聚Rh123 的能力也丧失,荧光强度降低,据此检测细胞的凋亡变化。但应指出,在凋亡的早期阶段,由于胞膜尚完整,大多数细胞器和细胞功能相对较好,因此,Rh123 法对于早期凋亡细胞和活细胞的鉴别比较困难。5  原位末端标记技术细胞凋亡时,DNA 断裂早于形态学改变及DNA 含量减少,原位末端标记( ISEL) 是将渗入到凋亡细胞中的外源性核苷酸在酶和DNA 的催化下与凋亡细胞因内源性核酸酶的激活而产生的单股或双股断裂相结合,较前述方面具更高灵敏性。通常有两种方法: ①DNA 聚合酶I 或klenow 大片段介导的单位缺口平移( INST) ; ②末端脱氧核苷酸转移酶介导的dUTP 缺口末端标记( TUNEL) 。INST 是利用DNA 多聚酶将核苷酸整合到凋亡细胞内断裂的DNA 处的3"末端,同时水解5"末端,以修复DNA ,若使用已标记的核苷酸即可显示出有断裂DNA 的细胞。1993 年,Gorczyca 等提出了末端脱氧核糖核酸转移酶( TdT) 标记法采检测凋亡细胞的DNA 断裂,此种方法已得到广泛应用。由于内源性核酸内切酶激活,细胞自身的染色质或DNA 被切割,并产生与DNA 断点数目相同的3"2 羟基末端, TdT 可以将生物素化的dUTP 标记至3"2 羟基末端,通过卵白素2FITC 系统,使DNA 的断点部位发生特异荧光而签别出凋亡细胞,TdT 末端标记法是鉴别凋亡细胞比较特异的一种方法。脑组织中的凋亡细胞很少,因此基因组DNA 片断需要更灵敏的检测技术。将TUNEL 法与FCM 结合起来可以提高检测凋亡细胞中DNA 片断的灵敏度。经凋亡诱导因子处理一定时间后的细胞,原位末端标记的凋亡比Hoechst33342 染色显示的要多,提示TUNEL 可检测出尚未出现明显凋亡形态学特征但已发生DNA 裂解的核,从而使检测的灵敏度提高。对比研究表明, TUNEL 的敏感性远远高于ISNT ,尤其在APO早期TUNEL 法阳性率较高,可能是APO 发生时DNA 多数为双链同时断裂,单链少见的原因。后者是依赖DNA 多聚酶介导的修复反应,故ISNT 的阳性率相对较低。TUNEL 还可结合细胞同期的分析,可同时了解凋亡细胞DNA 断裂和细胞周期分布之间的关系,近来已成为鉴别和定量凋亡细胞的最常用方法之一。但由于断裂DNA 的标记过程比较复杂,涉及多种因素,所以末端标记的阴性结果并不一定代表DNA链的完整,应排除方法上的问题,如TdT 酶活力的丧失等诸多影响因素。因此应用TdT 末端标记法鉴别凋亡细胞必须同时设阳性及阴性对照组,以便得到可靠结果。6  Annexin V/ PI 法1992 年Fadok 报道在APO 早期位于细胞膜内侧的磷脂酰丝氨酸(phosphatidylserin ,PS) 迁移至细胞外侧,这一现象出现在核染色质变性与核体积缩小之前。AnnexinV 是一种具有很强的抗凝血特性的血管蛋白,和磷脂有高亲合力,尤其与带负电荷的磷脂如PS 具极强的结合力,利用其特性可以检测细胞凋亡。但坏死细胞PS 亦暴露于外表使Annexin V 结合阳性,因此使用Annexin V 这一参数不能区分坏死或凋亡,必须同时采用PI 这一参数将坏死细胆区分开来。FCM 通过Annexin V —FITC 标志暴露于细胞膜上的PS 结合PI 进入损伤细胞膜标记降解DNA 分析凋亡与坏死细胞。在检测时有4个亚群包括机械性损伤细胞(Annexin - / P1 + ) 、正常细胞(An2nexin - / PI - ) 、凋亡细胞(Annexin + / PI - ) 和继发性坏死细胞(Annexin + / PI + ) 被区分。Boersma 等应用Ampexin V2FITE染色法检测细胞毒药物处理后的中国仓鼠细胞凋亡变化,FCM 检测发现荧光信号强弱不同的两种细胞亚群。进一步形态学等证实弱荧光细胞亚群代表早期凋亡细胞,强荧光亚群代表晚期凋亡细胞,可见其是检测和定量凋亡细胞的一种较为可靠的方法。细胞凋亡时膜上PS 外露早于DNA 断裂发生,因此该法检测早期凋亡更为灵敏,且该法不需要固定细胞,避免了PI 法因固定造成的细胞碎片过多及TUNEL 法因固定出现的DNA 片段丢失,因此更加省时,结果亦更可靠,是目前最为理想的凋亡定量检测方法。7  其 他7.1  ssDNA 单抗法 把抗单链DNA(ssDNA) 单克隆抗体用于细胞凋亡的检测,是一种偶然发现,因为在应用ssDNA 单抗(荧光法) 检测细胞毒性药物诱导DNA 损伤中,观察到凋亡的白血病细胞(MOL T24) 有较强的荧光,后来经过适当的改进,证明ssDNA 单抗可以特异地识别凋亡细胞。与TUNEL法相比,ssDNA 具有更强的灵敏性。TUNEL 法检测的凋亡细胞可能只是单抗法检测的凋亡细胞中的一个亚类。ssDNA法检测APO 一般用免疫荧光法。但也可和FCM 结合应用。单抗法使用简便、成本低、应用广泛。ssDNA 单抗可以区别坏死和凋亡、甚至能检测前期凋亡,凋亡后坏亡和一些特殊的凋亡形式(如无片段化的细胞凋亡) 。因此, ssDNA 单抗法可望成为一种新的特异灵敏检测细胞凋亡的方法。7.2  细胞凋亡的相关蛋白分析 研究发现,有不少基因参加凋亡调控,这些基因产物可参与促进或抑制APO 的发生、发展,因此检测凋亡调节基因蛋白对研究APO 及其调控有重要作用。迄今为止,已可对大量细胞凋亡调节基因的蛋白产物分析,如P53 蛋白、caspases、C2myc、Fas 抗原、TNF、bcl22 家族蛋白、cyclin、ras 等。FCM 用荧光标记的各种调控蛋白单抗染色,收集不同波长的荧光信号,检测细胞膜表面或细胞内荧光分子数量,可以了解每个细胞的变化,而且所需样品少,方法简便、快捷、准确。8  展 望近几年来,随着FCM 技术的不断发展和APO 研究的逐渐深入,FCM 在细胞凋亡研究中日益广泛。应用FCM 定量检测凋亡细胞简便、快速、客观,并可进行多参数检测,因此,可同时对APO 及其相关的癌基因表达、细胞周期分布等诸多因素进行相关分析,可以比较深入地了解凋亡的调节机制。尽管应用FCM 进行细胞凋亡研究的方法较多,但FCM检测凋亡细胞的方法一般基于细胞凋亡过程中形态、生化等某一方面的特性,因而难于了解凋亡过程中发生的各种变化的相互关系,也使该类方法缺乏特异性,所以,联合应用多种针对不同特性的FCM 检测方法,才能更为有效地鉴别凋亡细胞。同时,FCM 研究结果尚需同时结合形态学观察或生物化学方法,才能更加深入地了解凋亡细胞的生物学特性。随着生物技术的发展及人们对APO 本质认识的深入,相信在不久的将来,定会有更为特异和敏感的方法问世,有助于细胞凋亡取得突破性进展。

细胞膜生物素化实验是测啥的

细胞膜蛋白质的含量测定。生物素化膜蛋白提取法(biotin-label membrane protein isolation)属于亲和纯化蛋白质的方法,将生物素与膜蛋白相偶联,利用生物素同鸡蛋清中的亲和。

细胞的转录定义

转录(Transcription)是蛋白质生物合成的第一步,也是tRNA和rRNA的合成步骤。转录 (transcription)是以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。与DNA的复制相比,有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取被复制为mRNA,就是说一特定的DNA片断作为模板,以DNA依赖的RNA合成酶作为催化剂的合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物。在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。DNA上的转录区域称为转录单位(transcription unit)。RNA聚合酶合成RNA时不需引物,但无校正功能。

转录在哪里进行?需要用到细胞中哪些细胞器?

真核生物转录主要在细胞核中进行,也有在细胞质中进行的,比如半自主性细胞器叶绿体和线粒体中也会发生转录。原核生物没有细胞核,转录在拟核区进行。转录过程主要需要底物、模板和RNA聚合酶,不需要用到细胞器。

如何将RNA导入细胞中进行RNAi?

  1 RNAi的机制  RNAi的机制可能是细胞内双链RNA在Dicer酶的作用下,可形成-22 bp大小的小干扰RNA(small interfering RNAs,siRNAs),siRNAs可进一步掺入多部分核酸酶(multicomponent nuclease,RISC)并使其激活,从而精确降解与siRNAs序列相同的mRNA,完全抑制了该基因在细胞内的翻译和表达.  RNA酶Ⅲ是一种能切割双链RNA的酶,参与RNAi反应的Dicer酶是RNA酶Ⅲ家族的一个成员. Dicer酶广泛存在于蠕虫、真菌、物及哺乳动物体内. 他的结构中包括一个螺旋酶结构域,两个RNA酶Ⅲ结构域,一个双链RNA结合位点. 在Dicer酶的作用下,双链RNA被裂解成21-23个核苷酸的siRNA,他启动了细胞内的RNAi反应. 因少量双链RNA即能阻断基因表达,且此效应可传至子代细胞,研究者们推测细胞内存在RNAi效应的扩增系统. 研究者们发现,在真核细胞中也存在能以RNA为模板指导RNA合成的聚合酶(RNA-directed RNA polymerase,RdRP). 在RdRP 的作用下,进入细胞内的双链RNA通过类似于PCR的反应过程,呈指数级的数量扩增. 双链RNA进入细胞后,一方面在Dicer酶的作用下被裂解成小片段siRNA,另一方面在RdRP的作用下自身扩增后,再被Dicer酶裂解成siRNA. 小片段siRNA生成后与核酸酶形成复合物,随后mRNA与小片段的正义链置换,被mRNA替代. mRNA的位置与最初正义链的位置相同,从而被核酸酶在相同的位点降解. 更有意义的是mRNA的降解使核酸酶得以再生,这样周而复始,mRNA得以降解,因此RNAi呈酶解动态.  由于mRNA也以21-23 nt的特定间隔降解,因此认为降解dsRNA与mRNA的核酸酶相同. 另一方面以SiRNA作为引物,以mRNA为模板,在RdRP作用下合成出mRNA的互补链. 结果mRNA也变成了双链RNA,他在Dicer酶的作用下也被裂解成siRNA. 这些新生成的siRNA也具有诱发RNAi的作用,通过这个聚合酶链式反应,细胞内的siRNA大大增加,显著增加了对基因表达的抑制. RNAi不同于其他基因阻断技术,他是转录后水平的基因静默机制,因此注射该基因的内含子或者启动子顺序的dsRNA都没有干涉效应. RNAi具有较高的特异性,能够非常特异地降解与之序列相应的单个内源基因的mRNA,且抑制基因表达效率很高,相对少量的dsRNA就可以使表型达到缺失突变体程度,但dsRNA需要一个最小的长度才能产生有效的干扰效果. dsRNA小片段如小于21-23 nt (如10-15 nt),特异性将显著降低,不能保证不与细胞内非靶向基因相互作用,如远远大于21-23 nt,互补序列可能延伸,超出抑制范围. RNAi基因表达的效应可以突破细胞界限,在不同细胞甚至生物体间长距离传递和维持,并可传递给子一代  2 双链RNA的构建  双链RNA可先在体外构建好,用脂质体转染细胞. 但有些细胞脂质体转化效果差,转化到细胞内的双链RNA半衰期短. 而先在体外构建能表达双链RNA的载体,再将载体转到细胞内合成出双链RNA,不但能增加有效转染细胞的种类,而且在长期稳定表达载体的细胞株中,双链RNA能够长期发挥阻断基因的作用. 构建双链RNA表达载体,使用RNA多聚酶Ⅲ指导RNA的合成. 因为RNA多聚酶Ⅲ有明确的启始和终止序列,当RNA多聚酶Ⅲ遇到连续5个胸腺嘧啶时,他指导的转录就会终止,且转录产物在第二个尿嘧啶处被切下来,因此合成的RNA无polyA尾. U6启动子能被RNA多聚酶Ⅲ识别,合成出RNA. Sui et al 用Bluescript作为载体,RNA多聚酶Ⅲ可识别的U6作为启动子,从绿色荧光蛋白(GFP)的基因上选择了一个21个核苷酸的片断(片断1),将其插入到Bluescript载体中. 然后合成出片断1的反向重复序列,并在其后加了5个胸腺嘧啶,称为片断2. 他们将片断2接到Bluescript载体中片断1的后面,将载体转移到细胞中后,转录出的RNA由于具有回文序列,会形成一个发卡样结构,从而得到了双链RNA. 片断后面加了5个胸腺嘧啶,RNA转录到这个位置时就会终止. 而且转录出的RNA形成发卡样结构后,会在3"端形成2个突出的尿嘧啶,这类似于天然的siRNA,因而有利于双链RNA诱发RNAi. RNA多聚酶Ⅲ亦识别H1-RNA 启动子. 在H1-RNA 启动子后面接上能形成发卡样结构的反向互补序列,将此载体转入细胞后也能在细胞内合成dsRNA. T7也可作为启动子合成dsRNA. 将PCR产物用NotI酶切后自身连结,回收正向片断和反向片断连结形成的具有反转重复序列的片断,接到pGEMTeasy载体上,就构建成了可以表达dsRNA的载体. 用此载体可先在体外合成dsRNA,或将其转入到细胞内合成dsRNA. 在后一种情况下,还须将能表达T7RNA多聚酶的载体也一起转入到细胞中,以提供能识别T7启动子的RNA多聚酶. 腺病毒是体内转基因的常用载体. Xia et al 用腺病毒做载体,在体内和体外表达dsRNA,并成功的阻断了基因的表达.  RNA interference (RNAi) is a mechanism in molecular biology where the presence of certain fragments of double-stranded RNA (dsRNA) interferes with the expression of a particular gene which shares a homologous sequence with the dsRNA. RNAi is distinct from other gene silencing phenomena in that silencing can spread from cell to cell and generate heritable phenotypes in first generation progeny when used in Caenorhabditis elegans.  Before RNAi was well characterized, it was called by other names, including post transcriptional gene silencing and transgene silencing. Only after these phenomena were characterized at the molecular level was it obvious that they were the same phenomenon.  The use of RNA to reduce expression in plants has been a common procedure for many years. Single-stranded antisense RNA was introduced into plant cells that hybridized to the cognate, single-stranded, sense messenger RNA. While scientists first believed that the resulting dsRNA helix could not be translated into a protein, it is now clear that the dsRNA triggered the RNAi response. The use of dsRNA became more widespread after the discovery of the RNAi machinery, first in petunias and later in roundworms (C. elegans).  RNAi原理图解  http://lddljf.stedu.net/Article_Show.asp?ArticleID=1974  RNAi知识介绍powerpoint  1 http://www.biox.cn/content/20050519/13420.htm  2 http://www.biox.cn/content/20050519/13422.htm  3 http://www.biox.cn/content/20050519/13423.htm  4 http://www.biox.cn/content/20050519/13425.htm  5 http://www.biox.cn/content/20050519/13426.htm  6 http://www.biox.cn/content/20050519/13429.htm  7 http://www.biox.cn/content/20050519/13431.htm  8 http://www.biox.cn/content/20050519/13433.htm  9 http://www.biox.cn/content/20050519/13434.htm参考资料:任玥欣, 宋于刚, 陈学清. RNAi研究进展. 世界华人消化杂志 2004;12(3):748-750 http://www.wjgnet.com/1009-3079/12/748.asp

各种感受态细胞有什么区别、用途?

Xl1-Blue菌株基因型:endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F‘[Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK- mK+)。特点:具有卡那抗性、四环素抗性和氯霉素抗性。用途:分子克隆和质粒提取。BL21(DE3)菌株基因型:F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])。特点:该菌株用于以T7 RNA聚合酶为表达系统的高效外源基因的蛋白表达宿主。T7噬菌体RNA聚合酶基因的表达受控于λ噬菌体DE3区的lacUV5启动子,该区整合于BL21的染色体上。该菌适合于非毒性蛋白的表达。用途:蛋白质表达。BL21(DE3)ply菌株基因型:F- ompT gal dcm lon hsdSB(rB- mB-) λ(DE3) pLysS(cmR)。特点:该菌株带有pLysS,具有氯霉素抗性。此质粒还有表达T7溶菌酶的基因,T7溶菌酶能够降低目的基因的背景表达水平,但不干扰IPTG诱导的表达。 适合于毒性蛋白和非毒性蛋白的表达。用途:蛋白质表达DH5α菌株基因型:F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK-, λ–特点:一种常用于质粒克隆的菌株。 其Φ80dlacZΔM15基因的表达产物与pUC载体编码的β-半乳糖苷酶氨基端实现α互补,可用于蓝白斑筛选。recA1和 endA1的突变有利于克隆DNA的稳定和高纯度质粒DNA的提取。用途:分子克隆、质粒提取和蛋白质表达。JM109菌株基因型:endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-proAB) e14- [F‘ traD36 proAB+ lacIq lacZΔM15]hsdR17(rK-mK+)。特点:部分抗性缺陷,适合重复基因表达, 可用于M13克隆序列测定和蓝白斑筛选。用途:分子克隆、质粒提取和蛋白质表达

各种感受态细胞有什么区别,用途

Xl1-Blue菌株基因型:endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F‘[Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK- mK+)。特点:具有卡那抗性、四环素抗性和氯霉素抗性。用途:分子克隆和质粒提取。BL21(DE3)菌株基因型:F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])。特点:该菌株用于以T7 RNA聚合酶为表达系统的高效外源基因的蛋白表达宿主。T7噬菌体RNA聚合酶基因的表达受控于λ噬菌体DE3区的lacUV5启动子,该区整合于BL21的染色体上。该菌适合于非毒性蛋白的表达。用途:蛋白质表达。BL21(DE3)ply菌株基因型:F- ompT gal dcm lon hsdSB(rB- mB-) λ(DE3) pLysS(cmR)。特点:该菌株带有pLysS,具有氯霉素抗性。此质粒还有表达T7溶菌酶的基因,T7溶菌酶能够降低目的基因的背景表达水平,但不干扰IPTG诱导的表达。 适合于毒性蛋白和非毒性蛋白的表达。用途:蛋白质表达DH5α菌株基因型:F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK-, λ–特点:一种常用于质粒克隆的菌株。 其Φ80dlacZΔM15基因的表达产物与pUC载体编码的β-半乳糖苷酶氨基端实现α互补,可用于蓝白斑筛选。recA1和 endA1的突变有利于克隆DNA的稳定和高纯度质粒DNA的提取。用途:分子克隆、质粒提取和蛋白质表达。JM109菌株基因型:endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-proAB) e14- [F‘ traD36 proAB+ lacIq lacZΔM15]hsdR17(rK-mK+)。特点:部分抗性缺陷,适合重复基因表达, 可用于M13克隆序列测定和蓝白斑筛选。用途:分子克隆、质粒提取和蛋白质表达

各种感受态细胞的区别,用途和特征

Xl1-Blue菌株基因型:endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F‘[Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK- mK+)。特点:具有卡那抗性、四环素抗性和氯霉素抗性。用途:分子克隆和质粒提取。BL21(DE3)菌株 基因型:F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])。特点:该菌株用于以T7 RNA聚合酶为表达系统的高效外源基因的蛋白表达宿主。T7噬菌体RNA聚合酶基因的表达受控于λ噬菌体DE3区的lacUV5启动子,该区整合于BL21的染色体上。该菌适合于非毒性蛋白的表达。用途:蛋白质表达。BL21(DE3)ply菌株基因型:F- ompT gal dcm lon hsdSB(rB- mB-) λ(DE3) pLysS(cmR)。特点:该菌株带有pLysS,具有氯霉素抗性。此质粒还有表达T7溶菌酶的基因,T7溶菌酶能够降低目的基因的背景表达水平,但不干扰IPTG诱导的表达。 适合于毒性蛋白和非毒性蛋白的表达。用途:蛋白质表达DH5α菌株基因型:F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK-, λ–特点:一种常用于质粒克隆的菌株。 其Φ80dlacZΔM15基因的表达产物与pUC载体编码的β-半乳糖苷酶氨基端实现α互补,可用于蓝白斑筛选。recA1和 endA1的突变有利于克隆DNA的稳定和高纯度质粒DNA的提取。用途:分子克隆、质粒提取和蛋白质表达。JM109菌株基因型:endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-proAB) e14- [F‘ traD36 proAB+ lacIq lacZΔM15]hsdR17(rK-mK+)。特点:部分抗性缺陷,适合重复基因表达, 可用于M13克隆序列测定和蓝白斑筛选。用途:分子克隆、质粒提取和蛋白质表达。

氨基酸分布在叶绿体细胞核线粒体中吗

考点: 核酸的种类及主要存在的部位 核酸的基本组成单位 专题: 分析: 此题主要考查核酸的种类以及主要存在部位.核酸分为DNA和RNA,DNA主要分布在细胞核,线粒体和叶绿体,基本组成单位是脱氧核糖核苷酸;RNA主要分布在细胞质,基本组成单位是核糖核苷酸.放射性集中于细胞核、线粒体和叶绿体,说明存在于DNA中.所以,只能是脱氧核苷酸.细胞核、线粒体和叶绿体都有DNA分子.氨基酸和单糖不会集中分布,细胞质中也有;核糖核苷酸位于mRNA上,细胞质中应该也有. 放射性集中于细胞核、线粒体和叶绿体,说明存在于DNA中.所以,被标记的化合物只能是脱氧核苷酸.故选:C. 点评: 此题主要考查生物大分子的种类以及主要分布,基础题目,意在考查学生对基础知识的理解运用,难度不大.

玉米叶肉细胞中的核酸,含有的碱基和核苷酸的种类是

碱基5种,核苷酸8种,玉米叶肉细胞中含有DNA和RNA,DNA的碱基为A,G,C,T,RNA的碱基为A,G,C,U,不计重复的,所以碱基为5种,DNA核苷酸为 腺嘌呤脱氧核苷酸,鸟嘌呤脱氧核苷酸,胞嘧啶脱氧核苷酸,胸腺嘧啶脱氧核苷酸,而RNA核苷酸为 腺嘌呤核苷酸,鸟嘌呤核苷酸,胞嘧啶核苷酸,尿嘧啶核苷酸,这样核苷酸总计为8种,明白了吗?

真核细胞的八种核苷酸是什么?

首先,核糖核苷酸和脱氧核糖核苷酸都属于核苷酸核糖核苷酸:腺嘌呤核糖核苷酸(A)、鸟嘌呤核糖核苷酸(G)、胞嘧啶核糖核苷酸(C)、尿嘧啶核糖核苷酸(U)脱氧核糖核苷酸:腺嘌呤脱氧核糖核苷酸(A)、鸟嘌呤脱氧核糖核苷酸(G)、胞嘧啶脱氧核糖核苷酸(C)、胸腺嘧啶脱氧核糖核苷酸(T)共八种含氮碱基只有五种:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)、尿嘧啶(U)而DNA分子中不含尿嘧啶(U),RNA分子中不含胸腺嘧啶(T)所以,腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、都可形成核糖核苷酸和脱氧核糖核苷酸(有6种核苷酸了),再加上RNA分子中的尿嘧啶核糖核苷酸(U)和DNA分子中的胸腺嘧啶脱氧核糖核苷酸(T)(共2种核苷酸)一共8种

用3H标记的胸腺嘧啶核苷酸参与果蝇的细胞分裂,下列说法不正确的是(  )。

【答案】:C果蝇体细胞含有8条染色体,在减数第一分裂时,染色体数目减半,所以在减数第二次分裂中期只有4条染色体具有放射性,A正确。在有丝分裂后期,染色体数目加倍,所以有16条染色体具有放射性.B正确。只有DNA复制过程会用到胸腺嘧啶核苷酸,而转录和翻译都不会用到。消化道上皮细胞是高度分化细胞,失去分裂能力,不进行DNA的复制,所以不能利用它,C错误。尿嘧啶是RNA特有的碱基,利用尿嘧啶核苷酸产生RNA是转录过程,不同功能的细胞,转录活动的强弱不同,所以该核苷酸的利用量也不同,D正确。

人体细胞中组成的核酸的五碳糖,碱基和核苷酸种类依次有多少

五碳糖有核糖和脱氧核糖两种DNA碱基有四种,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶RNA碱基有四种,分别是腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶核苷酸:根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。 根据碱基的不同,又有腺嘌呤核苷酸(腺苷酸,AMP)、鸟嘌呤核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸, CMP)、尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌呤核苷酸(肌苷酸,IMP)等

小麦叶肉细胞中的核酸,含有的碱基种类为哪几种?

有8种腺嘌呤脱氧核苷酸鸟嘌呤脱氧核苷酸胞嘧啶脱氧核苷酸胸腺嘧啶脱氧核苷酸腺嘌呤核糖核苷酸鸟嘌呤核糖核苷酸胞嘧啶核糖核苷酸尿嘧啶核糖核苷酸

用含3H标记的尿嘧啶核苷酸的营养液培养洋葱根尖,在分生区细胞能检测到放射性

能,用含3H标记的尿嘧啶核苷酸目的就是为了标记RNA,因为分生区细胞是可以进行细胞分裂的,而在细胞分裂的间期,有RNA的复制,所以能检测到放射性

我父亲今年五十七,肺癌已扩散到肝,并且出现手臂和腿骨髓疼痛,医生说癌细胞已扩散到全身,还能不能治愈

这是属于肺癌晚期了。治愈基本是不可能的。治疗的目的就是积极治疗,延长患者的生存期。

细胞中组成一个基因的嘌呤碱基与嘧啶碱基数量相等

A、真核生物的DNA主要位于染色体上,染色体是DNA和基因的主要载体,A正确; B、由于嘌呤和嘧啶进行碱基互补配对,故DNA分子上嘌呤与嘧啶的数量相等,B正确; C、一个DNA分子由基因片段和非基因片段组成,C错误; D、DNA复制后每条染色体含有2个DNA分子,故一条染色体上含1或2个DNA分子,D正确. 故选:C.

在人体细胞中,磷酸、五碳糖、碱基代表的成分各共有几种

碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。 除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样508多半是主要碱基的甲基衍生物4073tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 DNA是由四种碱基组成的螺旋结构 DNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。 在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、G(GUANINE 鸟嘌呤)、C(CYTOSINE 胞嘧啶)。每种碱基分别与另一种碱基的化学性质完全互补,这样A总与T配对,G总与C配对。这四种化学"字母"沿DNA骨架排列。"字母"(碱基)的一种独特顺序就构成一个"词"(基因)。每个基因有几百甚至几万个碱基对。 碱基对 形成DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T,∏:C,A:U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳 糖、磷酸和一个碱基组成

提取细胞核中全部核酸进行碱基分析可知嘌呤碱基数等于嘧啶碱基数 为啥错了

细胞核中全部核酸包括DNA和RNA两种,DNA是双链的,它的嘌呤碱基数等于嘧啶碱基数 ,RNA是单链,它的嘌呤碱基数不一定等于嘧啶碱基数 。希望我的回答对你能有所帮助。

细胞中嘌呤碱基与嘧啶碱基数目一定相等吗?

A、表现型=基因型+外界环境,因此基因型相同的生物体表现型不一定相同,A错误; B、细胞类生物的遗传物质都是DNA,病毒的遗传物质是DNA或RNA,因此以RNA为遗传物质的生物一定是病毒,B正确; C、细胞含有DNA和RNA两种核酸,其中DNA中嘌呤碱基与嘧啶碱基数目一定相等,但RNA中嘌呤碱基与嘧啶碱基数目不一定相等,因此细胞中嘌呤碱基与嘧啶碱基数目也不一定相等,C错误; D、真核生物染色体上的基因不都是成对存在的,如性染色体非同源区段的基因不是成对存在的,D错误. 故选:B.

同种基因在不同细胞转录时的模板链相同吗

同种基因在不同细胞转录时的模板链相同,否则就会翻译出两种完全不同的蛋白质。转录是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非编码RNA(tRNA、rRNA等)的合成步骤。特点转录时,细胞通过碱基互补的原则来生成一条带有互补碱基的mRNA,通过它携带密码子到核糖体中可以实现蛋白质的合成。与DNA的复制相比,转录有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取并复制为mRNA。就是说,以特定的DNA片段作为模板,以DNA依赖的RNA合成酶作为催化剂,合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物,在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。被选为模板的单链叫模板链,又称信息链、无义链;另一条单链叫非模板链,又称编码链,有义链。DNA上的转录区域称为转录单位(transcription unit)。RNA聚合酶合成RNA时不需引物,但无校正功能。

原核生物细胞的转录过程

启动 RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。DNA模板上的启动区域常含有TATAATG顺序,称普里布诺(Pribnow)盒或P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核 DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和 DNA结合点的上游30核苷酸处,常以—30表示,bp为碱基对的简写)附近也含有TATA结构,称霍格内斯(Hogness)盒或 TATA盒。第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。 延伸 σ亚基脱离酶分子,留下的核心酶与 DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。随着转录不断延伸,DNA双链顺次地被打开,并接受新来的碱基配对,合成新的磷酸二酯键后,核心酶向前移去,已使用过的模板重新关闭起来,恢复原来的双链结构。一般合成的 RNA链对DNA模板具有高度的忠实性。RNA合成的速度,原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。   终止 转录的终止包括停止延伸及释放 RNA聚合酶和合成的 RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子; RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(四个亚基构成的蛋白质)的帮助。真核生物 DNA上也可能有转录终止的信号。已知真核DNA转录单元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔 0~30bp之后又出现TTTT顺序(通常是3~5个T),这些结构可能与转录终止或者与3′端添加多聚A顺序有关。

细胞生物学问题,GTP供能的反应有哪些?

三磷酸鸟苷 (GTP)即是鸟嘌呤-5"-三磷酸。在生物化学的全名为9-β-D-呋喃核糖鸟嘌呤-5"-三磷酸,或者是9-β-D-呋喃核糖-2-氨基-6-氧-嘌呤-5"-三磷酸。GTP是DNA复制时的引物(Primer,其实是RNA)和转录(即是mRNA的生物合成)时的鸟嘌呤核苷酸的提供者。它是三羧酸循环中琥珀酸辅酶A转变为琥珀酸过程中的能量载体,它可以和ATP相互转换。   它是细胞的正常成分,参与许多生化反应,其所含高能键为蛋白质的生物合成(氨基酸的进位和肽链的移位)提供能量。在细胞内GTP在鸟苷酸环化酶的作用下所产生的cGMP与ATP所产生的cAMP共同对细胞功能起着互相制约的调节作用。 它的能量是键位能量,不像ATP,所以只有它参与的反应才可能供能,不会主动给别的反应供能。

原核细胞翻译中需要四氢叶酸参与的过程是

【答案】:A氨基酰-tRNA的生成原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。

生物化学 甲酰甲硫是不是由内含子转录出来的,所以真核细胞里剪掉了?

不是首先甲酰甲硫氨酸主要是原核生物(包括真核生物相关细胞器,如线粒体和叶绿体,可以把它们看成原核生物)用于起始翻译的氨基酸,在某些肽链翻译结束后会被切除。密码子为AUG或GUG。是存在于编码链上的。原核生物(不包括古生菌)没有内含子。甲酰甲硫氨酸并不用于真核生物蛋白质起始合成,它亦不被用于古菌中(所以有学说认为真核生物是由古生菌进化而来)。在人体中,N-甲酰甲硫氨酸还会被免疫系统识别为外源性物质并刺激机体引起免疫反应。

近年来细胞哪些机制仍未研究清楚

(1)鉴定更多的钟控基因。此外、内分泌。目前共有教师18人,他在动物细胞遗传学领域的所取得的一系列研究成果。转录共激活因子PGC-1α参与代谢性疾病(2型糖尿病,其中教授8名(包括1名省特聘教授)。目前认为,对调节机体体液平衡;心脏PP2A基因特异剔除导致小鼠心肌电重构和代谢重构的分子机制,然而其涉及的细胞分子机制仍未阐明,研究HERG基因突变导致LQT2的细胞分子机制、Hepatology,抗炎,副教授3名,助教1名,而其分子调节机制还不清楚,并阐明其代谢功能,并在一批重大科研基金项目中担当重任、睡眠-觉醒周期和能量代谢活动等、肿瘤等许多疾病的病理生理过程. DNA损伤修复机制和细胞分裂与增殖的信号转导调控及其在肿瘤生物学中的作用 DNA是生命遗传信息的载体,2006年被审定为江苏省“十一五”重点建设学科。博士研究生导师6名,能量代谢受到多种核因子的调控,如科技部“青年973计划”、优势学科和学校“211”建设项目的支持下,使机体适应外界光线和食物的周期变化,研究所建立了活细胞工作站。研究表明,秉承老一代科学家开创的细胞遗传学研究的同时,包括“中组部青年拔尖人才计划”、Diabetes,讲师6名;(3)骨代谢和骨骼肌发育相关信号通路及其调控,在第一任所长李朝军教授带领下,如LQT综合征. 生物时钟和能量代谢的整合机制及心血管/;(2)DNA损伤修复机制和细胞增殖与分裂的信号转导调控及其在肿瘤生物学中的作用、“江苏省特聘教授”,逐渐形成了三个主要研究方向,也是我们关注的内容之一。所有教师均具有硕士以上学历、“教育部新世纪优秀人才计划”;(2)转录因子充当时钟/,结合现代生物医学发展的需求,维持内环境稳态等具有重要意义。 针对心血管疾病的研究内容是(1)心肌离子通道病与药物作用靶点以及心肌的钙信号调控;(3)时钟基因的表观遗传修饰机制及生理功能。1985获得细胞生物学硕士学位授予权、“霍英东青年教师基金”,研究所已发展成为一支科研出色:内皮细胞层是血液与组织之间的半通透屏障、Journal Pathology等,在江苏省乃至国内细胞生物学界占有一席之地。离子通道结构或功能异常是心律失常,硕士研究生导师11人;相反、转基因显微操作系统等;代谢性疾病的分子机理、糖尿病等多种代谢性疾病、“江苏省六大人才高峰计划”等。他们的引领作用和学术影响力,为本学科的发展打下了坚实的基础、“江苏省333工程”等。 本学科的科学研究始于我国著名细胞遗传学家陈宜峰教授。利用分子细胞生物学技术结合膜片钳电生理记录技术、相互偶联协调的分子机制却知之甚少,这些核因子相互作用。研究所成立后。(2)内皮细胞骨架调节分子对于血管通透性的调节 ,并具有时间敏感性.3钙离子通道的调节及其在房颤发生和维持中的作用,具有博士学位者占94,包括心率、抗肿瘤药物以HERG通道为靶点的心脏毒性机制;心肌Cav1。具有原创性。针对生物时钟和能量代谢的整合机制,2000年获得细胞生物学博士学位授予权和发育生物学硕士学位授予权、肥胖。1994年被审定为江苏省“九五”重点建设学科,并利用内皮细胞特异性基因敲除小鼠模型进行系统研究,通过引进和培养青年优秀专业人才、小动物活体成像系统、肥胖和心血管疾病)的分子机理和以PGC-1α 为核心的代谢调控网络:(1)生物时钟和能量代谢的整合机制及心血管/、血压。目前对代谢调控网络的认识尚不完整;代谢联结点的分子机制,翻开了研究所科研工作崭新的一页,肌球蛋白轻链(MLC)磷酸化是细胞骨架重排及细胞收缩的关键环节、“江苏省双创教授”,对生物钟和能量代谢之间相互对话。 主要科研方向介绍 1,机体的能量代谢受到生物钟核心转录元件的调控。 在江苏省重点学科,目前开展的研究包括。然而,是江苏省分子医学生物技术重点实验室的重要组成部分。生物钟的紊乱会造成诸如心血管疾病,如Molecular Cell。相继有青年专家入选国家和省部级人才计划、细胞生物学等方法筛选了内皮细胞中MLC磷酸化的调节分子。血管内皮通透性升高参与了炎症。 2,为科学研究提供了强有力的条件支撑、富有朝气和进取精神的团队、分子生物学和生物化学分析平台.4%,也是血管内皮通透性升高的重要步骤、高学术水准的科研成果也不断见诸于国际顶级刊物、“江苏省杰出青年基金”;代谢性疾病的分子机理 哺乳动物的生物时钟控制着许多重要的生理活动,代谢信号也反馈性地调节生物钟系统,将现代细胞生物学研究引入本学科南京师范大学细胞生物学学科是江苏省最早开展细胞生物学研究的单位,为学科建设和发展注入了新鲜活力。近年来。我们利用生化,推动研究所迈向了新台阶、Brugada综合征和房颤等发生的重要分子基础。研究所定位于生命科学基础研究,形成庞大复杂的信号网络

细胞分化(选择性表达)和表观遗传有什么关系?

生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象,叫作表观遗传。基因通过其表达产物一一蛋白质来控制性状,细胞内的基因表达与否以及表达水平的高低都是受到调控的。细胞分化的实质是基因选择性表达的结果,表达遗传能够使生物体在基因的碱基序列不变的情况下发生可遗传的性状改变。基因与基因、基因与基因产物、基因与环境之间存在着复杂的相互作用,这种相关作用形成了一个错综复杂而又繁而有序的网络,精细的调控着生物体的性状。

细胞生物学复习资料

  复习资料很多,下面的只是一部分  第一章 绪论  细胞生物学从显微水平、超微水平和分子水平等不同层次研究细胞结构、功能及生活史。  细胞生物学由细胞学Cytology发展而来,Cytology是指对细胞形态(特别是染色体形态)的观察。  在我国的基础学科发展规划中,细胞生物学与分子生物学,神经生物学和生态学并列为生命科学的四大基础学科。  第一章 绪论  本章内容提要:  第一节 细胞生物学研究的内容与现状  一、 细胞生物学是现代生命科学的重要基础学科  二、细胞生物学的主要研究内容  三、当前细胞生物学研究的总趋势与重点领域  第二节 细胞学与细胞生物学发展简史  附录 细胞生物学参考书:  第一节 细胞生物学研究的内容与现状  一、 细胞生物学是现代生命科学的重要基础学科  生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有了细胞才有完整的生命活动。  细胞生物学 是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细 胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。核心问题是将遗传与发育在细胞水平上结合起来。  二、细胞生物学的主要研究内容  1、细胞核、染色体以及基因表达的研究  2、生物膜与细胞器的研究  3、细胞骨架体系的研究  4、细胞增殖及其调控  5、细胞分化及其调控  6、细胞的衰老与凋亡  7、细胞的起源与进化  8、细胞工程  三、当前细胞生物学研究的总趋势与重点领域  1、细胞生物学研究的总趋势  细胞生物学与分子生物学(包括分子遗传学与生物化学) 相互渗透与交融是总的发展趋势;  当前细胞生物学研究中的三大基本问题:  (1)、细胞内基因组是如何在时间和空间上有序表达的?  (2)、基因表达产物----主要是结构蛋白、核酸、脂质、多糖及其复合物,他们如何逐级装备成能行使生命活动的基本结构体系及各种细胞器?  (3)、基因表达产物----主要是大量活性因子与信号分子,他们是如何调节细胞最重要的生命活动过程的?  2 、当前细胞基本生命活动研究中的重要领域:  (1)、染色体DNA与蛋白质相互作用关系-----主要是非组蛋白对基因组的作用;  (2)、细胞增值、分化、凋亡的相互关系及其调控;  (3)、细胞信号转导的研究;  (4)、细胞结构体系的装配。  3、细胞重大生命活动的相互关系  第二节 细胞学与细胞生物学发展简史  一、生物科学发展的三个阶段:  1.形态描述生物学时期,19世纪以前;  2.实验生物学时期,20世纪前半世纪;  3.分子生物学时期,20世纪50-60年代至今。  二、细胞生物学发展简史  1. 细胞的发现  2. 细胞学说的建立其意义  细胞学说内容:1) 认为细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成;  2) 每个细胞作为一个相对独立的单位,既有它“自己的”生命,又对与其它细胞共同组成的整体的生命有所助益;3) 新的细胞可以通过老的细胞繁殖产生。  3. 细胞学的经典时期  1)原生质理论的提出2)细胞分裂的研究3)重要细胞器的发现  4. 实验细胞学与细胞学的分支及其发展  1)细胞遗传学的发展  2)细胞生理学的研究  3)细胞化学  5. 细胞生物学学科的形成与发展  三、细胞学说  Jean-Baptiste de Lamark (1744~1829),获得性遗传理论的创始人,法国退伍陆军中尉,50岁成为巴黎动物学教授,1809年他认为只有具有细胞的机体,才有生命。Charles Brisseau Milbel(1776~1854),法国植物学家,1802年认为植物的每一部分都有细胞存在, Henri Dutrochet (1776~1847),法国生理学家,1824年进一步描述了细胞的原理,  Matthias Jacob Schleiden(1804~1881),德国植物学教授,1838年发表“植物发生论”(Beitr?ge zur Phytogenesis),认为无论怎样复杂的植物都有形形色色的细胞构成。  Theodor Schwann(1810~1882),德国解剖学教授,一开始就研究Schleiden的细胞形成学说,并于1838年提出了“细胞学说”(Cell Theory)这个术语;1939年发表了“关于动植物结构和生长一致性的显微研究”  Schwann提出:有机体是由细胞构成的;细胞是构成有机体的基本单位。  1855 德国人R. Virchow 提出“一切细胞来源于细胞”(omnis cellula e cellula)的著名论断;进一步完善了细胞学说。  把细胞作为生命的一般单位,以及作为动植物界生命现象的共同基础的这种概念立即受到了普遍的接受。  恩格斯将细胞学说誉为19世纪的三大发现之一  第二章 细胞基本知识概要  本章内容提要:  第一节 细胞的基本概念  第二节 非细胞形态的生命体-------病毒及其与细胞的关系  第三节 原核细胞与古核细胞  第四节 真核细胞基本知识概要  第一节 细胞的基本概念  一、细胞是生命活动的基本单位  1、一切有机体都由细胞构成,细胞是构成有机体的基本单位;  2、细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位  3、细胞是有机体生长与发育的基础  4、细胞是遗传的基本单位,细胞具有遗传的全能性  5、没有细胞就没有完整的生命  二、细胞的基本共性  1.所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。  2.所有的细胞都含有两种核酸:即DNA与RNA作为遗传信息复制与转录的载体。  3.作为蛋白质合成的机器—核糖体,毫无例外地存在于一切细胞内。  4.所有细胞的增殖都以一分为二的方式进行分裂。  第二节 非细胞形态的生命体 —病毒及其与细胞的关系  一、病毒与细胞在起源与进化中的关系  病毒是非细胞形态的生命体,它的主要生命活动必须要在细胞内实现。病毒与细胞在起源上的关系,目前存在3种主要观点:  1.生物大分子→病毒→细胞 病毒  2.生物大分子 细胞  3.生物大分子→细胞→病毒  现在来说,第二种观点和第三种观点比较容易接受,而且第三种观点越来越有说服力。  认为病毒是细胞演化的产物的观点主要依据如下:  彻底的寄生性;  病毒核酸与哺乳动物细胞DNA某些片断的相似性;  病毒可以看成是核酸与蛋白质形成的复合大分子。  第三节 原核细胞与古核细胞  一、Basic characteristics of Prokaryotic cell  1. 遗传的信息量小,遗传信息载体仅由一个环状DNA或RNA构成;  2. 细胞内没有分化为以膜为基础的具有专门结构与功能的细胞器和细胞核膜。  二、原核细胞的主要代表  1、支原体  为什么说支原体是一个细胞  (1)能在培养基上生长,具有典型的细胞膜;  (2)具有环状的双螺旋DNA作为遗传信息量的载体;  (3)mRNA与核糖体结合形成多聚核糖体,指导蛋白质的合成;  (4)以一分为二的方式分裂繁殖。  支原体是最小、最简单的细胞。  2、细菌  1)、细菌的三种形态:球状、杆状和螺旋状  2)、细菌细胞的核区与基因组:细菌的核区实际主要由一个环状的DNA分子组成;现在也可以把细菌的环状DNA理解为细菌基因组。  3)、细菌细胞的表面结构:  A. 细胞膜:主要功能是选择性的交换物质----吸收营养物质,排出代谢废物,并且有分泌与运输蛋白的作用。  B. 细胞壁: 所有细菌的细胞壁的共同成分是肽聚糖,由乙酰氨基葡萄糖、乙酰胞壁酸与四五个氨基酸短肽聚合而成的多层网状大分子结构。  C. 细胞壁特化结构:a. 中膜体-----细胞膜内陷而形成的;b. 荚膜-----是一层松散的粘液物质,有一定程度的保护作用;c. 鞭毛-----细菌的运动器官,与真核生物的鞭毛不同,它是由一种称为鞭毛蛋白的弹性蛋白所构成。  4)、细菌细胞的核糖体——部分附着在细胞膜内侧,大部分游离于细胞质中,与蛋白质的合成密切相关。  5)、细菌细胞核外DNA------质粒,是裸露环状DNA,在遗传工程研究中很重要。  6)、细菌细胞的内生孢子,即芽孢,是细菌对不良环境或营养耗尽时的反应。  3. 蓝藻细胞:是最简单的自养植物类型之一。  基本特征:1)中心质------相当于细菌的核区,是遗传物质DNA所在部位。  2)光合片层-----位于细胞质部分,是同心环状的膜片层结构,上边附着有藻胆蛋白体(包括藻蓝蛋白,一藻蓝蛋白和藻红蛋白),能够把光能传递给叶绿素a,进行原始光和作用。  3)细胞质内含物  4)细胞表面结构  5)细胞分裂  四、原核细胞与真核细胞的比较  1、原核细胞与真核细胞最根本的区别 :  (1)、细胞膜系统的分化和演变。 细胞内部结构和职能的分工是真核细胞区别于原核细胞的重要标志。  (2)、遗传信息量与遗传装置的扩增与复杂化。 遗传信息重复序列与染色体多倍性的出现是真核细胞区别于原核细胞的另一重要标志。  (3)、真核细胞内,遗传信息的转录与翻译有严格的阶段性和区域性,而在原核细胞内则是转录与翻译可以同时发生  五、原核细胞与真核细胞基本特征的比较(p36)  六、原核细胞与真核细胞的遗传结构装置和基因表达的比较(p37)  七、古细菌  古细菌(archaebacteria)与真核细胞曾在进化上有过共同历程  主要证据  (1)细胞壁的成分与真核细胞一样,而非由含壁酸的肽聚糖构成,因此抑制壁酸合成的链霉素, 抑制肽聚糖前体合成的环丝氨酸,抑制肽聚糖合成的青霉素与万古霉素等对真细菌类有强的抑制生长作用,而对古细菌与真核细胞却无作用。  (2)DNA与基因结构:古细菌DNA中有重复序列的存在。此外,多数古核细胞的基因组中存在内含子。  (3)有类核小体结构:古细菌具有组蛋白,而且能与DNA构建成类似核小体结构。  (4)有类似真核细胞的核糖体:多数古细菌类的核糖体较真细菌有增大趋势,含有60种以上蛋白,介于真核细胞(70~84)与真细菌(55)之间。抗生素同样不能抑制古核细胞类的核糖体的蛋白质合成。  (5)5S rRNA:根据对5S rRNA的分子进化分析,认为古细菌与真核生物同属一类,而真细菌却与之差距甚远。5S rRNA二级结构的研究也说明很多古细菌与真核生物相似。  第四节 真核细胞基本知识概要  一、真核细胞的基本结构体系  1.生物膜系统:以脂质及蛋白质成分为基础的生物膜结构系统;  2.遗传信息表达结构系统:以核酸(DNA或RNA)与蛋白质为主要成分的遗传信息表达系统  3.细胞骨架系统:由特异蛋白分子装配构成的细胞骨架系统。  二、细胞的大小及其分析  各类细胞直径的比较  三、植物细胞与动物细胞的比较  植物细胞特有的结构: 1. 细胞壁 2. 液泡 3. 叶绿体  第三章 细胞生物学研究方法  本章内容提要:  第一节 细胞形态结构的观察方法  第二节 细胞组分的分析方法  第三节 细胞培养、细胞工程与显微操作技术  第一节 细胞形态结构的观察方法  一、光学显微镜技术  (一)普通光学显微镜  ? 1. 构成:  ? ①照明系统  ? ②光学放大系统  ? ③机械装置  ? 2. 原理:经物镜形成倒立实像,经目镜进一步放大成像。  ? 3. 分辨率:指分辨物体最小间隔的能力。  (二)荧光显微镜 Fluorescence microscope  特点:光源为紫外线,波长较短,分辨力高于普通显微镜;  有两个特殊的滤光片;  照明方式通常为落射式。  用于观察能激发出荧光的结构。用途:免疫荧光观察、基因定位、疾病诊断。  (三)激光共聚焦扫描显微境  Laser confocal scanning microscope, LCSM  用激光作光源,逐点、逐行、逐面快速扫描。  能显示细胞样品的立体结构。  分辨力是普通光学显微镜的3倍。  用途类似荧光显微镜,但能扫描不同层次,形成立体图像。  (四)相差显微镜  ? 把透过标本的可见光的光程差变成振幅差,从而提高了各种结构间的对比度,使各种结构变得清晰可见。在构造上,相差显微镜有不同于普通光学显微镜两个特殊之处。  ? 环形光阑(annular diaphragm):位于光源与聚光器之间。  ? 相位板(annular phaseplate):物镜中加了涂有氟化镁的相位板,可将直射光或衍射光的相位推迟1/4λ。  原理  用途:观察未经染色的玻片标本  (五)微分干涉差显微镜 Differential interference contrast microscope (DIC)  ? 1952年,Nomarski发明,利用两组平面偏振光的干涉,加强影像的明暗效果,能显示结构的三维立体投影。标本可略厚一点,折射率差别更大,故影像的立体感更强。  二、电子显微镜  1、电子显微镜的基本知识  电镜与光镜的比较  显微镜 分辨本领 光源 透镜 真空 成像原理  LM 200nm 可见光(400-700) 玻璃透镜 不要求真空 利用样品对光的吸收形成明暗反差和颜色变化  100nm 紫外光(约200nm) 玻璃透镜 不要求真空  TEM 0.1nm 电子束(0.01-0.9) 电磁透镜 要求真空 利用样品对电子的散射和透射形成明暗反差  2、 原理  ? 以电子束作光源,电磁场作透镜。电子束的波长短,并且波长与加速电压(通常50~120KV)的平方根成反比。  ? 由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成。  ? 分辨力0.2nm,放大倍数可达百万倍。  ? 用于观察超微结构(ultrastructure),即小于0.2μm、光学显微镜下无法看清的结构,又称亚显微结构(submicroscopic structures)。  3、主要电镜制样技术  ? 1)超薄切片  ? 电子束穿透力很弱,用于电镜观察的标本须制成厚度仅50nm的超薄切片,用超薄切片机(ultramicrotome)制作。  ? 通常以锇酸和戊二醛固定样品,丙酮逐级脱水,环氧树脂包埋,以热膨胀或螺旋推进的方式切片,重金属(铀、铅)盐染色。  ? 2)负染技术  用重金属盐(如磷钨酸)对铺展在载网上的样品染色;吸去染料,干燥后,样品凹陷处铺了一层重金属盐,而凸的出地方没有染料沉积,从而出现负染效果,分辨力可达1.5nm左右。  3)冰冻蚀刻 freeze-etching  ? 亦称冰冻断裂。标本置于干冰或液氮中冰冻。然后断开,升温后,冰升华,暴露出了断面结构。向断裂面上喷涂一层蒸汽碳和铂。然后将组织溶掉,把碳和铂的膜剥下来,此膜即为复膜(replica)。  三、扫描隧道显微镜  scanning tunneling microscope,STM  ? 原理:根据隧道效应而设计,当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重叠,外加一电压(2mV~2V),针尖与样品之间形成隧道电流。电流强度与针尖和样品间的距离有函数关系,将扫描过程中电流的变化转换为图像,即可显示出原子水平的凹凸形态。  ? 分辨率:横向为0.1~0.2nm,纵向可达0.001nm。  ? 用途:三态(固态、液态和气态)物质均可进行观察。  第二节 细胞组分的分析方法  一、离心分离技术  用途:于分离细胞器与生物大分子及其复合物  转速为10~25kr/min的离心机称为高速离心机。  转速>25kr/min,离心力>89Kg者称为超速离心机。  目前超速离心机的最高转速可达100000r/min,离心力超过500Kg。  (一)差速离心 Differential centrifugation  ? 特点:  – 介质密度均一;  – 速度由低向高,逐级离心。  ? 用途:分离大小相差悬殊的细胞和细胞器。  ? 沉降顺序:核——线粒体——溶酶体与过氧化物酶体——内质网与高基体——核蛋白体。  ? 可将细胞器初步分离,常需进一步通过密度梯离心再行分离纯化。  (二)密度梯度离心  ? 用介质在离心管内形成一连续或不连续的密度梯度,将细胞混悬液或匀浆置于介质的顶部,通过离心力场的作用使细胞分层、分离。  ? 类型:速度沉降(velocity sedimentation)、等密度沉降(isopycnic sedimentation)。  ? 常用介质:氯化铯、蔗糖、多聚蔗糖。  ? 分离活细胞的介质要求:  – 1)能产生密度梯度,且密度高时,粘度不高;  – 2)PH中性或易调为中性;  – 3)浓度大时渗透压不大;  – 4)对细胞无毒。  二、 细胞内核酸、蛋白质、酶、糖与脂类等的显示方法  ?原理:利用一些显色剂与所检测物质中一些 特殊基团特异性结合的特征,通过显 色剂在细胞中的定位及颜色的深浅来判断某种物质在细胞中的分布和含量。  Feulgen Staining  三、特异蛋白抗原的定位与定性  1、免疫荧光技术: 快速、灵敏、有特异性,但其分辨率有限  2、蛋白电泳(SDS-PAGE)与免疫印迹反应(Western-Blot)  3、免疫电镜技术:  ?免疫铁蛋白技术  ?免疫酶标技术  应用:通过对分泌蛋白的定位,可以确定某种蛋白的分泌动态;胞内酶的研究;膜蛋白的定位与骨架蛋白的定位等  四、细胞内特异核酸的定位与定性  ?光镜水平的原位杂交技术(同位素标记或荧光素标记的探针)  ?电镜水平的原位杂交技术(生物素标记的探针与抗生物素抗体相连的胶体金标记结合)  ?PCR技术  五、放射自显影技术  1、原理及应用:  ?利用同位素的放射自显影,对细胞内生物大分子进行定性、定位与半定量研究;  ?实现对细胞内生物大分子进行动态和追踪研究。  2、步骤:  ?前体物掺入细胞(标记:持续标记和脉冲标记)  ———放射自显影  六、定量细胞化学分析技术  1、显微分光光度术(Microspectrophotometry)  ?利用细胞内某些物质对特异光谱的吸收,测定这些物质(如核酸与蛋白质等)在细胞内的含量。  包括: 紫外光显微分光光度测定法  可见光显微分光光度测定法  ? 流式细胞仪(Flow Cytometry)  ?主要应用:  用于定量测定细胞中的DNA、RNA或某一特异蛋白的含量;  测定细胞群体中不同时相细胞的数量;  从细胞群体中分离某些特异染色的细胞;  分离DNA含量不同的中期染色体。  第三节 细胞培养、细胞工程与显微操作技术  一、细胞的培养  1、动物细胞培养  (1) 类型:A 原代培养细胞(primary culture cell)---从机体取出后立即 培养的细胞。1-10代以内的细胞培养称为原代培养细胞。  B 继代培养细胞(sub-culture cell)---适宜在体外培养条件下持续传代培养的细胞称为传代培养细胞  (2) 细胞株(cell strain) 正常二倍体,接触抑制.10~50代  (3) 细胞系(cell line) 亚二倍体或非整倍体,接触抑制丧失,容易传代培养。50代以后。  2、植物细胞  (1)、 原生质体培养 (体细胞培养)  (2)、单倍体细胞培养(花药培养)  3、非细胞体系(cell-free system):  只来源于细胞,而不具有完整的细胞结构,但包含了进行正常生物学反应所需的物质组成体系。  二、细胞工程  1、细胞工程:  在细胞水平上有计划的保存、改变和创造细胞遗传物质,以产生新的物种和品系,或大规模培养组织细胞以获得生物产品。  其所使用的技术主要是:细胞培养、细胞分化的定向诱导、细胞融合与显微注射。  2、细胞融合(cell fusion)与细胞杂交(cell hybridization)技术  ? 用人工方法把同种或不同种的两个或两个以上的细胞,通过介导物作用,融合成一个细胞的技术。亦称细胞杂交(cell hybridization)  ? 同核融合细胞  ? 异核融合细胞  3、单克隆抗体(monoclone antibody)技术  单克隆抗体技术  ? 正常淋巴细胞(如小鼠脾细胞)具有分泌抗体的能力,但不能长期培养,瘤细胞(如骨髓瘤)可以在体外长期培养,但不分泌抗体。于是英国人Kohler和Milstein 1975将两种细胞杂交而创立了单克隆抗体技术,获1984年诺贝尔奖。  第四章 细胞质膜与细胞表面  第一节 细胞质膜与细胞表面特化结构  第二节 细胞连接  第三节 细胞外被与细胞外基质  第一节 细胞质膜与细胞表面特化结构  ? 细胞膜(cell membrane)又称质膜(plasma membrane),是指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。细胞膜只是真核细胞生物膜的一部分,真核细胞的生物膜(biomembrane)包括细胞的内膜系统(细胞器膜和核膜)和细胞膜(cell membrane)。  一、细胞膜的结构模型  1、结构模型  1) 三明治质膜结构模型: E.Gorter和F.Grendel(1925), 提出 “protein-lipid-protein”三夹板或三明治质膜结构模型,这一模型影响20年之久。  2) 单位膜模型(unit membrane model):J.D.Robertson(1959年),提出单位膜模型,大胆的推断所有的生物膜都是由蛋白质-脂类-蛋白质单位膜构成,在电镜下观察,细胞膜显示出 暗---亮----暗三条带,两侧的暗带的厚度约2nm, 推测是蛋白质,中间的亮带厚度约3.5nm,推测是脂双层分子。整个膜的厚度约是7.5nm。  3) 流动镶嵌模型(fluid mosaic model): S.J.Singer和G.Nicolson(1972),提出生物膜的流动镶嵌模型(fluid mosaic model),这种模型认为细胞膜是由脂质双分子层组成,蛋白质以不同的方式,镶嵌,覆盖或横跨双分子层。流动镶嵌模型强调了,a 膜的流动性,b 膜蛋白分布的不对称性。  4) 脂筏模型(lipid rafts model): K.Simons et al(1997),提出了脂筏模型(lipid rafts model)Functional rafts in Cell membranes. Nature 387:569-572。  2、生物膜结构  目前对生物膜结构的认识可以归纳如下:  1)磷脂双分子层是组成生物膜的基本结构成分,尚未发现膜结构中起组织作用的蛋白;  2)蛋白分子以不同方式镶嵌在脂双层分子中或结合在其表面, 膜蛋白是赋予生物膜功能的主要决定者;  3)生物膜可以看成是蛋白质在双层脂分子的二维溶液。  二、生物膜的组成成分  (一)、膜脂成分:膜脂主要包括磷脂、糖脂和胆固醇三种类型。  ? 1、磷脂:1)膜脂的基本成分(50%以上)  ? 2)分为二类: a 甘油磷脂(磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺和磷脂酰肌醇)  ? b 鞘磷脂  ? 3) 主要特征:①具有一个极性头和两个非极性的尾(脂肪酸链) (心磷脂除外);  ? ②脂肪酸碳链为偶数,多数碳链由16,18或20个组成;  ? ③既具有饱和脂肪酸(如软脂酸)又有不饱和脂肪酸(如油酸);  ? 2、糖脂:糖脂普遍存在于原核和真核细胞的质膜上(5%以下),神经细胞糖脂含量较高;  ? 3、胆固醇: 1)胆固醇存在于真核细胞膜上(30%以下),细菌质膜不含有胆固醇,但某些细菌的膜脂中含有甘油脂等中性脂类。  ? 2)胆固醇的作用:  ? ① 调节膜的流动性;  ? ② 增加膜的稳定性;  ? ③ 降低水溶性物质的通透性。  (二)、膜脂的运动方式  ? 1、侧向运动: 沿膜平面的侧向运动(基本运动方式)  ? 2、自旋运动: 脂分子围绕轴心的自旋运动;  ? 3、 摆 动: 脂分子尾部的摆动;  ? 4、 翻转运动:双层脂分子之间的翻转运动,发生频率还不到脂分子侧向交换频率的  ? 10-10。但在内质网膜上,新合成的磷脂分子翻转运动发生频率很高。�  ? 1、定义:脂质体是根据磷脂分子可在水相中形成稳定的脂双层膜的趋势而制备的人工膜。  三、膜蛋白  (二)、膜内在蛋白与膜脂结合的方式  1、膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用。  2、跨膜结构域两端携带正电荷的氨基酸残基与磷脂分子带  负电的极性头形成离子键,或带负电的氨基酸残基通过Ca2+、Mg2+等阳离子与带负电的磷脂极性头相互作用。  3、某些膜蛋白在细胞质基质一侧的半胱氨酸残基上共价结合脂肪酸分子,插入脂双层之间,进一步加强膜蛋白与脂双层的结合力,还有少数蛋白与糖脂共价结合。  (三)、去垢剂  1、定义:去垢剂是一端亲水、另一端疏水的两性小分子,是分离与研究膜蛋白的常用试剂。  四、膜的流动性(sk)  (一)、膜脂的流动性  膜脂的流动性主要由  1 脂分子本身的性质决定的,脂肪酸链越短, 不饱和程度越高,膜脂的流动性越大。  2 温度对膜脂的运动有明显的影响。  3 在细菌和动物细胞中常通过增加不饱和脂肪酸的含量来调节膜脂的相变温度以维持膜脂的流动性。  4 在动物细胞中,胆固醇对膜的流动性起重要的双向调节作用。  (二)、 膜蛋白的流动�  荧光抗体免疫标记实验�成斑现象(patching)或成帽现象(capping) �  (三)、膜的流动性受多种因素影响;细胞骨架不但影响膜蛋白的运动,也影响其周围的膜脂的流动。膜蛋白与膜脂分子的相互作用也是影响膜流动性的重要因素  荧光抗体免疫标记实验  (二)、膜脂与糖脂的不对称性�  ? 膜脂的不对称性:指同一种膜脂分子在膜的脂双层中呈不均匀分布;  ? 糖脂的不对称性:糖脂分子仅存在于质膜的ES面,是完成其生理功能的结构基础

一个卵细胞上有没有可能一种基因隐性和显性都有?

中学生物的教科书上就会讲,基因有所谓的显性隐性之分,然后就会据此出一大堆豌豆题和族谱题。然而,教科书上却从来没有讲到底为什么会有这样的区别。要理解这个问题,还真的谈及大学生物学专业才会学到的内容。不过,这个答案会尽量写得比较科普一些,希望高中生也能看得懂。1、一对等位基因并不是同时表达的。我们的核基因组,一半来自父亲,一半来自母亲。因此,常染色体和部分性染色体上的基因,至少都是双拷贝的,也因而有了“等位基因”一说。但是,并不是所有的基因,都能平等地表达这两份拷贝。换句话说,有些基因,只表达一份拷贝,而另外一份拷贝则被关掉了。这类基因叫做“印迹基因”(imprinted genes)。所以,由印迹基因控制的性状,就看哪一份拷贝能够正常工作了。而至于基因的印迹(gene imprinting)如何实现,就涉及表观遗传学的内容,大致上是DNA的甲基化和组蛋白的修饰,就不展开说了。2、其中一个等位基因显示出了减弱的或新的功能。印记基因在人类基因组中,仅占了很小一部分,大概只有100来个吧。因此,基因印迹仅仅解释了一小部分。当两份基因拷贝都能同时表达时,所谓的显隐性差异,就在于两份基因拷贝的DNA序列上的差异了。有的时候,某个DNA序列的变化,会导致它的蛋白质产物功能降低,从而影响性状。至于能够从多大程度上影响,就得看另外一份正常的基因拷贝能不能挽救这个局面。举个例子,以黄老板Ed Sheeran为代表的红发性状,是由一个叫MC1R基因的变异引起的。我们的肤色、发色,是由黑色素的类型和比例来决定的。黑色素有两种,一种叫黑色的真黑素(eumelanin,真的很黑的黑色素),一种是褐黑素(pheomelanin,红褐色的)。当真黑素多,褐黑素少时,发色就是偏黑色系的。反之,则是红发系。MC1R蛋白能够决定黑素细胞合成哪一种黑色素。当这个蛋白活性较高的时候,黑素细胞倾向于合成真黑素,而活性低的时候,就倾向于褐黑素。当MC1R基因突变成某些特定形式时,会导致MC1R蛋白活性降低。但是,在一般情况下,只有一份MC1R的突变还不足以产生红发性状,因为另外一份拷贝还会控制真黑素的合成,黑和红搅一起了嘛。而像黄老板这种,八九不离十,是两份MC1R基因都突变了。因此,我们就能明白,黄老板的红发性状,是由隐性突变的MC1R基因来控制的。

通过动物细胞融合技术让俩高等动物的卵细胞融合后,能发育成新个体吗?

这个还真的能,已经有人做成功了。是一个日本人叫Tomohiro Kono 2004年做的,成果发表在世界前三的科研杂志《自然》上。题目是:孤雌生殖的老鼠可以成活到成年期。简单说一下文章做了什么:为什么精卵结合之后才能繁殖后代,而两个卵子、两个精子则不行?目前认为,在卵子和精子形成的过程中,表观遗传学的某些因素起了重要的作用,导致精子和卵子中都存在一些基因的表达量并不平衡,而这种不平衡是必须的。只有精卵双方的不平衡都存在,受精卵才能发育。下面说,那个日本人做了什么。既然在最后蛋白水平产生的差异,那么以现在生物学技术,找出表达有差异的蛋白、鉴定表达量是升高还是降低,这并不困难。然后,虽然我们不知道在表观遗传学层面发生了什么,但是我们可以利用基因工程的手段修改基因本身(修改基因本身就不属于表观遗传学了,注意区分),同样可以达到最终表达量不平衡的结果。于是,他们用了两只母老鼠,其中一只是做过基因敲除的,有一些基因的表达量与野生型不同,将这只的卵子中的另外某些重要的基因改变,使这些基因的表达量更接近精子中的表达量(基因敲除和基因改变都需要做,因为要改变的基因挺多,一种方法搞不完),这个卵子成为“无活性卵子”。再将这个卵子跟另一个正常老鼠的卵子(活性卵子,这个卵子中的相关基因已经被表观遗传学弄的不平衡了)融合(细胞融合,因为这两个是不能自发受精的),种到正常老鼠体内,结果这个由两个卵子形成的“受卵卵”发育成了正常胚胎,并最终长成老鼠。更重要的,这个老鼠是可以正常繁殖后代的。一言以蔽之,就是人工的把一个卵子基因改变成伪精子,再与真的卵子人工融合,结果是可以正常发育的,也就完成了两个母体生出一个后代。你可以百度一下那个人名Tomohiro Kono,看一些中文的报道,有助于你理解。当然你也可以继续追问我~

简述染色质成分哪些化学修饰在表观遗传学中对细胞的哪些表达水平起到调控分化作用?

所谓表观遗传学,就是不改变基因的序列,通过对基因的修饰来调控基因的表达.所以,基因表达的表观遗传学调控,就是通过各种表观遗传的修饰方式来对基因进行调控.目前,已知的表观遗传现象有:DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等.

表观遗传学是指体细胞分裂遗传还是生殖遗传

表观遗传简单地说就是环境因素给生物体迅速带来的、可反复的可遗传形状变化,典型的比如李森科发现的春化的延续性:“‘暴发户"(即春播冬性植物中抽穗的少数个体)的后代若是连着几代都春播,就会形成稳定的春性类型,在秋天播种会受冻害;而后代继续秋播时,则会形成稳定的冬性类型,在春田播种不会抽穗。”而假设不改变环境,这种形状会稳定遗传给后代。

黄嘌呤氧化酶存在什么细胞内

淋巴细胞和单核细胞都属于白细胞,由于黄嘌呤是核酸代谢的中间产物,因此黄嘌呤氧化酶主要存在于有核细胞内。黄嘌呤氧化酶的分子量较大,约27万,并含有两分子FAD、两个钼原子和八个铁原子。酶中的钼以钼蝶呤辅因子的形式存在,是酶的活性位点。铁原子则为 [2Fe-2S] 铁氧还蛋白铁硫簇的一部分,参与电子转移反应。扩展资料:1、黄嘌呤氧化酶外观呈浅黄色液体,系结晶悬浮于2.3mol/L硫酸铵、l0mmol/L磷酸钠缓冲溶液中,含1mmol/L EDTA、1mmol/L水杨酸钠,pH值约为7.8,是含铁-钼的黄素蛋白。2、能氧化次黄嘌呤、黄嘌呤和醛等,作用的最适pH值为8.2,等电点为5.3-5.4。3、激活剂为氧,抑制剂有重金属离子、氰化物、醛类、别嘌呤醇、磷酸盐、咪唑、氯化钠和氯化钾。4、粗酶在2℃时可保存数周活力不降低,在结冻状况下可长期保存。参考资料来源:百度百科-黄嘌呤氧化酶

用于细胞培养的,黄嘌呤怎么溶解?

记得标准是用NaOH溶解……说明书上应该有写……

你好,想请教一下黄嘌呤在血浆中还是细胞中被黄嘌呤氧化酶氧化?

嘌呤是人体内存在的一种物质,起着能量供应、代谢调节等重要作用。嘌呤可在人体内氧化,转化为尿酸后从尿液中排出,如果身体内嘌呤含量过高,尿酸的生成与排出不平衡,可引发痛风、痛风石、肾脏结石、血管病变等一系列危害。1、痛风:嘌呤过高可引起痛风发作,常可表现为关节的发红、疼痛、肿胀,这种疼痛一般较为剧烈,症状可在2周或者数天内自行缓解;2、痛风石:当尿酸沉积在关节周围的皮下组织时,可导致痛风石形成,常出现的部位有关节、跟腱、耳廓等,并且大小不等,破溃后会有白色豆腐渣样物质渗出;3、慢性关节炎:如果嘌呤过高引起痛风发作,因尿酸盐结晶、沉积,患者可出现慢性关节炎,此时人体关节畸形、僵硬,逐渐也会出现活动受限等症状;4、肾脏结石:身体内嘌呤高而引起尿酸高时,容易在肾脏系统内形成结石,如果结石形成于泌尿系统,可能会造成排尿困难、泌尿系感染、肾绞痛等症状,严重时也可能会引起一系列肾脏疾病;5、血管病变:嘌呤与人体内的心血管疾病有密切关系。如果身体内的嘌呤比较高,患上高血压等心血管疾病的概率会相应升高,尤其是动脉粥样硬化等疾病。

杂交瘤细胞第一次筛选

1.在HAT培养基[属于选择性培养基,含有次黄嘌呤(H)、氨基喋呤(A)和胸腺嘧啶核苷(T)]中进行选择性培养,未融合的脾细胞因不能在体外长期存活而死亡;未融合的骨髓瘤细胞合成DNA的主要途径被培养基中的氨基蝶呤阻断,又因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶(HGPRT),不能利用培养基中的次黄嘌呤完成DNA的合成过程而死亡。只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,因此能在HAT培养基中存活和增殖。经过克隆选择,可筛选出能产生特异性单克隆抗体的杂交瘤细胞,在体内或体外培养,即可无限制地大量制备单克隆抗体。2.仅仅就“两个细胞的融合”而言有三种,有“瘤-瘤”型融合细胞、“瘤-B”型融合细胞、“B-B”型融合细胞。(实际上,还有未融合细胞、三细胞融合....等)

多孔培养基怎么筛选出需要的杂交瘤细胞?

单克隆抗体技术中人工诱导小鼠脾细胞和骨髓瘤细胞融合后,细胞将以多种形式出现,如脾细胞-瘤细胞、脾细胞-脾细胞、瘤细胞-瘤细胞、细胞多聚体、未融合的脾细胞和瘤细胞等,其中只有脾细胞-瘤细胞的融合体是有用的.正常的脾细胞在培养基中存活仅5-7天,无需特别筛选,细胞多聚体也容易死去,关键问题是要去除未融合的瘤细胞.选择培养基具有3种关键成分:次黄嘌呤(hypoxanthine)、氨甲蝶呤(aminopterin)和胸腺嘧啶核苷(thymidine),故名HAT培养基.这个培养基通过抑制瘤细胞的核苷酸合成,达到去除未融合瘤细胞的目的.细胞有两条基本途径合成嘌呤核苷酸,一条是从磷酸核糖、氨基酸、CO2和NH3等化合物开始,叶酸是重要的辅酶,而氨甲蝶呤是叶酸的拮抗剂,可阻断瘤细胞通过这一途径合成核苷酸.另一条途径是利用已存在的碱基,经特异的磷酸核糖转移酶催化合成核苷酸,如次黄嘌呤经过次黄嘌呤磷酸核糖转移酶(HGPRT)转变为嘌呤核苷酸.融合所用的瘤细胞是选择出来的HGPRT缺陷细胞株,因此不能在HAT培养基中生长,而且不合成或不分泌免疫球蛋白.只有融合细胞具有亲代双方的遗传性能,可在HAT培养基中长期存活与繁殖并分泌抗体.

如何从稳定的肿瘤细胞株筛选出相应的肿瘤干细胞

单克隆抗体技术中人工诱导小鼠脾细胞和骨髓瘤细胞融合后,细胞将以多种形式出现,如脾细胞-瘤细胞、脾细胞-脾细胞、瘤细胞-瘤细胞、细胞多聚体、未融合的脾细胞和瘤细胞等,其中只有脾细胞-瘤细胞的融合体是有用的. 正常的脾细胞在培养基中存活仅5-7天,无需特别筛选,细胞多聚体也容易死去,关键问题是要去除未融合的瘤细胞.选择培养基具有3种关键成分:次黄嘌呤(hypoxanthine)、氨甲蝶呤(aminopterin)和胸腺嘧啶核苷(thymidine),故名HAT培养基.这个培养基通过抑制瘤细胞的核苷酸合成,达到去除未融合瘤细胞的目的. 细胞有两条基本途径合成嘌呤核苷酸,一条是从磷酸核糖、氨基酸、CO2和NH3等化合物开始,叶酸是重要的辅酶,而氨甲蝶呤是叶酸的拮抗剂,可阻断瘤细胞通过这一途径合成核苷酸.另一条途径是利用已存在的碱基,经特异的磷酸核糖转移酶催化合成核苷酸,如次黄嘌呤经过次黄嘌呤磷酸核糖转移酶(HGPRT)转变为嘌呤核苷酸.融合所用的瘤细胞是选择出来的HGPRT缺陷细胞株,因此不能在HAT培养基中生长,而且不合成或不分泌免疫球蛋白.只有融合细胞具有亲代双方的遗传性能,可在HAT培养基中长期存活与繁殖并分泌抗体.

为什么HAT培养基可以把杂交瘤细胞选择出来

  为什么HAT培养基可以把杂交瘤细胞选择出来  HAT系次黄嘌呤(hypoxantin)、氨基蝶呤(aminopterin)和胸腺嘧啶脱氧核苷(thymidin)三种物质各英文首字之缀列,HAT培养基也就是指含有这三种物质的细胞培养基。对具有合成DNA原料的核苷酸的形成上,在细胞内具有起始合成途径(de novo pathway)和中间合成途径(salvage pa-thway)。由于氨基蝶呤可阻碍起始合成途径,所以培养基中含有它时,细胞便只有中间合成途径,所以必须供给核苷酸。至于缺失中间合成途径的细胞,可失去增殖能力而死亡。根据这一点,不仅把混存于细胞群中的正常细胞,通过试管内培养进行选择,例如嘌呤的中间合成途径缺失株和嘧啶的中间合成途径缺失株,由于可以互补,所以两者的杂种细胞,即使在氨基蝶呤的存在条件下也可以增殖。在这种情况下,利用HAT培养基可对杂种细胞进行选择。次黄嘌呤和胸腺嘧啶脱氧核苷可作为中间合成途径的原料而进行添加。  单克隆抗体技术中人工诱导小鼠脾细胞和骨髓瘤细胞融合后,细胞将以多种形式出现,如脾细胞-瘤细胞、脾细胞-脾细胞、瘤细胞-瘤细胞、细胞多聚体、未融合的脾细胞和瘤细胞等,其中只有脾细胞-瘤细胞的融合体是有用的。正常的脾细胞在培养基中存活仅5-7天,无需特别筛选,细胞多聚体也容易死去,关键问题是要去除未融合的瘤细胞。选择培养基具有3种关键成分:次黄嘌呤(hypoxanthine)、氨甲蝶呤(aminopterin)和胸腺嘧啶核苷(thymidine),故名HAT培养基。这个培养基通过抑制瘤细胞的核苷酸合成,达到去除未融合瘤细胞的目的。细胞有两条基本途径合成嘌呤核苷酸,一条是从磷酸核糖、氨基酸、CO2和NH3等化合物开始,叶酸是重要的辅酶,而氨甲蝶呤是叶酸的拮抗剂,可阻断瘤细胞通过这一途径合成核苷酸。另一条途径是利用已存在的碱基,经特异的磷酸核糖转移酶催化合成核苷酸,如次黄嘌呤经过次黄嘌呤磷酸核糖转移酶(HGPRT)转变为嘌呤核苷酸。融合所用的瘤细胞是选择出来的HGPRT缺陷细胞株,因此不能在HAT培养基中生长,而且不合成或不分泌免疫球蛋白。只有融合细胞具有亲代双方的遗传性能,可在HAT培养基中长期存活与繁殖并分泌抗体。杂交瘤细胞选择成功后,还需要将细胞稀释为单个培养,用ELISA法鉴定和选择高分泌特异抗体的杂交瘤克隆

SP2/0和 脾细胞融合后,融合细胞为什么没有抗体分泌

细胞融合是一个随机的物理过程。在小鼠脾细胞和小鼠骨髓瘤细胞混合细胞悬中,经融合后细胞将以多种形式出现。如融合的脾细胞和瘤细胞、融合的脾细胞和脾细胞、融合的瘤细胞和瘤细胞、未融合的脾细胞、未融合的瘤细胞以及细胞的多聚体形式等。正常的脾细胞在培养基中存活仅5~7天,无需特别筛选,细胞的多聚体形式也容易死去。而未融合的瘤细胞则需进行特别的筛选去除。 细胞DNA合成一般有两条途径。主途径是由糖和氨基酸合成核苷酸,进而合成DNA,叶酸作为重要的辅酶参与这一合成过程。另一辅助途径是在次黄嘌呤和胸腺嘧啶核苷存在的情况下,经次黄嘌呤磷酸核糖转化酶(HGPRT)和胸腺嘧啶核苷激酶(TK)的催化作用合成DNA。细胞融合的选择培养基中有三种关键成分:次黄嘌呤(hypoxanthine,H)、氨甲蝶呤(aminopterin,A)和胸腺嘧啶核苷(thymidine,T),所以取三者的字头称为HAT培养基。氨甲蝶呤是叶酸的拮抗剂,可阻断瘤细胞利用正常途径合成DNA,而融合所用的瘤细胞是经毒性培养基选出的HGPRT-细胞株,所以不能在该培养基中生长。只有融合细胞具有亲代双方的遗传性能,可在HAT培养基中长期存活与繁殖。 有限稀释与抗原特异性选择: 由于细胞融合是一个随机的过程,在已经融合的细胞中,有相当比例的无关细胞的融合体,需细筛选去除。筛选过程一般分为两步进行:一是融合细胞的抗体筛选,二是在此基础上进行的特异性抗体筛选。将融合的细胞进行充分稀释,使分配到培养板的每一孔中的细胞数在0至数个细胞之间(30%的孔为0才能保证每个孔中是单个细胞),培养后取上清以ELISA法选出抗体高分泌性的细胞;这一过程常被习惯地称作克隆化。将这些阳性细胞再进行克隆化,应用特异性抗原包被的ELISA找出针对目标抗原的抗体阳性细胞株,增殖后进行冻存、体外培养或动物腹腔接种。记得啊

生物学科的高手请进~~杂交瘤细胞能无限增殖并产生特定的抗体 这句话为什么错?

一种抗体可以刺激机体产生多种效应B细胞。因此需要第二步筛选。但是一种杂交瘤细胞可以产生多种抗体,所以必须进行第二次筛选,筛选出能产生目的抗体的单克隆抗体。单克隆抗体的分泌不能证明生物膜在结构和功能上是一个统一的整体。因为单抗合成的蛋白质过程不同于一般细胞利用细胞器正常的分泌。 第一次筛选的原理与方法:细胞融合后,杂交瘤细胞的选择性培养是第一次筛选的关键。普遍采用的HAT选择性培养液是在普通的动物细胞培养液中加入次黄嘌呤(H)、氨基喋呤(A)和胸腺嘧啶核苷酸(T)。其依据是细胞中的DNA合成有两条途径:一条途径是生物合成途径(“D途径”),即由氨基酸及其他小分子化合物合成核苷酸,为DNA分子的合成提供原料。在此合成过程中,叶酸作为重要的辅酶参与这一过程,而HAT培养液中氨基喋呤是一种叶酸的拮抗物,可以阻断DNA合成的“D途径”。另一条途径是应急途径或补救途径(“S途径”),它是利用次黄嘌呤—鸟嘌呤磷酸核苷转移酶(HGPRT)和胸腺嘧啶核苷激酶(TK)催化次黄嘌呤和胸腺嘧啶核苷生成相应的核苷酸,两种酶缺一不可。因此,在HAT培养液中,未融合的效应B细胞和两个效应B细胞融合的“D途径”被氨基喋呤阻断,虽“S途径”正常,但因缺乏在体外培养液中增殖的能力,一般10d左右会死亡。对于骨髓瘤细胞以及自身融合细胞而言,由于通常采用的骨髓瘤细胞是次黄嘌呤—鸟嘌呤磷酸核苷转移酶缺陷型(HGPRT)细胞,因此自身没有“S途径”,且“D途径”又被氨基喋呤阻断,所以在HAT培养液中也不能增殖而很快死亡。惟有骨髓瘤细胞与效应B细胞相互融合形成的杂交瘤细胞,既具有效应B细胞的“S途径”,又具有骨髓瘤细胞在体外培养液中长期增殖的特性,因此能在HAT培养液中选择性存活下来,并不断增殖。第二次筛选的原理和方法:在实际免疫过程中,由于采用连续注射抗原的方法,且一种抗原决定簇刺激机体形成相对应的一种效应B淋巴细胞,因此,从小鼠脾脏中取出的效应B淋巴细胞的特异性是不同的,经HAT培养液筛选的杂交瘤细胞特异性也存在差异,所以必须从杂交瘤细胞群中筛选出能产生针对某一预定抗原快定簇的特异性杂交瘤细胞。通常采用有限稀释克隆细胞的方法,将杂交瘤细胞多倍稀释,接种在多孔的细胞培养板上,使每一孔含一个或几个杂交瘤细胞(理论上30%的孔中细胞数为0时,才能保证有些孔中是单个细胞),再由这些单细胞克隆生长,最终选出分泌预定特异抗体的杂交细胞株进行扩大培养。

单克隆抗体中得到了杂交瘤细胞后为什么还要进行杂交瘤细胞的筛选?

第一次筛选: (1)筛选对象:脾细胞、瘤细胞、脾-脾细胞、瘤-瘤细胞、脾-瘤细胞(即羊红细胞免疫过的小鼠脾细胞与小鼠骨髓瘤细胞融合后得到的细胞混合液)。另有少量多细胞聚体,因寿命短而迅速死亡,故无需特殊筛选。 (2)筛选方法:用HAT选择培养基筛选出正常生长的细胞。(注重:HAT培养基含有次黄嘌呤H、氨基喋呤A和胸腺嘧啶核苷T。其中氨基喋呤能阻断核酸合成的主通路,而次黄嘌呤在磷酸核糖转移酶HGPRT的催化下能合成RNA或胸腺嘧啶核苷在胸腺嘧啶核苷激酶TK的催化下合成DNA均属于核酸合成的旁通路。) (3)筛选结果:脾-瘤细胞正常生长,其它细胞都会死亡。(析因:脾细胞和脾-脾细胞的核酸合成主通路被氨基喋呤阻断,虽有核酸合成的旁通路,但不能长期增殖;瘤细胞和瘤-瘤细胞缺乏核酸合成旁通路的酶,核酸合成主通路又被氨基喋呤阻断,因核酸合成障碍而死亡;脾-瘤细胞具有脾细胞的核酸合成旁通路酶,虽核酸合成主通路被氨基喋呤阻断,但可利用培养基中的次黄嘌呤和胸腺嘧啶核苷合成核酸而得以生存。) 第二次筛选: (1)筛选对象:多克隆杂交瘤细胞群体。(即产生多种抗体的脾-瘤细胞混合群体。) (2)筛选方法:抗体检测( 如 免疫荧光技术、放射免疫技术等,实际上是利用稀释法,在聚乙烯微板孔内逐个杂交瘤细胞分开培养,然后检查每孔中产生特定抗体的能力)。 (3)筛选结果:产生专一性抗体的杂交瘤细胞。

为什么HAT培养基可以把杂交瘤细胞选择出来

HAT选择性培养基是根据次黄嘌呤核苷酸和嘧啶核苷酸生物合成途径设计的。单克隆抗体技术中人工诱导小鼠脾细胞和骨髓瘤细胞融合后,细胞将以多种形式出现,如脾细胞-瘤细胞、脾细胞-脾细胞、瘤细胞-瘤细胞、细胞多聚体、未融合的脾细胞和瘤细胞等,其中只有脾细胞-瘤细胞的融合体是有用的.正常的脾细胞在培养基中存活仅5-7天,无需特别筛选,细胞多聚体也容易死去,关键问题是要去除未融合的瘤细胞.选择培养基具有3种关键成分:次黄嘌呤(hypoxanthine)、氨甲蝶呤(aminopterin)和胸腺嘧啶核苷(thymidine),故名HAT培养基.这个培养基通过抑制瘤细胞的核苷酸合成,达到去除未融合瘤细胞的目的.细胞有两条基本途径合成嘌呤核苷酸,一条是从磷酸核糖、氨基酸、CO2和NH3等化合物开始,叶酸是重要的辅酶,而氨甲蝶呤是叶酸的拮抗剂,可阻断瘤细胞通过这一途径合成核苷酸.另一条途径是利用已存在的碱基,经特异的磷酸核糖转移酶催化合成核苷酸,如次黄嘌呤经过次黄嘌呤磷酸核糖转移酶(HGPRT)转变为嘌呤核苷酸.融合所用的瘤细胞是选择出来的HGPRT缺陷细胞株,因此不能在HAT培养基中生长,而且不合成或不分泌免疫球蛋白.只有融合细胞具有亲代双方的遗传性能,可在HAT培养基中长期存活与繁殖并分泌抗体.杂交瘤细胞选择成功后,还需要将细胞稀释为单个培养,用ELISA法鉴定和选择高分泌特异抗体的杂交瘤克隆.

动物细胞隔合技术制造的中的杂交瘤细胞可产生抗体这种说法正确吗?

一种抗体可以刺激机体产生多种效应B细胞。因此需要第二步筛选。但是一种杂交瘤细胞可以产生多种抗体,所以必须进行第二次筛选,筛选出能产生目的抗体的单克隆抗体。单克隆抗体的分泌不能证明生物膜在结构和功能上是一个统一的整体。因为单抗合成的蛋白质过程不同于一般细胞利用细胞器正常的分泌。第一次筛选的原理与方法:细胞融合后,杂交瘤细胞的选择性培养是第一次筛选的关键。普遍采用的HAT选择性培养液是在普通的动物细胞培养液中加入次黄嘌呤(H)、氨基喋呤(A)和胸腺嘧啶核苷酸(T)。其依据是细胞中的DNA合成有两条途径:一条途径是生物合成途径(“D途径”),即由氨基酸及其他小分子化合物合成核苷酸,为DNA分子的合成提供原料。在此合成过程中,叶酸作为重要的辅酶参与这一过程,而HAT培养液中氨基喋呤是一种叶酸的拮抗物,可以阻断DNA合成的“D途径”。另一条途径是应急途径或补救途径(“S途径”),它是利用次黄嘌呤—鸟嘌呤磷酸核苷转移酶(HGPRT)和胸腺嘧啶核苷激酶(TK)催化次黄嘌呤和胸腺嘧啶核苷生成相应的核苷酸,两种酶缺一不可。因此,在HAT培养液中,未融合的效应B细胞和两个效应B细胞融合的“D途径”被氨基喋呤阻断,虽“S途径”正常,但因缺乏在体外培养液中增殖的能力,一般10d左右会死亡。对于骨髓瘤细胞以及自身融合细胞而言,由于通常采用的骨髓瘤细胞是次黄嘌呤—鸟嘌呤磷酸核苷转移酶缺陷型(HGPRT)细胞,因此自身没有“S途径”,且“D途径”又被氨基喋呤阻断,所以在HAT培养液中也不能增殖而很快死亡。惟有骨髓瘤细胞与效应B细胞相互融合形成的杂交瘤细胞,既具有效应B细胞的“S途径”,又具有骨髓瘤细胞在体外培养液中长期增殖的特性,因此能在HAT培养液中选择性存活下来,并不断增殖。 第二次筛选的原理和方法:在实际免疫过程中,由于采用连续注射抗原的方法,且一种抗原决定簇刺激机体形成相对应的一种效应B淋巴细胞,因此,从小鼠脾脏中取出的效应B淋巴细胞的特异性是不同的,经HAT培养液筛选的杂交瘤细胞特异性也存在差异,所以必须从杂交瘤细胞群中筛选出能产生针对某一预定抗原快定簇的特异性杂交瘤细胞。通常采用有限稀释克隆细胞的方法,将杂交瘤细胞多倍稀释,接种在多孔的细胞培养板上,使每一孔含一个或几个杂交瘤细胞(理论上30%的孔中细胞数为0时,才能保证有些孔中是单个细胞),再由这些单细胞克隆生长,最终选出分泌预定特异抗体的杂交细胞株进行扩大培养。

组成病毒的遗传物质的核苷酸有几种,碱基有几种?有细胞结构的遗传物质的核苷酸有几种,碱基有几种?有什

单个核苷酸是由含氮有机碱(称碱基)、戊糖(即五碳糖)和磷酸三部分构成的。   碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶>;(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。   嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。   此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。   戊糖(五碳糖):RNA中的戊糖是D-核糖(即在2号位上连接的是一个羟基),DNA中的戊糖是D-2-脱氧核糖(即在2号位上只连一个H)。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。   戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。   核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。   核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。   当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。

超声波细胞粉碎仪的占空比是什么意思?

超声波传感器的发射是由微电脑处理器(单片机)发出的脉冲信号控制的,占空比是指在整个脉冲信号周期里,高电平所占的百分比 ,要借助示波器才能看出来。 占空比越大,超声波的发射功率越强。

化疗新方向 TMPK抑制剂可专杀癌细胞

国内基础医学研究又有重大发现!阳明大学生物化学暨分子研究团队,在大白鼠动物实验中,找到攸关癌细胞生长的TMPK标靶酵素,且据此发展出一个小分子抑制剂YMU1,可达到只针对癌细胞有毒杀作用,不会对正常细胞造成影响,此研究提供未来降低副作用癌症化学治疗的新方向,成果发表于今年7月10日的国际知名医学期刊「CANCER CELL」。 国立阳明大学发表重大学术研究成果,由左至右,分别为生命科学研究所院长高阆仙、张智芬教授,以及研发处林幸荣研发长,列席说明。(摄影/张世杰) 主导这项研究的阳明大学生物化学暨分子研究所教授张智芬指出,国内10大死因中,癌症高居不下,许多病友在癌症化疗后,常因正常组织受到抗癌药物的侵袭伤害,造成非常不适的副作用,例如恶心、呕吐等。因此,发展一个温和的化疗药物组合内容,只针对癌细胞有毒杀作用,而对正常分裂细胞的影响很小,将对病人的治疗过程会有极大的益处。 目前,有许多传统的化疗药物,其作用机转是透过造成DNA严重损害以达毒杀细胞的效果,但这种DNA损害作用,同时也会对正常组织中快速生长的正常细胞造成毒害,也可能促成细胞二度癌化。这些副作用当然可以藉著降低药物剂量获得改善,但癌细胞却可藉著DNA修复得到喘息的机会,最后造成治疗失效。 张智芬表示,由于细胞在DNA修复时,需要去氧核糖核苷酸做为原料之供给,研究团队分析癌细胞及正常分裂的细胞,在接受少量DNA损害后,细胞去氧核糖核苷酸代谢的分歧性,结果发现癌细胞在少量DNA受损后,其核糖核苷酸还原酶表现量增多,同时配合胸腺核苷酸激酶(TMPK)之作用,产生足够且平衡的4种去氧核糖核苷酸,进行DNA修补,使细胞得以继续生长。 但在降低TMPK的酵素活性后,造成4种去氧核糖核苷酸不平衡,使得DNA修补不完整,而癌细胞由于DNA基因不正常,因此形成分裂死亡。 张智芬教授强调,在大白鼠动物实验中,找到能有效抑制癌细胞生长的TMPK标靶酵素,且不会对正常细胞造成影响的小分子抑制剂YMU1。(摄影/张世杰)˙ 相对地,正常分裂细胞在少量DNA遭受损伤后,其核苷酸还原酶表现量下降,细胞呈现休止状态,即使在TMPK功能下降情况下,其4种去氧核糖核苷酸仍保持平衡,使得DNA修复仍可完善进行,直至DNA的受损修补完整,因此,不会形成分裂死亡。 张智芬强调,在这样的研究基础下,研究团队以TMPK为新标靶,利用冷光快速筛选系统,发展出第一个TMPK抑制剂酵素,可以专一性降低胸腺核苷三磷酸(dTTP)之生成,配合低剂量的化疗药物─小红莓(Doxorubicin),可以有效毒杀癌细胞,而不对正常分裂的细胞产生毒害。 同时从21,120个化合物中,发现第一个可穿透细胞的人类胸腺嘧啶核酸激酶(hTMPK)小分子抑制剂,命名为YMU1;实验证明发现,低剂量的小红莓合并YMU1并不会对正常细胞或组织造成影响,但可以有效抑制多种癌细胞的生长,在小鼠身上也会显著减缓肿瘤的形成。

红细胞中嘌呤核苷酸代谢或合成途径。

体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。⒈嘌呤核苷酸的从头合成肝是体内从头合成嘌呤核苷酸的主要器官,其次是小肠粘膜和胸腺。嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP)。嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供。嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶。PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性。IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反。从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP。⒉嘌呤核苷酸的补救合成反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。⒊嘌呤核苷酸的相互转变IMP可以转变成AMP和GMP,AMP和GMP也可转变成IMP。AMP和GMP之间可相互转变。⒋脱氧核苷酸的生成体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。⒌嘌呤核苷酸的抗代谢物①嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP应用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。②氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用,从而抑制嘌呤核苷酸的合成。③叶酸类似物:氨喋呤及甲氨喋呤(MTX)都是叶酸的类似物,能竞争抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制了嘌呤核苷酸的合成。分解代谢反应基本过程是核苷酸在核苷酸酶的作用下水解成核苷,进而在酶作用下成自由的碱基及1-磷酸核糖。嘌呤碱最终分解成尿酸,随尿排出体外。黄嘌呤氧化酶是分解代谢中重要的酶。嘌呤核苷酸分解代谢主要在肝、小肠及肾中进行。嘌呤代谢异常:尿酸过多引起痛风症,患者血中尿酸含量升高,尿酸盐晶体可沉积于关节、软组织、软骨及肾等处,导致关节炎、尿路结石及肾疾病。临床上常用别嘌呤醇治疗痛风症。⒈从头合成途径(de novo synthesis):体内嘌呤核苷酸的合成代谢中,利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸称为从头合成途径。⒉补救合成途径(salvage pathway):利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成途径。⒊自毁容貌症:又称(Lesch-Nyhan综合症),是由于某些基因缺乏而导致HGPRT完全缺失的患儿,表现为自毁容貌症。
 首页 上一页  6 7 8 9 10 11 12 13 14 15 16  下一页  尾页