如何用化学方法除去苯中含有少量的噻吩
加入硫酸,分相。苯在油相,噻吩被磺化到水相了。 在苯中加入约1/7体积的浓硫酸,振荡分层,弃去下层,重复直到酸层无色或淡黄色,再依次用水、Na2CO3、水洗,干燥后蒸馏即可。
怎样用化学方法区别苯,噻吩和苯酚
在3种物质中加入稀氢氧化钠溶液。苯和噻吩会有分层,苯酚溶解。在剩余2种物质中加入酸性高锰酸钾溶液,褪色为噻吩,无明显现象为苯。
如何用化学方法除去苯中含有少量的噻吩
噻吩,系统名1-硫杂-2,4-环戊二烯,CAS号110-02-1。从结构式上看,噻吩是一种杂环化合物,也是一种硫醚。分子式C4H4S,分子量84.14。熔点-38℃,沸点84℃,密度1.051g/cm3。在常温下,噻吩是一种无色、有恶臭、能催泪的液体。噻吩天然存在于石油中,含量可高达数个百分点。工业上,用于乙基醇类的变性。和呋喃一样,噻吩是芳香性的。硫原子2对孤电子中的一对与2个双键共轭,形成离域Π键。噻吩的芳香性仅略弱于苯。性质:1、物理性质:溶解性:本品不溶于水,可混溶于乙醇、乙醚等多种有机溶剂2、化学性质:无色流动性液体,有类似苯的芳香气味。易燃。有毒,经皮肤吸收或吸入蒸气会引起中毒。禁止与强氧化剂接触。噻吩与苯一样,能发生烷基化、磺化、硝化、卤化、氰化、氯甲基化等核上取代反应。苯的化学性质:苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在苯环上的加成反应(注:苯环无碳碳双键,而是一种介于单键与双键的独特的键);一种是普遍的燃烧(氧化反应)(不能使酸性高锰酸钾褪色)。方法:向含有少量噻吩的苯中加入一定量的酸性高锰酸钾溶液,发现溶液逐渐褪色。随着高锰酸钾含量不断增多,直到溶液的颜色不再褪色,说明苯中的噻吩已除尽,然后用有机溶剂进行萃取,可以将苯分离出来。
有机化学中什么是噻吩
噻吩,系统名1-硫杂-2,4-环戊二烯,CAS号110-02-1。从结构式上看,噻吩是一种杂环化合物,也是一种硫醚。分子式C4H4S,分子量84.14。熔点-38℃,沸点84℃,密度1.051g/cm3。在常温下,噻吩是一种无色、有恶臭、能催泪的液体。噻吩天然存在于石油中,含量可高达数个百分点。工业上,用于乙基醇类的变性。和呋喃一样,噻吩是芳香性的。硫原子2对孤电子中的一对与2个双键共轭,形成离域Π键。噻吩的芳香性仅略弱于苯。
浦东学区化集团化办学,浦东教育集团化学区化?
浦东是全上海面积最大、人口最多、GDP最高的地区,区域内教育资源丰富,学区房也比较热门。浦东新区也有很多教育资源,但由于人口过多,僧多粥少的现象不可避免。 因此,浦东新区的学区房也很重要。请参阅。浦东新区的教育资源是公办和民办平衡的,公办小学在上海市有明珠、建平、进才、福山外语等名气,相信很多朋友都听说过。目前浦东新区已形成集团化办学模式,许多热门小学是集团化办学的产物,各小学群下的初中、高中也都是浦东新区的热门学校。随着集团化办学的普及,浦东新区僧多粥少的形势也在逐步改善。浦东小学第一批(浦外小学(民办)福山正达)民办)明珠小学) ABC )福山外国语)六师附小第二批)上实东学校、进才实验小学、建平实验小学、洋泾菊园、明珠森兰、海桐小学、浦东二中心、竹园小学、昌邑小学浦东新区小学资源比较丰富,主要集中在外环线内,其对口学区房也是浦东新区比较热门的小区。明珠小学创办于1993年6月,从一个校区扩大到三个校区。 分别是明珠a区(南泉北路1019号)、明珠b区)高山路639弄1号)、明珠c区)盛苑路520号)。浦东明珠小学是浦东新区第一所承包制公立学校,全面推行校长负责制、教师聘任制、岗位责任制、年薪制和经费综合承包制。明珠小学是浦东新区公办中数一数二的小学,被誉为“魔都公办第一牛学校”。明珠小学凭借高水平的教学质量,得到家长们的一致认可。福山外国语小学福山外国语小学创建于1987年,前身为上海黄浦区福山路小学,2002年更名为现在的学校,目前福山外国语有4个校区,福山校区、瑞华校区、花园校区、证大校区。福外的教育特色是英语,长期以来是上海唯一的公办外语小学,被中国教育学会外语教育专业委员会命名为“外语实验学校”。六师附小六师附小创建于1906年清光绪三十二年,最初命名为“洋泾学堂”。1961年更名为上海市第六师范附属小学,六师附小百年办学历史跨越两个世纪,百年积淀形成了办学优良传统。目前共有4个校园:羽山校区、海防校区、万德校区和芳菲校区。六师附小是仅次于明珠和福外的好学校,是公办中比较安静的小学,与明珠、福外的鸡血不同,六师整体教学风格是快乐教育,同时注重孩子的学业,循序渐进地培养。梧桐小学创办于一九九八年,地处花木行政文化中心、浦东人口引进区,优越的地理环境给学校的可持续发展带来了天时地利人和的有利条件。海桐小学虽然名声不如明珠、福山外国语大,但在浦东二梯队中也是数一数二的。创办20多年来,海桐小学已开设三个校区(樱花校区、东城校区、花木校区),均得到家长们的批准。洋泾菊园实验学校洋泾菊园实验学校是一所紧密的九年一贯制实验学校,地处浦东陆家嘴金融贸易区腹地,享誉浦东新区,在上海市有一定知名度的九年一贯制实验学校。洋泾菊园小学部属于浦东新区二阶队小学,其初中教学水平比较强,隶属于口区合适的二学区学校机房。九年一贯制的上实东学校、建平实验、进才实验、竹园小学、浦东二中心、浦明师范、昌邑、新世界实验等也都是浦东新区的优质小学,实力也非常强。浦东新区有21所民办小学,部分是体制外双语学校。在体制内的民办小学中,福山正达和浦外附小成绩最好,在上海全境都很有名。此外,浦东协和双语学校、和平双语学校、中心学校、尚德实验学校、金苹果学校体制外更多,但小学成绩也不错。总的来说,浦东新区的小学教育比较优质,但大多数好小学集中在中环以内。在浦东新区的小学,选择余地很大,教育质量有保证。浦东、中学浦东共有170所中学,其中公办145所,民办25所。浦东新区中学资源,民办和公办都很均衡,教育质量也很高。民办中学主要有新竹园、交中中学、建平远翔和华二浦东实验等。近年来新设的福山正达外国语学校、未来科学技术学校( 22年转公)也是很好的中学。公立学校中的上海实验学校、上海中学东学校、上海实验东学校、入才实验、建平西学校等也是浦东新区比较热门的中学。张江集团中学上海民办张江集团学校是由上海张江(集团)有限公司主办,上海市上海中学承办的初级中学。学校常年保持中考成绩的浦东新区第一、全市前列。学校各届学生大部分可以进入市重点以上重点高中。张江集团中学2020年正式民办转为公办,对很多家长来说,这绝对是个好消息。2020年以前,张江集团中学四所预录人数长期居本区首位,成为仅次于四所学校(华育、兰生、市北理、上外120所或复旦二附中)的顶尖中学名校。上海实验学校东校上实东学校是一所九年一贯制的公立学校,由上海市实验学校承办,是浦东新区留学回国人员子女定点学校。这里的孩子大多在国外出生,或者有在国外的生活经验。生源总体质量很高,父母都属于高知一类。建平西学校上海市建平中学西学校是公办初级中学。现有三个校区——华城校区(源深路383号)、大唐校区)、樱花路630号)、乳山校区(乳山路188号)。建平西学校创立于1994年。嫡系中学中历史最悠久的建西每年的报名人数都排在浦东中学前三位,市重点率也稳定在30%以上。这是浦东唯一可以与民营电视台抗衡的公务,无视基数,只算人数。建平实验上海建平实验中学是知名的“建平系”成员之一,作为建平中学的“亲儿子”,每六年进入建平中学的人数也非常多。建平实验中学始建于1999年,是浦东开发开放成长起来的公办中学,前身为九年一贯制公办学校,2008年6月,根据中小学生教育特点和学校发展需要,中小学分别办学,更名为“上海市建平实验中学”。随着2010年和2018年地杰国际城校区和张江校区的启用,目前学校共有枣庄校区、张江校区、张江校区三个校区。2022年,三个校区实行“分家”,枣庄路校区更名为“上海市建平实验中学”,地杰国际城校区命名为“上海市建平实验地杰中学”,张江校区命名为“上海市建平实验张江中学”。建平实验中学中考成绩:历年市重点上线率53.4%,区重点上线率93%,公办高校上线率96.5%,民办高校上线率98.4%。进才北校上海市进才中学北校是位于上海市浦东新区的公办中学,始建于1997年。现在有两个校区。 羽山路校区上海浦东陆家嘴金融贸易区内民生路与羽山路交汇,苗圃路校区位于苗圃路555号。中考升学率比较稳定,本市实验示范高中上线率接近43%,浦东是仅次于建平西的名校。进才实验上海市进才实验中学是浦东新区新兴、现代化、高起点的公办学校。学校始建于2001年8月,位于联洋国际社区内,拥有一流的基础设施、先进的意识设计布局、先进的管理理念、办学模式、现代学校制度。进才实验也是进才类重要学校,本名为上海市进才中学基础实验部。学校的成绩很稳定,在公务上名列前茅。此外,南汇三中、致远中学、前滩华二也是浦东新区的好中学。浦东、高中浦东共有49所高校,其中公办42所,民办7所。 市重点11所,区重点18所(含3所特色高校),普通高校13所。浦东的11所市重点高中有四所(华师大二附中)、四所(浦东复附)、八大(建平)。相比之下,浦东新区的高中教育资源也很丰富,对初中毕业生来说,选择范围更广,高中教育水平也更高。上海实验学校上海市实验学校(简称“上实”、“市实验”、“SES”),前身为上海师范大学教育科学研究所“中小学教育体系整体改革实验班”,于1986年由上海市人民政府推出成立,次年竣工。学校隶属上海市教委,是集教学、教学、科研为一体的本市实验性示范性学校。学校实行小学、初中、高中10年一贯弹性学制,其中小学4年、初中3年、高中3年。上海市实验学校就是这样一所独具特色的十年一贯制,拥有教育部特殊直升机权的学校,不用中考、直升机高考。但即便不小两年,上海实验的排名也一直在全市前列,实验理科班约95%的学生能考上复旦交大等高校。上海外国语大学附属浦东外国语学校上海外国语大学附属浦东外国语学校,简称上外浦东附中(浦外),位于浦东新区张江高新区科研教学区,是浦东新区的标志性学校。学校始建于1996年秋,由香港著名企业家李嘉诚老师捐资兴建,由张江高新区开发公司提供土地,是浦东新区政府主管和上海外国语大学承办的所有外语特色现代化寄宿制公立转制学校。由于办学质量优良,国家教育部每年授予学校全国重点大学外语专业保证高三学生20%的资格。华东师范大学第二附属中学华东师范大学第二附属中学始建于一九五八年,一九六三年被确定为上海市教育局直属重点中学。1978年被确定为教育部直属重点高中,2005年被评为上海市第一所实验性示范性高中。华二是教育部直属重点高级中学、上海市首批实验性示范高级中学、上海市重点中学、全国中小学科研兴教示范基地、全国中小学计算机教育研究中心实验基地、全国中小学现代教育技术实验学校、上海市中小学课程教材改革研究基地、上海市2049创新人才培养基地、上海市高校理科德育实训基地。作为上海著名的四大高校之一,凭借骄人的理科成绩得到了家长们的一致认可。华二的教育质量在浦东一直稳坐椅子,在上海市也是数一数二。建平中学建平中学成立于1944年,特色班为理科创新班和文科创新班,中考后统一进行分班考试选拔。建平中学是浦东高校中公认的排名第二的强校。作为建平系的核心,高考成绩在上海“八大”高中名列前茅,仅次于七宝中学。初入初中的初中创办于1996年,至今一直是浦东新区的高级中学,和建平中学一样,都是浦东新区的强校。进入初中后重视学生综合素质的提高,平时活动多。被培养的孩子不仅成绩好,综合素质也相对较好。进入师范大学附属高中是首批上海实验示范高中、上海市六所联考参建学校、上海市五所市教委直属高级中学之一、世界名校论坛成员之一,创建于1958年。往年高考,高考一本率稳定在80%以上,清华、北大、复旦、交大、同济的上线率可达20%。除了这些学校,浦东的洋泾中学、川沙中学、南汇中学的成绩也很好。 区重点高桥中学的成绩优于川沙和南汇。此外,浦东还有东昌中学、北蔡中学、香山中学3所市特色高中。总结无论是小学、初中、高中,浦东新区资源丰富而且优质。但浦东新区人口基数大,很多热门学校都位于中环以内,这使得浦东新区中环内的学区房成为购房者争相购买的区域。浦东新区的公民资源比较均衡,孩子有很多机会找到适合自己的升学途径。浦东新区户籍相符,父母们能根据孩子的情况更换合适的中学,对很多父母来说是件好事。浦东新区9年一贯制和12年一贯制的学校很多,集团化办学的学校也很多,所以这些学校的学生升学压力小,可以重点考虑。自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:https://www.87dh.com/xl/
生物素有何生物化学功能?
生物素是B族维生素之一,也叫维生素H、维生素B7、辅酶R等。生物素是多种羧化酶的辅酶,在羧化酶反应中起CO2载体的作用。生物素的化学功能不清楚,但它有非常重要的生理功能。1、生物素在体内氧化生成顺视黄醛和反视黄醛。当维生素H缺乏时,顺视黄醛得不到足够的补充,杆细胞不能合成足够的视紫细胞,从而出现夜盲症。2、维持上皮组织结构的完整和健全。生物素是维持机体上皮组织健全所必须的物质。维生素H缺乏时,可引起黏膜与表皮的角化、增生和干燥,产生干眼病,严重时角膜角化增厚、发炎,甚至穿孔导致失明。皮脂腺及汗腺角化时,皮肤干燥,发生毛囊丘疹和毛发脱落。3、生物素能增强机体的免疫反应和感染的抵抗力,稳定正常组织的溶酶体膜,维持机体的体液免疫、细胞免疫并影响一系列细胞因子的分泌。4、维持正常生长发育。生物素缺乏时,生殖功能衰退,骨骼生长不良,胚胎和幼儿生长发育受阻。
电化学沉积金属纳米线为什么会出现气泡
应该是阴极发生了析氢反应,产生了氢气泡
在DNA分子中连接碱基A和T的化学结构是
在DNA分子中连接碱基A和T的化学结构是氢键。下面是我用chemdraw做得结构图。值得一提的是,它仅是A和T连接的一般结构,实际上A和T还有其他连接方式,就像DNA除了沃森克里克那个模型外还有其他形态一样。您有兴趣的话可以参考下“生物化学”。
什么化学物质可以消除DNA
强酸、强碱、高温可以消除DNA,DNA在溶液,尤其是水的稀溶液中,会发生自然的降解作用。降解作用速率和温度关系不大,但是反复的冻融会加速DNA的断裂和降解。DNA由脱氧核苷酸组成的大分子聚合物。脱氧核苷酸由碱基、脱氧核糖和磷酸构成。其中碱基有4种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。DNA 分子结构中,两条多脱氧核苷酸链围绕一个共同的中心轴盘绕,构成双螺旋结构。脱氧核糖-磷酸链在螺旋结构的外面,碱基朝向里面。两条多脱氧核苷酸链反向互补,通过碱基间的氢键形成的碱基配对相连,形成相当稳定的组合。扩展资料生物体中的DNA几乎从不作为单链存在,而是作为一对彼此紧密相关的双链,彼此交织在一起形成一个叫做双螺旋的结构。每个核苷酸由可与相邻核苷酸共价键结合的侧链骨架和含氮碱基组成,两条链上的含氮碱基通过碱基互补以氢键相连。糖与含氮碱基形成核苷,核苷与一个或多个磷酸基团结合成为核苷酸。DNA骨架结构是由磷酸与糖类基团交互排列而成。组成脱氧核糖核酸的糖类分子为环状的2-脱氧核糖,属于五碳糖的一种。磷酸基团上的两个氧原子分别接在五碳糖的3号及5号碳原子上,形成磷酸双酯键。这种两侧不对称的共价键位置,使每一条脱氧核糖核酸长链皆具方向性。双螺旋中的两股核苷酸互以相反方向排列,这种排列方式称为反平行。脱氧核糖核酸链上互不对称的两末端一边叫做5"端,另一边则称3"端。脱氧核糖核酸与RNA最主要的差异之一,在于组成糖分子的不同,DNA为2-脱氧核糖,RNA则为核糖。DNA的双螺旋通过在两条链上存在的含氮碱基之间建立的氢键来稳定。组成DNA的四种碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T)。所有四种碱基都具有杂环结构,但结构上腺嘌呤和鸟嘌呤是嘌呤的衍生物,称为嘌呤碱基,而胞嘧啶和胸腺嘧啶与嘧啶有关,称为嘧啶碱基。
有关生物化学的问题
无义链又称模板连(- 链),是RNA合成的模板无义链也需从5‘端开始写:5"GAAACCCGGGTTTGTTATTTGCGCCCGGGATAATGAACTACCATACATTGT3"mRNA: 5"ACAAUGUAUGGUAGUUCAUUAUCCCGGGCGCAAAUAACAAACCCGGGUUUC3′翻译从5"端开始,起始密码子AUG,终止密码子UAA,UAG,UGA.每三个核苷酸对应一个氨基酸,不重叠,好像没有终止密码子,那么起始密码子的作用应不应该算就不清楚了,如果不考虑起始密码子那应该是17个,不过我觉得应该算密码子的作用,即是16个氨基酸。
生物化学基础
1.糖酵解:总反应为:葡萄糖+2ATP+2ADP+2Pi+2NAD+ ——>2丙酮酸+4ATP+2NADH+2H++2H2O糖有氧氧化:CO2和水1分子葡萄糖净得ATP数 36ATP2.1 糖酵解 胞质 (1)葡萄糖磷酸化 葡萄糖氧化是放能反应,但葡萄糖是较稳定的化合物,要使之放能就必须给与活化能来推动此反应,即必须先使葡萄糖从稳定状态变为活跃状态,活化一个葡萄糖需要消耗1个ATP,一个ATP放出一个高能磷酸键,大约放出30.5kj自由能,大部分变为热量而散失,小部分使磷酸与葡萄糖结合生成葡萄糖-6-磷酸。催化酶为己糖激酶。 (2)葡萄糖-6-磷酸重排生成果糖-6-磷酸。催化酶为葡萄糖磷酸异构酶。 (3)生成果糖-1、6-二磷酸。催化酶为6-磷酸果糖激酶-1。 1个葡萄糖分子消耗了2个ATP分子而活化,经酶的催化生成果糖-1,6-二磷酸分子。 (4)果糖-1、6-二磷酸断裂成3-磷酸甘油醛(glyceraldehyde 3-phosphate)和磷酸二羟丙酮,催化酶为醛缩酶。 (5)磷酸二羟丙酮很快转变为3-磷酸甘油醛。催化酶为丙糖磷酸异构酶。 以上为第一阶段,1个6C的葡萄糖转化为2个3C化合物PGAL,消耗2个ATP用于葡萄糖的活化,如果以葡萄糖-1-磷酸形式进入糖酵解,仅消耗一个ATP。这一阶段没有发生氧化还原反应。 (6)3-磷酸甘油醛氧化生成1、3-二磷酸甘油酸(1,3-diphosphoglycerate),释放出两个电子和一个H+, 传递给电子受体NAD+,生成NADH+ H+,并且将能量转移到高能磷酸键中。催化酶为3-磷酸甘油脱氢酶。 (7)不稳定的1、3-二磷酸甘油酸失去高能磷酸键,生成3-磷酸甘油酸(3-phosphoglycerate),能量转移到ATP中,一个1、3-二磷酸甘油酸生成一个ATP。催化酶为磷酸甘油酸激酶。此步骤中发生第一次底物水平磷酸化 (8)3-磷酸甘油酸重排生成2-磷酸甘油酸(2-phosphoglycerate)。催化酶为磷酸甘油酸变位酶。 (9)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸PEP(phospho-enol-pyruvate)。催化酶为烯醇化酶。 (10)PEP将磷酸基团转移给ADP生成ATP,同时形成丙酮酸。催化酶为丙酮酸激酶。此步骤中发生第二次底物水平磷酸化。 以上为糖酵解第二个阶段。一分子的PGAL(phosphoglyceraldehyde)在酶的作用下生成一分子的丙酮酸。在此过程中,发生一次氧化反应生成一个分子的NADH,发生两次底物水平的磷酸化,生成2分子的ATP。这样,一个葡萄糖分子在糖酵解的第二阶段共生成4个ATP和2个NADH+H+,产物为2个丙酮酸。在糖酵解的第一阶段,一个葡萄糖分子活化中要消耗2个ATP,因此在糖酵解过程中一个葡萄糖生成2分子的丙酮酸的同时,净得2分子ATP,2分子NADH,和2分子水。2 三羧酸循环 线粒体基质 (1)乙酰-CoA进入三羧酸循环 乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰CoA作用,使乙酰CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthase)催化,是很强的放能反应。 由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸(α-ketoglutarate)、NADH能变构抑制其活性,长链脂酰CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用。 (2)异柠檬酸形成 柠檬酸的叔醇基不易氧化,转变成异柠檬酸(isocitrate)而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。 (3)第一次氧化脱羧 在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinic acid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α-ketoglutarate)、NADH和co2,此反应为β-氧化脱羧,此酶需要Mg2+作为激活剂。 此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。 (4)第二次氧化脱羧 在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰CoA(succincyl CoA)、NADH·H+和CO2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中。 α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、NAD+、FAD)组成。 此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受ATP、GTP、NADH和琥珀酰CoA抑制,但其不受磷酸化/去磷酸化的调控。 (5)底物磷酸化生成ATP 在琥珀酸硫激酶(succinate thiokinase)的作用下,琥珀酰CoA的硫酯键水解,释放的自由能用于合成GTP(三磷酸鸟苷 guanosine triphosphate),在细菌和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰CoA生成琥珀酸和辅酶A。 (6)琥珀酸脱氢 琥珀酸脱氢酶(succinate dehydrogenase)催化琥珀酸氧化成为延胡索酸(fumarate)。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的FAD,来自琥珀酸的电子通过FAD和铁硫中心,然后进入电子传递链到O2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。 (7)延胡索酸的水化 延胡索酸酶仅对延胡索酸的反式(反丁烯二酸) 双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。 (8)生成苹果酸(malate) (9)草酰乙酸再生 在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH·H+(图4-5)。 三羰酸循环总结: 乙酰CoA+3NAD++FAD+GDP+Pi—→2CO2+3NADH+FADH2+GTP+2H+ +CoA-SH ①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β氧化脱羧,辅酶是NAD+,它们先使底物脱氢生成草酰琥珀酸,然后在Mn2+或Mg2+的协同下,脱去羧基,生成α-酮戊二酸。 α-酮戊二酸脱氢酶系所催化的α氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。 应当指出,通过脱羧作用生成CO2,是机体内产生CO2的普遍规律,由此可见,机体CO2的生成与体外燃烧生成CO2的过程截然不同。 ②三羧酸循环的四次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体,分别还原生成NADH+H+和FADH2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成ATP,凡NADH+H+参与的递氢体系,每2H氧化成一分子H2O,每分子NADH最终产生2.5分子ATP,而FADH2参与的递氢体系则生成1.5分子ATP,再加上三羧酸循环中有一次底物磷酸化产生一分子ATP,那么,一分子柠檬酸参与三羧酸循环,直至循环终末共生成10分子ATP。 ③乙酰CoA中乙酰基的碳原子,乙酰CoA进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。 ④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。 例如 草酰乙酸——→天门冬氨酸 α-酮戊二酸——→谷氨酸 草酰乙酸——→丙酮酸——→丙氨酸 其中丙酮酸羧化酶催化的生成草酰乙酸的反应最为重要。 因为草酰乙酸的含量多少,直接影响循环的速度,因此不断补充草酰乙酸是使三羧酸循环得以顺利进行的关键。 三羧酸循环中生成 的苹果酸和草酰乙酸也可以脱羧生成丙酮酸,再参与合成许多其他物质或进一步氧化。3 氧化磷酸化 线粒体内膜 (一)α-磷酸甘油穿梭作用 这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。 胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的ATP比其他组织要少,1摩尔G→36摩尔ATP。 (二)苹果酸-天冬氨酸穿梭作用 主要存在肝和心肌中。1摩尔G→38摩尔ATP 胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后者再经酸性氨基酸载体转运出线粒体转变成草酰乙酸。3.(1)在构成基因的核苷酸序列中存在着一些最终翻译成蛋白的碱基段,每三个连续碱基(即三联“ 密码子”) 编码相应的氨基酸。其中有一个起始“密码子”--AUG/ATG和三个终止“ 密码子”,终止“ 密码子”提供 终止信号。当细胞机器沿着核酸合成蛋白链并使其不断延伸的过程中遇到终密码子时,蛋白的延伸反应终止,一个成熟(或提前终止的突变)蛋白产生。因此开放阅读框是基因序列的一部分,包含一段可以编码蛋白的 碱基序列。由于拥有特殊的起始密码子和直到可以从该段碱基序列产生合适大小蛋白才出现的终止密码子,该段碱基序列编码一个蛋白。开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。当一个新基因被识别,其DNA序列被解读,人们仍旧无法搞清相应的蛋白序列是什么。这是因为在没有其它信息的前提下,DNA序列可以按六种框架阅读和翻译(每条链三种,对应三种不同的起始密码子)。(2)
生物化学GDP有谁知道生物化学中GDP是什么?它含高能磷酸键吗
GTP是三磷酸鸟苷(GuanosineTriphosphate) 三磷酸鸟苷(GTP)即是鸟嘌呤-5"-三磷酸。在生物化学的全名为9-β-D-呋喃核糖鸟嘌呤-5"-三磷酸,或者是9-β-D-呋喃核糖-2-氨基-6-氧-嘌呤-5"-三磷酸。GTP是DNA复制时的引物(Primer,其实是RNA)和转录(即是mRNA的生物合成)时的鸟嘌呤核苷酸的提供者。它是三羧酸循环中琥珀酸辅酶A转变为琥珀酸过程中的能量载体,它可以和ATP相互转换。 GTP也是细胞信号传导的重要物质,在此过程中它会在GTPase作用下转化为GDP。
生物化学GDP有谁知道生物化学中GDP是什么?它含高能磷酸键吗
GTP是三磷酸鸟苷(GuanosineTriphosphate) 三磷酸鸟苷(GTP)即是鸟嘌呤-5"-三磷酸。在生物化学的全名为9-β-D-呋喃核糖鸟嘌呤-5"-三磷酸,或者是9-β-D-呋喃核糖-2-氨基-6-氧-嘌呤-5"-三磷酸。GTP是DNA复制时的引物(Primer,其实是RNA)和转录(即是mRNA的生物合成)时的鸟嘌呤核苷酸的提供者。它是三羧酸循环中琥珀酸辅酶A转变为琥珀酸过程中的能量载体,它可以和ATP相互转换。 GTP也是细胞信号传导的重要物质,在此过程中它会在GTPase作用下转化为GDP。
生物化学习题
多选。。。1.ACD高糖膳食后,血糖含量增加,导致胰岛素分泌增多,胰岛素可使血糖合成糖原,转化成非糖物质(糖异生),包括脂肪和蛋白质,但糖分解供能是有机体需要多少就转分解多少,血糖增加不能使糖分解供能加强2.AC蛋白质分子表面带有水化膜和同种电荷,若改变溶液的条件,破坏其水化膜和表面电荷,蛋白质亲水胶体便失去稳定性,发生絮结沉淀现象,即所谓的蛋白质沉淀作用。 因此影响蛋白质在液体中溶解的因素就是其表面带水化膜和表面电荷,形成蛋白质胶体溶液。 3.BCEA 合成在胞质中,分解在线粒体中,A错B乙酰辅酶A羧化酶 acetyl-CoA catboxyla-se 催化乙酰辅酶 A+ATP+HCO3-→丙二酰辅酶A+ADP+Pi反应的生物素酶。此反应制约着脂肪酸合成第一阶段的速度。B正确D分解产生的单体是乙酰-COA,合成的单位共体是 丙二酸单酰-ACP合成脂肪酸的直接原料是乙酰CoA,消耗ATP和NADPH,首先生成十六碳的软脂酸,经过加工生成人体各种脂肪酸,合成在细胞质中进行。 4.ABDEA碱基种类不同,DNA为A、T、C、G,RNA为A、U、C、GB戊糖不同,DNA为脱氧核糖,RNA为核糖C都是磷酸D DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。RNA 1)其中rRNA是核糖体的组成成分,由细胞核中的核仁合成,而mRNA tRNA 在蛋白质合成的不同阶段分别执行着不同功能。 2)mRNA是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息传递过程中的桥梁 3)tRNA的功能是携带符合要求的氨基酸,以连接成肽链,再经过加工形成蛋白质 E DNA一般以双链形式存在,RNA一般以单链形式存在。5.BC 从基本的说起,谷氨酰胺是二十种非基本氨基酸中的一种。说它非基本并不意味着谷氨酰胺不重要,而是因为人体可以自己产生这种物质。我们身上百分之六十的谷氨酰胺可以在附于骨骼上的肌肉里找到,其余部分存在于肺部、肝脏、脑部和胃部组织里。 人体内超过百分之六十的游离氨基酸以谷氨酰胺的形式出现。正常条件下人体可以过量产生谷氨酰胺以满足需要。不过,当压力大时,谷氨酰胺的储备会被耗尽,这时就需要通过摄取补剂来补充。6.ABD(以E.coli为例)7.CE转录:A 核苷酸 B RNA C 5"→3" D DNA聚合酶 E DNA链复制:A 脱氧核糖核苷酸 B DNA C 5"→3" D RNA聚合酶 E DNA链8.ADE1 产生NADPH(注意:不是NADH!NADPH不参与呼吸链) 2 生成磷酸核糖,为核酸代谢做物质准备 3 分解戊糖 氧化部分 第一步和糖酵解的第一步相同,在已糖激酶的催化下葡萄糖生成6磷酸葡萄糖。后来在6-磷酸葡萄糖脱氢酶(这也是磷酸戊糖途径的限速酶)(Glucose-6-phosphat-dehydrogenase),6-磷酸葡糖酸内酯酶(6-Phosphogluconolactonase)和6-磷酸葡萄糖酸脱氢酶(6-Phosphogluconatdehydrogenase)的帮助下生成5-磷酸核酮糖。 非氧化部分 其实是一系列的基团转移反应。在5-磷酸核酮糖的基础上可以通过一系列基团转移反应,将核糖转变成6-磷酸果糖和3-磷酸甘油醛而进入糖酵解途径。这需要有酶的帮助,比如转羟乙醛酶可以转移两个碳单位。而转二羟丙酮基酶则可转三个。 简答。。。1.糖酵解:总反应为:葡萄糖+2ATP+2ADP+2Pi+2NAD+ ——>2丙酮酸+4ATP+2NADH+2H++2H2O糖有氧氧化:CO2和水1分子葡萄糖净得ATP数 36ATP2.1 糖酵解 胞质 (1)葡萄糖磷酸化 葡萄糖氧化是放能反应,但葡萄糖是较稳定的化合物,要使之放能就必须给与活化能来推动此反应,即必须先使葡萄糖从稳定状态变为活跃状态,活化一个葡萄糖需要消耗1个ATP,一个ATP放出一个高能磷酸键,大约放出30.5kj自由能,大部分变为热量而散失,小部分使磷酸与葡萄糖结合生成葡萄糖-6-磷酸。催化酶为己糖激酶。 (2)葡萄糖-6-磷酸重排生成果糖-6-磷酸。催化酶为葡萄糖磷酸异构酶。 (3)生成果糖-1、6-二磷酸。催化酶为6-磷酸果糖激酶-1。 1个葡萄糖分子消耗了2个ATP分子而活化,经酶的催化生成果糖-1,6-二磷酸分子。 (4)果糖-1、6-二磷酸断裂成3-磷酸甘油醛(glyceraldehyde 3-phosphate)和磷酸二羟丙酮,催化酶为醛缩酶。 (5)磷酸二羟丙酮很快转变为3-磷酸甘油醛。催化酶为丙糖磷酸异构酶。 以上为第一阶段,1个6C的葡萄糖转化为2个3C化合物PGAL,消耗2个ATP用于葡萄糖的活化,如果以葡萄糖-1-磷酸形式进入糖酵解,仅消耗一个ATP。这一阶段没有发生氧化还原反应。 (6)3-磷酸甘油醛氧化生成1、3-二磷酸甘油酸(1,3-diphosphoglycerate),释放出两个电子和一个H+, 传递给电子受体NAD+,生成NADH+ H+,并且将能量转移到高能磷酸键中。催化酶为3-磷酸甘油脱氢酶。 (7)不稳定的1、3-二磷酸甘油酸失去高能磷酸键,生成3-磷酸甘油酸(3-phosphoglycerate),能量转移到ATP中,一个1、3-二磷酸甘油酸生成一个ATP。催化酶为磷酸甘油酸激酶。此步骤中发生第一次底物水平磷酸化 (8)3-磷酸甘油酸重排生成2-磷酸甘油酸(2-phosphoglycerate)。催化酶为磷酸甘油酸变位酶。 (9)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸PEP(phospho-enol-pyruvate)。催化酶为烯醇化酶。 (10)PEP将磷酸基团转移给ADP生成ATP,同时形成丙酮酸。催化酶为丙酮酸激酶。此步骤中发生第二次底物水平磷酸化。 以上为糖酵解第二个阶段。一分子的PGAL(phosphoglyceraldehyde)在酶的作用下生成一分子的丙酮酸。在此过程中,发生一次氧化反应生成一个分子的NADH,发生两次底物水平的磷酸化,生成2分子的ATP。这样,一个葡萄糖分子在糖酵解的第二阶段共生成4个ATP和2个NADH+H+,产物为2个丙酮酸。在糖酵解的第一阶段,一个葡萄糖分子活化中要消耗2个ATP,因此在糖酵解过程中一个葡萄糖生成2分子的丙酮酸的同时,净得2分子ATP,2分子NADH,和2分子水。2 三羧酸循环 线粒体基质 (1)乙酰-CoA进入三羧酸循环 乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰CoA作用,使乙酰CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthase)催化,是很强的放能反应。 由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸(α-ketoglutarate)、NADH能变构抑制其活性,长链脂酰CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用。 (2)异柠檬酸形成 柠檬酸的叔醇基不易氧化,转变成异柠檬酸(isocitrate)而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。 (3)第一次氧化脱羧 在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinic acid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α-ketoglutarate)、NADH和co2,此反应为β-氧化脱羧,此酶需要Mg2+作为激活剂。 此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。 (4)第二次氧化脱羧 在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰CoA(succincyl CoA)、NADH·H+和CO2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中。 α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、NAD+、FAD)组成。 此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受ATP、GTP、NADH和琥珀酰CoA抑制,但其不受磷酸化/去磷酸化的调控。 (5)底物磷酸化生成ATP 在琥珀酸硫激酶(succinate thiokinase)的作用下,琥珀酰CoA的硫酯键水解,释放的自由能用于合成GTP(三磷酸鸟苷 guanosine triphosphate),在细菌和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰CoA生成琥珀酸和辅酶A。 (6)琥珀酸脱氢 琥珀酸脱氢酶(succinate dehydrogenase)催化琥珀酸氧化成为延胡索酸(fumarate)。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的FAD,来自琥珀酸的电子通过FAD和铁硫中心,然后进入电子传递链到O2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。 (7)延胡索酸的水化 延胡索酸酶仅对延胡索酸的反式(反丁烯二酸) 双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。 (8)生成苹果酸(malate) (9)草酰乙酸再生 在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH·H+(图4-5)。 三羰酸循环总结: 乙酰CoA+3NAD++FAD+GDP+Pi—→2CO2+3NADH+FADH2+GTP+2H+ +CoA-SH ①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β氧化脱羧,辅酶是NAD+,它们先使底物脱氢生成草酰琥珀酸,然后在Mn2+或Mg2+的协同下,脱去羧基,生成α-酮戊二酸。 α-酮戊二酸脱氢酶系所催化的α氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。 应当指出,通过脱羧作用生成CO2,是机体内产生CO2的普遍规律,由此可见,机体CO2的生成与体外燃烧生成CO2的过程截然不同。 ②三羧酸循环的四次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体,分别还原生成NADH+H+和FADH2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成ATP,凡NADH+H+参与的递氢体系,每2H氧化成一分子H2O,每分子NADH最终产生2.5分子ATP,而FADH2参与的递氢体系则生成1.5分子ATP,再加上三羧酸循环中有一次底物磷酸化产生一分子ATP,那么,一分子柠檬酸参与三羧酸循环,直至循环终末共生成10分子ATP。 ③乙酰CoA中乙酰基的碳原子,乙酰CoA进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。 ④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。 例如 草酰乙酸——→天门冬氨酸 α-酮戊二酸——→谷氨酸 草酰乙酸——→丙酮酸——→丙氨酸 其中丙酮酸羧化酶催化的生成草酰乙酸的反应最为重要。 因为草酰乙酸的含量多少,直接影响循环的速度,因此不断补充草酰乙酸是使三羧酸循环得以顺利进行的关键。 三羧酸循环中生成 的苹果酸和草酰乙酸也可以脱羧生成丙酮酸,再参与合成许多其他物质或进一步氧化。3 氧化磷酸化 线粒体内膜 (一)α-磷酸甘油穿梭作用 这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。 胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的ATP比其他组织要少,1摩尔G→36摩尔ATP。 (二)苹果酸-天冬氨酸穿梭作用 主要存在肝和心肌中。1摩尔G→38摩尔ATP 胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后者再经酸性氨基酸载体转运出线粒体转变成草酰乙酸。3.(1)在构成基因的核苷酸序列中存在着一些最终翻译成蛋白的碱基段,每三个连续碱基(即三联“ 密码子”) 编码相应的氨基酸。其中有一个起始“密码子”--AUG/ATG和三个终止“ 密码子”,终止“ 密码子”提供 终止信号。当细胞机器沿着核酸合成蛋白链并使其不断延伸的过程中遇到终密码子时,蛋白的延伸反应终止,一个成熟(或提前终止的突变)蛋白产生。因此开放阅读框是基因序列的一部分,包含一段可以编码蛋白的 碱基序列。由于拥有特殊的起始密码子和直到可以从该段碱基序列产生合适大小蛋白才出现的终止密码子,该段碱基序列编码一个蛋白。开放阅读框是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。当一个新基因被识别,其DNA序列被解读,人们仍旧无法搞清相应的蛋白序列是什么。这是因为在没有其它信息的前提下,DNA序列可以按六种框架阅读和翻译(每条链三种,对应三种不同的起始密码子)。(2) 现在有人知道么?弱弱的说。。单选。。。你就不能少点?!疯了先。。。
有谁知道生物化学中GDP是什么
GDP 二磷酸鸟苷(Guanosine diphosphate)二磷酸鸟苷(Guanosine diphosphate,缩写GDP),也称鸟苷二磷酸,是一种核苷酸,组成物是焦磷酸基团、五碳糖、以及碱基鸟嘌呤. GDP是三磷酸鸟苷(GTP)经过去磷酸化之后的产物,催化此作用的酵素是GTPase.GTP是三磷酸鸟苷(Guanosine Triphosphate) 三磷酸鸟苷 (GTP)即是鸟嘌呤-5"-三磷酸.在生物化学的全名为9-β-D-呋喃核糖鸟嘌呤-5"-三磷酸,或者是9-β-D-呋喃核糖-2-氨基-6-氧-嘌呤-5"-三磷酸.GTP是DNA复制时的引物(Primer,其实是RNA)和转录(即是mRNA的生物合成)时的鸟嘌呤核苷酸的提供者.它是三羧酸循环中琥珀酸辅酶A转变为琥珀酸过程中的能量载体,它可以和ATP相互转换. GTP也是细胞信号传导的重要物质,在此过程中它会在GTPase作用下转化为GDP.
生物化学中gdp是什么意思
生物化学中gdp是什么意思GDP 二磷酸鸟苷(Guanosine diphosphate)二磷酸鸟苷(Guanosine diphosphate,缩写GDP),也称鸟苷二磷酸,是一种核苷酸,组成物是焦磷酸基团、五碳糖、以及碱基鸟嘌呤. GDP是三磷酸鸟苷(GTP)经过去磷酸化之后的产物,催化此作用的酵素是GTPase.
“辅酶”的概念及化学本质。谢谢。
辅酶:作为酶的辅因子的有机分子,本身无催化作用,但一般在酶促反应中有传递电子、原子或某些功能基团(如参与氧化还原或运载酰基的基团)的作用。在大多数情况下,可通过透析将辅酶除去。
“辅酶”的概念及化学本质。谢谢。
辅酶(coenzyme)是一类可以将化学基团从一个酶转移到另一个酶上的有机小分子,与酶较为松散地结合,对于特定酶的活性发挥是必要的。有许多维他命及其衍生物,如核黄素、硫胺素和叶酸,都属于辅酶。这些化合物无法由人体合成,必须通过饮食补充。不同的辅酶能够携带的化学基团也不同:NAD或NADP+携带氢离子,辅酶A携带乙酰基,叶酸携带甲酰基,S-腺苷基蛋氨酸也可携带甲酰基。它是辐因子的一种.酶通常是由两部分构成,即蛋白质与辅因子.广义上说,凡能促进酶及反应物进入活化状态从而加速酶催化反应的物质都能称为辅因子,它包括种类很广的物质。英汉生化词典将辅因子(cofactors)定义为“一种酶的活性所需要的一种非蛋白质成分”。这种辅因子可能是一种金属离子激活剂或一种有机分子(辅酶)。它们或松或紧地与酶相结合;紧密接合的辅因子称为“辅基”
化学:环状有机化合物中的原子是如何标号的
主要的是使杂原子编号最小,编号之和最小葡萄糖如果是开链结构,以醛基碳标为1,依次是2,3……如果是吡喃环状结构,以离氧原子最近的没有支链的碳标为1,依次为2,3……支链上的碳标为6;呋喃环状结构类似嘌呤是以嘧啶环上远离吡咯环的氮原子为1,靠近吡咯环的为3,,吡咯环上的氮标为9嘧啶是以氮原子为1,另一个氮原子为3标号尿酸又叫做2,6,8-三氧嘌呤,和嘌呤编号相同尿囊素以四氢咪唑环上连有支链的碳编为1,靠近这个碳原子的氮编为2,另一个氮编为4,命名为1-甲酰胺基氨基-3,5-二氧-2,4-氮杂环戊烷
求有机化学高手解释下这个题~为什么是6,怎么数的?
嘌呤环的编号方式是固定的,即是从嘧啶环的N为1开始编号,按照杂原子位数和最小原则向下编号,先编嘧啶环,然后第七位开始编咪唑环,同样是从N开始。这是别人的回答,感觉很细致了,原链接如下:http://zhidao.baidu.com/link?url=U1bMqwPHEg3_8EpQC72II0AaZyBUTRI3dygVP9Xepr6_c1VINFn_tm2IPIFzNsuURfBgZsx-mcCi-nR9bFgGfa
求生物化学--嘧啶核苷酸的合成 ppt课件
嘧啶核苷酸的生物合成 嘧啶核苷酸的从头合成与嘌呤核苷酸不同,嘧啶环的元素来源于谷氨酰胺、二氧化碳和天冬氨酸,其特点是首先将这些原料合成嘧啶环,然后与PRPP反应生成。 ①嘧啶环的合成:谷氨酰胺、二氧化碳在胞液中由ATP供能,氨基甲酰合成酶Ⅱ催化下,生成氨基甲酰磷酸。后者又在天冬氨酸转氨甲酰酶催化下,将氨基甲酰基转移到天冬氨酸的氨基上生成氨甲酰天冬氨酸。氨甲酰天冬氨酸脱水环化,生成二氢乳清酸,再脱氢即成乳清酸(嘧啶衍生物)。 ②尿嘧啶核苷酸(UMP)和胞嘧啶核苷酸(cMP)合成:乳清酸与PRPP作用生成乳清酸核苷酸,后者脱羧即成尿苷酸。 尿苷酸是所有其他嘧啶核苷酸的前体。由尿嘧啶核苷酸转变成胞嘧啶核苷酸是在核苷三磷酸水平上进行的。UMP经相应的激酶催化而生成UDP和UTP,由谷氨酰胺提供氨基,使UTP转变为CTP。
羧基 羟基 醛基各有什么化学特征
羟基:能与羧基酯化生成酯类 能氧化生成醛(连续氧化生成羧基) 能在酸性条件下发生消去醛基:与H2还原成羟基 能氧化生成羧基 与银铵溶液发生银镜反应 与新制Cu(OH)2溶液反应生成红色Cu2O沉淀羧基:酸性,能与碱反应 能与羟基酯化生成酯类 能与H2反应还原成醛基.羟基酯基:在酸性或碱性条件下水解
羧基与什么化学物质发生反应?
羧基显酸性,可以和碱,一些无机盐,活泼金属等发生反应。还可以和醇发生酯化反应。
关于羧基的反应化学式
一、羧基可以把COOH中的H在水中电离出来,生成H+ 所以具有以下酸的通性—— 1、与活泼金属反映(如Na、K等) 2、与碱反应(与NaOH等) 3、使指示剂变色(石蕊试液等) 4、与金属氧化物反应(如Na2O、CaO等) 5、与某些盐反应(比醋酸弱的,如碳酸等)二、羧基可以与羟基发生酯化反应 酸的羧基脱去一个羟基,-COOH --> -C(=O)- 醇的羟基脱去一个氢,-OH --> -O- 脱去的羧基和氢结合成一个水 剩余的连接起来,生成酯基,-COO-三、CH3-这个甲基上还可以进行取代反应啊~(差点把这个最简单的给漏了~~) 想起来的就这些了~~望采纳 (^_^)
关于羧基的反应化学式
一、羧基可以把COOH中的H在水中电离出来,生成H+所以具有以下酸的通性——1、与活泼金属反映(如Na、K等)2、与碱反应(与NaOH等)3、使指示剂变色(石蕊试液等)4、与金属氧化物反应(如Na2O、CaO等)5、与某些盐反应(比醋酸弱的,如碳酸等)二、羧基可以与羟基发生酯化反应酸的羧基脱去一个羟基,-COOH-->-C(=O)-醇的羟基脱去一个氢,-OH-->-O-脱去的羧基和氢结合成一个水剩余的连接起来,生成酯基,-COO-三、CH3-这个甲基上还可以进行取代反应啊~(差点把这个最简单的给漏了~~)想起来的就这些了~~望采纳(^_^)
羧基 羟基 醛基各有什么化学特征
羟基:能与羧基酯化生成酯类能氧化生成醛(连续氧化生成羧基)能在酸性条件下发生消去醛基:与H2还原成羟基能氧化生成羧基与银铵溶液发生银镜反应与新制Cu(OH)2溶液反应生成红色Cu2O沉淀羧基:酸性,能与碱反应能与羟基酯化生成酯类能与H2反应还原成醛基.羟基酯基:在酸性或碱性条件下水解
高中化学羧基这个名称怎么来的?
羧基的名称是根据英语的carboxyl 来的。英语的羰基和羟基分别是:carbonyl, hydroxyl.羧酸是RCOOH,英语的carbonyl和hydroxyl结合,就是carboxyl, 称为羧基。
羧基的化学性质
羧基的性质并非羰基和羟基的简单加和。例如,羧基中的羰基在羟基的影响下变得很不活泼,不跟HCN、NaHSO₃等亲核试剂发生加成反应,而它的羟基氢比醇羟基氢更容易解离,显示弱酸性。在羧酸盐的阴离子中,由于电子的离域作用,发生键的平均化。因此它的两个碳氧键实际上是完全相等的。另外,羧基不能被还原成醛基,要还原羧基必定是用很强的还原剂(LiAlH₄),生成的醛会立即被还原。此外由于羧基的特殊结构,使它还具有一定醛基(-CHO)的性质。扩展资料羧基和羟基是有机化学领域基本的两种官能团,也是生物体内常见的基团。因此,羧基和羟基的官能团保护毫无疑问具有非常重要的科学意义和实用价值。羧基和羟基常见的保护方法一般是酯化反应。传统的酯化反应一般使用化学计量的酸或碱作为助剂,导致产生大量的盐废物,复杂化后处理过程并且污染环境。作者发展的方法在不需要酸或碱、温和的情况下使用铁催化剂实现了羧酸和羟基的官能团保护。该方法操作方便、后处理非常简单,对大部分底物来说只需要抽滤旋干就能得到纯度较高的目标产物。底物同时含有羧基和羟基时,反应能一锅法同时实现两种官能团的保护。参考资料来源:百度百科-羧基
羧基的化学性质
羧基的性质并非羰基和羟基的简单加和。例如,羧基中的羰基在羟基的影响下变得很不活泼,不跟HCN、NaHSOu2083等亲核试剂发生加成反应,而它的羟基氢比醇羟基氢更容易解离,显示弱酸性。在羧酸盐的阴离子中,由于电子的离域作用,发生键的平均化。因此它的两个碳氧键实际上是完全相等的。另外,羧基不能被还原成醛基,要还原羧基必定是用很强的还原剂(LiAlHu2084),生成的醛会立即被还原。此外由于羧基的特殊结构,使它还具有一定醛基(-CHO)的性质。扩展资料羧基和羟基是有机化学领域基本的两种官能团,也是生物体内常见的基团。因此,羧基和羟基的官能团保护毫无疑问具有非常重要的科学意义和实用价值。羧基和羟基常见的保护方法一般是酯化反应。传统的酯化反应一般使用化学计量的酸或碱作为助剂,导致产生大量的盐废物,复杂化后处理过程并且污染环境。作者发展的方法在不需要酸或碱、温和的情况下使用铁催化剂实现了羧酸和羟基的官能团保护。该方法操作方便、后处理非常简单,对大部分底物来说只需要抽滤旋干就能得到纯度较高的目标产物。底物同时含有羧基和羟基时,反应能一锅法同时实现两种官能团的保护。参考资料来源:百度百科-羧基
羧基的化学性质
答:碳碳双键:易加成,与卤素,氢气,卤化氢,水加成;易被强氧化剂如酸性高锰酸钾氧化 羧基:具有酸的通性,可与活泼金属反应,可与羟基(如醇)发生酯化。 羟基:易与羧基酯化,发生消去反应,羟基氢可被活泼金属如钾钙钠等金属置换等谢谢采纳 ~雨霁月 ^_^
羧酸化学式
羧酸化学式为R-COOH。羧酸属于最常见的有机酸,是带有羧基的有机化合物,通式是R-COOH。饱和一元羧酸的沸点甚至比相对分子质量相似的醇还高。例如:甲酸与乙醇的相对分子质量相同,但乙醇的沸点为78.5℃,而甲酸为100.7℃。羧酸是非常重要的一类化学物质,还可以衍生出不少常见的其他化学物质,主要有:酰卤、酸酐、酯和酰胺等。这几类羧酸衍生物都各具特性,这些均在化学工业中有重要的应用。羧酸分子中烃基上的氢原子被其他具有官能团性质的原子或基团取代的化合物,称为取代羧酸,根据取代官能团的不同,可以分为卤代酸、羟基酸、羰基酸和氨基酸。许多羟基酸和羰基酸是生物代谢的中间产物;氨基酸则是构成蛋白质的本结构单元。物理性质是羧基是亲水基,与水可以形成氢键,所以低级羧酸能与水任意比互溶;随着相对分子质量的增加,憎水基愈大,在水中的溶解度越小。饱和一元羧酸中,甲酸、乙酸、丙酸具有强烈酸味和刺激性。含有4至9个C原子的具有腐败恶臭,是油状液体。
(化学)羧基显几价
有机化学里一般不讨论化合价的,如果讨论,就是把H当+1价,氧作-2价,然后再算碳的化合价。所以这个羧基整体显几价要对于具体有机分子分析。
高二化学 羧基能否分解为羰基和羟基?
不可以,原因是:C=O上的C具有强的吸电子性,和-OH上的O原子形成比较稳定的体系,当其他电子进攻-COOH时,H+电离出,C=O和-OH不能分开。因此不能将羧基分解看为羟基和羰基
甲酰水杨酸的化学式?
C8H6O4
甲酰基化学式 是什么
甲酰基 -COH
醛基 甲酰基 是同一个基团吗?看化学式好像都是CHO 吧?
是同一基团在不同情况下的不同名称。你会有机物的命名吧。当该基团在母体上时,它叫醛基,该有机物叫某某醛;做取代基时,它叫甲酰基,该有机物叫x-甲酰基-某某。
醛基 甲酰基 是同一个基团吗?看化学式好像都是CHO 吧?
是同一基团在不同情况下的不同名称。你会有机物的命名吧。当该基团在母体上时,它叫醛基,该有机物叫某某醛;做取代基时,它叫甲酰基,该有机物叫x-甲酰基-某某。
醛基 甲酰基 是同一个基团吗?看化学式好像都是CHO
是同一基团在不同情况下的不同名称. 你会有机物的命名吧.当该基团在母体上时,它叫醛基,该有机物叫某某醛;做取代基时,它叫甲酰基,该有机物叫x-甲酰基-某某.
生物化学 甲酰甲硫是不是由内含子转录出来的,所以真核细胞里剪掉了?
不是首先甲酰甲硫氨酸主要是原核生物(包括真核生物相关细胞器,如线粒体和叶绿体,可以把它们看成原核生物)用于起始翻译的氨基酸,在某些肽链翻译结束后会被切除。密码子为AUG或GUG。是存在于编码链上的。原核生物(不包括古生菌)没有内含子。甲酰甲硫氨酸并不用于真核生物蛋白质起始合成,它亦不被用于古菌中(所以有学说认为真核生物是由古生菌进化而来)。在人体中,N-甲酰甲硫氨酸还会被免疫系统识别为外源性物质并刺激机体引起免疫反应。
甲酰基化学结构和化学式是怎样的?
HCO 就是甲酸去掉羟基。
甲酰基化学式是什么 甲酰基化学式
1、甲酰基 -COH。 2、可以看作甲酸分子中去掉羟基后,剩下的一价基团(-CHO)。实际上就是醛基(aldehyde group)。 3、苯甲酰基 benzoyl group。 4、甲酰基吡啶benzoylpyridines 有三种异构体。均具芳酮的一般性质。 5、2-甲酰基吡啶:沸点317℃,熔点42~44℃;溶于氯仿;其主要衍生物有肟(Z)-(熔点150.5~152.5℃),肟(E)-(熔点165~167℃),苯腙(熔点137~138℃)。 6、3-甲酰基吡啶:沸点307℃,熔点39℃;其主要衍生物有肟(Z)-(熔点142℃),肟(E)-(熔点162℃),苯腙(熔点143.5℃)。 7、4-甲酰基吡啶:沸点315℃,熔点71.5~72.5℃;溶于乙醇、乙醚及苯;其主要衍生物有肟(Z)-(熔点152~155℃),肟(E)-(熔点176~177℃,分解),苯腙(熔点181~182℃)。 8、用苯与吡啶碳酰氯发生弗-克酰基化反应(Friedel-Crafts acylation)或用高锰酸钾氧化相应的苄基吡啶,以及用相应的氰基吡啶与格利雅试剂作用制得。
甲酰化学式
【中文名称】N-苯基苯甲酰胺;苯甲酰苯胺【英文名称】N-Phenyl benzamide【结构或分子式】分子结构:所有苯环及双键C、O原子均以sp2杂化轨道形成σ键。N原子以sp3杂化轨道形成σ键。 【相对分子量或原子量】197.24【密度】1.315(25℃)【熔点(℃)】163【沸点(℃)】117~119(1.33E3Pa)【性状】 从乙醇中析出者为无色至白色针状结晶。【溶解情况】 不溶于水,微溶于乙醚,溶于乙醇、乙酸,易溶于热乙醇、苯。【用途】 制备农药如杀虫剂、植物生长调节剂等的原料;香料及医药的中间体。【制备或来源】 以苯甲酸和苯胺为原料,在180~190℃下进行缩合反应,减压蒸馏、冷却、结晶、在乙醚(或乙醇)中重结晶而得。【其他】 能升华,可蒸馏而不分解。
简述染色质成分哪些化学修饰在表观遗传学中对细胞的哪些表达水平起到调控分化作用?
所谓表观遗传学,就是不改变基因的序列,通过对基因的修饰来调控基因的表达.所以,基因表达的表观遗传学调控,就是通过各种表观遗传的修饰方式来对基因进行调控.目前,已知的表观遗传现象有:DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等.
咖啡因的化学基本母核是什么?
咖啡因的化学基本母核是黄嘌呤,其结构式为:咖啡因,又名三甲基黄嘌呤,是一种黄嘌呤生物碱化合物,是一种中枢神经兴奋剂,能够暂时的驱走睡意并恢复精力。有咖啡因成分的咖啡、茶、软饮料及能量饮料十分畅销,因此,咖啡因也是世界上最普遍被使用的精神药品。
HAT选择性培养基中H、A、T分别代表哪种成分?常用的化学融合剂是哪种物
HAT(H—Hypoxanthine次黄嘌呤,A—Aminopterin甲氨喋呤,T——Thymidine 胸腺嘧啶核苷)培养基的选择培养。HAT培养基也就是指含有这三种物质的细胞培养基。对£具有合成DNA原料的核苷酸的形成上,在细胞内具有起始合成途径(denovopathway)和中间合成途径(salvagepathway)。中间合成途径包括:通过HGPRT的催化作用把次黄嘌呤转化成次黄嘌呤核苷-磷酸(IMP),通过TK的催化把胸腺嘧啶核苷转化成脱氧胸腺嘧啶核苷-磷酸(dTMP),再进一步合成核酸。由于氨基蝶呤可阻碍起始合成途径,所以培养基中含有它时,细胞便只有中间合成途径,所以必须供给核苷酸。至于缺失中间合成途径的细胞,可失去增殖能力臻于死亡。根据这一点,不仅把混存于细胞群中的正常细胞,通过试管内培养进行选择,例如嘌呤的中间合成途径缺失株和嘧啶的中间合成途径缺失株,由于可以互补,所以两者的杂种细胞,即使在氨基蝶呤的存在条件下也可以增殖。在这种情况下,利用HAT培养基可对杂种细胞进行选择。次黄嘌呤和胸腺嘧啶脱氧核苷可作为中间合成途径的原料而进行添加。
甲氨蝶呤的化学结构类似于
【答案】:A1.氮杂丝氨酸类似谷氨酰胺,可抑制UTP→CTP的生成。2.甲氨蝶呤是叶酸的类似物,能竞争性抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制嘌呤核苷酸的合成,用于肿瘤的治疗。3.6-巯基嘌呤(6MP)的化学结构与次黄嘌呤类似,能竞争性抑制次黄嘌呤一鸟嘌呤磷酸核糖转移酶(HGPRT),阻止嘌呤核苷酸的补救合成途径。4.别嘌呤与次黄嘌呤类似,只是分子中N与G互换了位置,故可抑制黄嘌呤氧化酶,从而抑制尿酸的生成,用于治疗痛风症。5.5-氟尿嘧啶(5-FU)的结构与胸腺嘧啶类似,在体内可转变成FdUMP及FUTP。FdUMP与dUMP的结构类似,是胸苷酸合酶的抑制剂,使dTMP合成受阻,干扰RNA分子的合成,从而达到抗肿瘤的目的。
5-氟尿嘧啶的化学结构类似于
正确答案:D解析:1.氮杂丝氨酸类似谷氨酰胺,可抑制UTP→CTP的生成。2.甲氨蝶呤是叶酸的类似物,能竞争性抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制嘌呤核苷酸的合成,用于肿瘤的治疗。3.6-巯基嘌呤(6MP)的化学结构与次黄嘌呤类似,能竞争性抑制次黄嘌呤一鸟嘌呤磷酸核糖转移酶(HGPRT),阻止嘌呤核苷酸的补救合成途径。4.别嘌呤与次黄嘌呤类似,只是分子中N[XB7.gif]与G[XB8.gif]互换了位置,故可抑制黄嘌呤氧化酶,从而抑制尿酸的生成,用于治疗痛风症。5.5-氟尿嘧啶(5-FU)的结构与胸腺嘧啶类似,在体内可转变成FdUMP及FUTP。FdUMP与dUMP的结构类似,是胸苷酸合酶的抑制剂,使dTMP合成受阻,干扰RNA分子的合成,从而达到抗肿瘤的目的。
5-氟尿嘧啶的化学结构类似于
正确答案:D解析:1.氮杂丝氨酸类似谷氨酰胺,可抑制UTP→CTP的生成。2.甲氨蝶呤是叶酸的类似物,能竞争性抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制嘌呤核苷酸的合成,用于肿瘤的治疗。3.6-巯基嘌呤(6MP)的化学结构与次黄嘌呤类似,能竞争性抑制次黄嘌呤一鸟嘌呤磷酸核糖转移酶(HGPRT),阻止嘌呤核苷酸的补救合成途径。4.别嘌呤与次黄嘌呤类似,只是分子中N[XB7.gif]与G[XB8.gif]互换了位置,故可抑制黄嘌呤氧化酶,从而抑制尿酸的生成,用于治疗痛风症。5.5-氟尿嘧啶(5-FU)的结构与胸腺嘧啶类似,在体内可转变成FdUMP及FUTP。FdUMP与dUMP的结构类似,是胸苷酸合酶的抑制剂,使dTMP合成受阻,干扰RNA分子的合成,从而达到抗肿瘤的目的。
氮杂丝氨酸的化学结构类似于
【答案】:C1.氮杂丝氨酸类似谷氨酰胺,可抑制UTP→CTP的生成。2.甲氨蝶呤是叶酸的类似物,能竞争性抑制二氢叶酸还原酶,使叶酸不能还原成二氢叶酸及四氢叶酸,从而抑制嘌呤核苷酸的合成,用于肿瘤的治疗。3.6-巯基嘌呤(6MP)的化学结构与次黄嘌呤类似,能竞争性抑制次黄嘌呤一鸟嘌呤磷酸核糖转移酶(HGPRT),阻止嘌呤核苷酸的补救合成途径。4.别嘌呤与次黄嘌呤类似,只是分子中N与G互换了位置,故可抑制黄嘌呤氧化酶,从而抑制尿酸的生成,用于治疗痛风症。5.5-氟尿嘧啶(5-FU)的结构与胸腺嘧啶类似,在体内可转变成FdUMP及FUTP。FdUMP与dUMP的结构类似,是胸苷酸合酶的抑制剂,使dTMP合成受阻,干扰RNA分子的合成,从而达到抗肿瘤的目的。
次黄嘌呤可以与哪些碱基配对?说明其生物学意义 生物化学考研题,跪求答案,急!
次黄嘌呤是稀有碱基,可以与A、C、U配对;体外试验表明,有些情况下也可与与G配对;该现象称为摆动现象。由于存在摆动现象,使得一个tRNA反密码子可以和一个以上的mRNA密码子结合。从而降低了因基因突变导致编码的氨基酸改变的可能性。如果满意还请采纳,谢谢~
腺嘌呤 黄嘌呤 次黄嘌呤的化学结构式及它们之间的代谢关系是什么?
腺苷酸分解产生次黄嘌呤,次黄嘌呤氧化成黄嘌呤。
核酸的化学成分是什么?
核酸是生物体内的高分子化合物,包括DNA和RNA两大类. 一、元素组成 组成核酸的元素有C、H、O、N、P等,与蛋白质比较,其组成上有两个特点:一是核酸一般不含元素S,二是核酸中P元素的含量较多并且恒定,约占9~10%.因此,核酸定量测定的经典方法,是以测定P含量来代表核酸量. 二、化学组成与基本单位 核酸经水解可得到很多核苷酸,因此核苷酸是核酸的基本单位.核酸就是由很多单核苷酸聚合形成的多聚核苷酸.核苷酸可被水解产生核苷和磷酸,核苷还可再进一步水解,产生戊糖和含氮碱基(图15-1). 核苷酸中的碱基均为含氮杂环化合物,它们分别属于嘌呤衍生物和嘧啶衍生物.核苷酸中的嘌呤碱(purine)主要是鸟嘌呤(guanine,G)和腺嘌呤(adenine,A),嘧啶碱(pyrimidine)主要是胞嘧啶(cytosine,C)、尿嘧啶(uracil,U)和胸腺嘧啶(thymine,T).DNA和RNA都含有鸟嘌呤(G)、腺嘌呤(A)和胞嘧啶(C);胸腺嘧啶(T)一般而言只存在于DNA中,不存在于RNA中;而尿嘧啶(U)只存在于RNA中,不存在于DNA中.它们的化学结构请参见图示. 核酸中五种碱基中的酮基和氨基,均位于碱基环中氮原子的邻位,可以发生酮式一烯醇式或氨基ue011亚氨基之间的结构互变.这种互变异构在基因的突变和生物的进化中具有重要作用. 有些核酸中还含有修饰碱基(modified component),(或稀有碱基,unusual com ponent),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物.一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一.DNA中的修饰碱基主要见于噬菌体DNA,如5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶hm5C;RNA中以tRNA含修饰碱基最多,如1-甲基腺嘌呤(m1A),2,2一二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等.
核酸内的化学物质?
核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。核酸完全水解产生嘌呤和嘧啶等碱性物质、戊糖(核糖或脱氧核糖)和磷酸的混合物。核酸部分水解则产生核酸和核苷酸。每个核苷分子含一分子碱基和一分子戊糖,一分子核苷酸部分水解后除产生核苷外,还有一分子磷酸。核苷酸的组成单个核苷酸是由含氮有机碱(称碱基)、戊糖(即五碳糖)和磷酸三部分构成的。碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶>;(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。戊糖(五碳糖):RNA中的戊糖是D-核糖(即在2号位上连接的是一个羟基),DNA中的戊糖是D-2-脱氧核糖(即在2号位上只连一个H)。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3"和C-5"所连的羟基上形成的,故构成核酸的核苷酸可视为3"-核苷酸或5"-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。
核酸的结构和功能属于哪个生物化学阶段
核酸的结构与功能在生物化学中属于合成遗传信息的最终阶段,核酸是生物体内极其重要的生物大分子,是生物遗传信息的携带者与物质基础。关于这一部分的知识可以在《动物生物化学》、《高级生物化学》和《生物化学百科全书》等书籍中有所收获。
化学修饰剂dfp的全称
化学修饰剂dfp的全称:In biochemistry, chemical modification is the technique of chemically reacting a protein or nucleic acid with chemical reagents.GR:Guaranteed reagent(优级纯试剂)AR:Analytial reagent(分析纯试剂)CP:Chemical pure(化学纯试剂)LR:Laboratory reagent(实验试剂)化学修饰测序法是化学试剂处理末段DNA片段,造成碱基的特异性切割,产生一组具有各种不同长度的DNA链的反应混合物,经凝胶电泳分离进而测序。化学切割反应:包括碱基的修饰,修饰的碱基从其糖环上转移出去在失去碱基的糖环处DNA断裂。碱基是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。以上内容参考:百度百科-化学修饰测序法
核酸的化学成分是什么?
核酸分DNA,RNA,主要成分包括碱基,磷酸,五炭糖
羰基的化学结构式是什么?
结构如下:O||C-C-C严格的羰基的定义,除了有C-O双键外,那个碳必须和另外2个碳或者2个氢相连。根据这个严格的定义,羧基或者酯基都不算羰基。扩展的羰基的定义,只是强调C-O双键,不重视那个碳的周围是什么原子。根据这个定义,羧基和酯基都包括一个羰基。于是你可能常常听到,酯羰基,酮羰基,等类似的名词。
羰基有什么化学性质?
羰基 由碳和氧两种原子通过双键连接而成的有机官能团(C=O)。是醛,酮,羧酸,羧酸衍生物等官能团的组成部分。 物理性质:具有强红外吸收。 化学性质:由于氧的强吸电子性,碳原子上易发生亲核加成反应。其它常见化学反应包括:亲核还原反应,羟醛缩合反应。 羰基 (tāng jī) carbonyl group 由碳原子与一个氧原子通过双键相结合而成的二价基团。构成羰基的碳原子的另外两个键 ,可以单键或双键的形式与其他原子或基团相结合而成为羰基化合物羰基化合物可分为醛酮类和羧酸类两类 :① 醛酮类 ,如醛R-CH=O、酮R-CO-R;②羧酸类,如羧酸R-CO-OH、羧酸酯R-CO-ORˊ 、酸酐R-CO-O-CO-Rˊ 、 酰基过氧化R-CO-O-O-CO-Rˊ、酰胺R-CO-NH2、酰卤R-CO-X(X为F、Cl、Br、I)、烯酮 R-CH=C=O、异氰酸酯R-N=C=O。羰基的性质很活泼,容易起加成反应,如与氢生成醇。二、反应 1、α-氢的反应 (1)羟醛缩合 在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。 羟醛缩合反应历程,以乙醛为例说明如下: 第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子: 第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。 第三步,烷氧负离子与水作用得到羟醛和OH。 稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。 生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。 凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。 除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。 具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。 在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
羰基的化学性质有哪些?
羰基和酮基的区别:一、组成不同1、酮基酮基是一个碳原子和氧原子形成双键,同时这个碳原子还和另外两个碳原子形成共价键结构式。酮基能够强烈吸收300nm左右光波的基团,含酮基的高分子容易吸收紫外线而导致光降解。2、羰基羰基是由碳和氧两种原子通过双键连接而成的有机官能团(C=O)。是醛,酮,羧酸,羧酸衍生物等官能团的组成部分。二、性质不同1、酮基物理性质:具有强红外吸收。化学性质:由于氧的强吸电子性,碳原子上易发生亲核加成反应。其它常见化学反应包括:亲核还原反应,羟醛缩合反应。2、羰基由于碳原子和氧原子的电负性差别,羰基化合物容易与亲核试剂发生亲核加成反应。羰基的性质很活泼,容易起加成反应,如与氢生成醇。三、特征不同1、酮基结构简式:(—CO—),使含该结构的有机物有还原性。如:草酸HOOC—COOH。2、羰基在进行金属羰基配合物的分析时,常会使用红外吸收光谱法。在一氧化碳气体,C-O键的振动(一般以νCO表示)出现在光谱中2143cm-1的位置。νCO的位置和金属和碳之间键结强度呈现负相关的关系。羰基的物质结构:羰基C=O的双键的键长约1.22埃。由于氧的电负性(3.5)大于碳的电负性(2.5),C=O键的电子云分布偏向于氧原子:这个特点决定了羰基的极性和活泼的化学反应性。簇合物中的键结模式:在羰基簇合物化学中,羰基配体有许多不同的键结模式。大部分常见的羰基配体都是端接配体,但羰基也常连接2个或3个金属原子,形成μ2或μ3的桥接配体。有时羰基中的碳和氧原子都会参与键结,例如μ3-η就是一个哈普托数为2,连接3个金属原子的桥接配体。金属中心原子形成反馈π键使M-C键能增强,同时活化了-C-O键。
羰基的化学结构式是什么 羰基的化学结构式是怎么样呢
1、结构如下: O ||C-C-C 2、严格的羰基的定义,除了有C-O双键外,那个碳必须和另外2个碳或者2个氢相连。根据这个严格的定义,羧基或者酯基都不算羰基。 3、扩展的羰基的定义,只是强调C-O双键,不重视那个碳的周围是什么原子。根据这个定义,羧基和酯基都包括一个羰基。于是你可能常常听到,酯羰基,酮羰基,等类似的名词。
羰基有什么化学性质?
羰基 由碳和氧两种原子通过双键连接而成的有机官能团(C=O)。是醛,酮,羧酸,羧酸衍生物等官能团的组成部分。 物理性质:具有强红外吸收。 化学性质:由于氧的强吸电子性,碳原子上易发生亲核加成反应。其它常见化学反应包括:亲核还原反应,羟醛缩合反应。 羰基(tāng jī) carbonyl group 由碳原子与一个氧原子通过双键相结合而成的二价基团。构成羰基的碳原子的另外两个键 ,可以单键或双键的形式与其他原子或基团相结合而成为羰基化合物羰基化合物可分为醛酮类和羧酸类两类 :① 醛酮类 ,如醛R-CH=O、酮R-CO-R;②羧酸类,如羧酸R-CO-OH、羧酸酯R-CO-ORˊ 、酸酐R-CO-O-CO-Rˊ 、 酰基过氧化R-CO-O-O-CO-Rˊ、酰胺R-CO-NH2、酰卤R-CO-X(X为F、Cl、Br、I)、烯酮 R-CH=C=O、异氰酸酯R-N=C=O。羰基的性质很活泼,容易起加成反应,如与氢生成醇。 二、反应 1、α-氢的反应 (1)羟醛缩合 在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。 羟醛缩合反应历程,以乙醛为例说明如下: 第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子: 第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。 第三步,烷氧负离子与水作用得到羟醛和OH。 稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。 生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。 凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。 除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。 具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。 在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
羰的化学式
没有"羰"这种东西,"羰"就是指羰基.羰基由碳和氧两种原子通过双键连接而成的有机官能团(C=O)。是醛,酮,羧酸,羧酸衍生物等官能团的组成部分。由碳原子与一个氧原子通过双键相结合而成的二价基团。构成羰基的碳原子的另外两个键 ,可以单键或双键的形式与其他原子或基团相结合而成为羰基化合物羰基化合物可分为醛酮类和羧酸类两类 :① 醛酮类 ,如醛R-CH=O、酮R-CO-R;②羧酸类,如羧酸R-CO-OH、羧酸酯R-CO-ORˊ 、酸酐R-CO-O-CO-Rˊ 、 酰基过氧化R-CO-O-O-CO-Rˊ、酰胺R-CO-NH2、酰卤R-CO-X(X为F、Cl、Br、I)、烯酮 R-CH=C=O、异氰酸酯R-N=C=O。羰基的性质很活泼,容易起加成反应,如与氢生成醇。
判断题:化学结构中包含羰基的的物质称为羰基试剂
判断:错误。羰基试剂就是氨的衍生物,如 羟胺(NH2OH )、 肼 (NH2NH2)、 苯肼 (C6H5NHNH2 )、 2,4-二硝基苯肼 、伯胺 (RNH2 )等,分子结构中有羰基的化合物就可以和羰基试剂作用。羰基试剂不含羰基。
请问酮基和羰基有什么区别啊,我的化学老师说没有酮基,百度里又有
没有酮基?你内是化学老师么,,,,酮是醇催化氧化的产物,和醛是同分异构体,仲醇催化氧化就是酮。羰基是醛,酮,羧酸,羧酸衍生物等官能团的组成部分。.因为百度里的都是人给的答案。。。
羰基化学式是什么?
羰基的结构式为:-C=O。酮的通式为R-C(O)-R"。酮分子里的羰基[-C(O)-]常被称为酮基。醛(aldehyde):有机化合物的一类,是醛基(-CHO)和烃基(或氢原子)连接而成的化合物。醛的通式为R-CHO,-CHO为醛基,CnH2nO是化学通式。醛基是羰基(-CO-)和一个氢连接而成的基团。性质和特征:物理性质:具有强红外吸收。化学性质:由于氧的强吸电子性,碳原子上易发生亲核加成反应。其他常见化学反应包括:亲核还原反应,羟醛缩合反应。在进行金属羰基配合物的分析时,常会使用红外吸收光谱法。在一氧化碳气体,C-O键的振动(一般以νCO表示)出现在光谱中2143cm-1的位置。νCO的位置和金属和碳之间键结强度呈现负相关的关系。以上内容参考:百度百科-羰基
羰基的化学结构式是什么?,羰基的分子式
1.结构如下:O||C-C-C 严格的羰基的定义,除了有C-O双键外,那个碳必须和另外2个碳或者2个氢相连。 2.根据这个严格的定义,羧基或者酯基都不算羰基。 3. 扩展的羰基的定义,只是强调C-O双键,不重视那个碳的周围是什么原子。 4.根据这个定义,羧基和酯基都包括一个羰基。 5.于是你可能常常听到,酯羰基,酮羰基,等类似的名词。
羰基有什么化学性质?
羰基 由碳和氧两种原子通过双键连接而成的有机官能团(C=O)。是醛,酮,羧酸,羧酸衍生物等官能团的组成部分。 物理性质:具有强红外吸收。 化学性质:由于氧的强吸电子性,碳原子上易发生亲核加成反应。其它常见化学反应包括:亲核还原反应,羟醛缩合反应。 羰基(tāngjī)carbonylgroup 由碳原子与一个氧原子通过双键相结合而成的二价基团。构成羰基的碳原子的另外两个键,可以单键或双键的形式与其他原子或基团相结合而成为羰基化合物羰基化合物可分为醛酮类和羧酸类两类:①醛酮类,如醛R-CH=O、酮R-CO-R;②羧酸类,如羧酸R-CO-OH、羧酸酯R-CO-ORˊ、酸酐R-CO-O-CO-Rˊ、酰基过氧化R-CO-O-O-CO-Rˊ、酰胺R-CO-NH2、酰卤R-CO-X(X为F、Cl、Br、I)、烯酮R-CH=C=O、异氰酸酯R-N=C=O。羰基的性质很活泼,容易起加成反应,如与氢生成醇。二、反应 1、α-氢的反应 (1)羟醛缩合 在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。 羟醛缩合反应历程,以乙醛为例说明如下: 第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子: 第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。 第三步,烷氧负离子与水作用得到羟醛和OH。 稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。 生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。 凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。 除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。 具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。 在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
溴存在於哪个化学品里
溴在自然界中和其他卤素一样,没有单质状态存在。它的化合物常常和氯的化合物混杂在一起,只是数量少得多,在一些矿泉水、盐湖水和海水中含有溴。 溴的存在:是海水中重要的非金属元素.地球上99%的溴元素以Br-的形式存在于海水中,所以人们也把溴称为"海洋元素."如前所述,溴也是大海的元素。海水中有大量的溴,除此之外,盐湖和一些矿泉水中也有溴。由于其单质活泼的性质,在自然界中很难找到单质溴。最常见的形式是溴化物和溴酸盐。海藻等水生植物中也有溴的存在,最早溴的发现就是从海藻的浸取液中得到的。 现在医院里普遍使用的镇静剂,有一类就是用溴的化合物制成的,如溴化钾、溴化钠、溴化铵等,通常用以配成“三溴片”,可治疗神精衰弱和歇斯底里症。大家熟悉的红药水,也是溴与汞的化合物。此外,青霉素等抗菌素生产也需要溴,溴还是制造农业杀虫剂的原料。 溴可以用来制作防爆剂。溴化银是一种重要的感光材料,被用于制作胶卷和相纸等。我国近年已制造出了溴钨灯,成为取代碘钨灯的新光源。
海水提取溴素 用什么化学原料
楼主您好。是的,在工业上用热空气吹出法提取溴的流程中确实有用到硫酸从海水中提取溴的方法之一是:①通入氯气把浓缩的溶液中的溴化物氧化,然后用热空气把生成的溴吹出;Cl2+2NaBr=2NaCl+Br2②用Na2CO3溶液吸收吹出的溴,同时生成NaBr、NaBrO3放出CO2;3Br2+3Na2CO3=5NaBr+NaBrO3+3CO2③向含溴化物(NaBr、NaBrO3)的溶液中加硫酸溶液,溴又重新析出,同时生成Na2SO4;5NaBr+NaBrO3+3H2SO4=3NaSO4+3Br2+3H2O④得的到的溴中可能夹杂着氯,再加入FeBr3(发生置换反应)除去。2FeBr3+3Cl2=3Br2+2FeCl3
海水提取溴素 用什么化学原料
楼主您好。是的,在工业上用热空气吹出法提取溴的流程中确实有用到硫酸从海水中提取溴的方法之一是:①通入氯气把浓缩的溶液中的溴化物氧化,然后用热空气把生成的溴吹出;Cl2+2NaBr=2NaCl+Br2②用Na2CO3溶液吸收吹出的溴,同时生成NaBr、NaBrO3放出CO2;3Br2+3Na2CO3=5NaBr+NaBrO3+3CO2③向含溴化物(NaBr、NaBrO3)的溶液中加硫酸溶液,溴又重新析出,同时生成Na2SO4;5NaBr+NaBrO3+3H2SO4=3NaSO4+3Br2+3H2O④得的到的溴中可能夹杂着氯,再加入FeBr3(发生置换反应)除去。2FeBr3+3Cl2=3Br2+2FeCl3
大家溴素与硫磺的化学方程式怎么写
S+Br2=SBr2
溴素与异丙醇会发生化学反应吗
溴素与异丙醇会发生化学反应。根据异丙醇的化学性质得知其与溴以复杂的方式反应主要是生成溴化丙酮。溴是一种化学元素,元素符号Br,原子序数35,在化学元素周期表中位于第4周期、第ⅦA族,是卤族元素之一。
稀有碱基名词解释生物化学
稀有碱基又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。
请问大家溴素与硫磺的化学方程式怎么写呀?
S: H2S+Br2=S+2HBr;2H2SO4+Cu=CuSO4+SO2+2H2O;Na2S+2HCl=2NaCl+H2S;Fe+S=FeS S+O2=SO2;2SO2+O2=2SO3;SO3+H2O=H2SO4;4FeS2+11O2=2Fe2O3+8SO2.
溴素目前是第二类易制毒管制化学品,是指纯品吧,那请问溴水属于第二类易制毒管制化学品吗?谢谢。
溴(Bromine) 化学元素 元素符号Br 是卤族元素之一,纯溴也称溴素,是管制药品,不纯的溴应该是不管制的,不过市面上也没有卖的,如果实验需要的话可以用溴化钠和过硫酸盐(比如过硫酸铵)反应生成溴,然后可以通过蒸馏提纯。
请问大家溴素与硫磺的化学方程式怎么写呀?
S: H2S+Br2=S+2HBr;2H2SO4+Cu=CuSO4+SO2+2H2O;Na2S+2HCl=2NaCl+H2S;Fe+S=FeS S+O2=SO2;2SO2+O2=2SO3;SO3+H2O=H2SO4;4FeS2+11O2=2Fe2O3+8SO2.
溴素属于第几类危险化学品
苯是危险化学品。 苯: 危险货物编号:32050 UN号:1114 CAS号:71-43-2一、特别警示: 确认人类致癌物;易燃液体,不得使用直流水扑救(闪点很低,用水灭火无效)。二、理化特性: 无色透明液体,有强烈芳香味。微溶于水,与乙醇、乙醚、丙酮、四氯化碳、二硫化碳和乙酸混溶。分子量78.11,熔点5.51℃,沸点80.1℃,相对密度(水=1)0.88,相对蒸气密度(空气=1)2.77,临界压力4.92MPa,临界温度288.9℃,饱和蒸气压10kPa(20℃),折射率 1.4979(25℃),闪点-11℃,爆炸极限1.2%~8.0%(体积比),自燃温度560℃,最小点火能0.20mJ,最大爆炸压力0.880MPa。 主要用途:主要用作溶剂及合成苯的衍生物、香料、染料、塑料、医药、炸药、橡胶等。三、危害信息:1、燃烧和爆炸危险性 高度易燃,蒸气与空气能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃和爆炸。2、健康危害 吸入高浓度苯对中枢神经系统有麻醉作用,引起急性中毒;长期接触苯对造血系统有损害,引起白细胞和血小板减少,重者导致再生障碍性贫血。可引起白血病。具有生殖毒性。皮肤损害有脱脂、干燥、皲裂、皮炎。 职业接触限值:PC-TWA(时间加权平均容许浓度)(mg/m3):6(皮);PC-STEL(短时间接触容许浓度)(mg/m3):10(皮)。 IARC:确认人类致癌物。四、安全措施1、一般要求 操作人员必须经过专门培训,严格遵守操作规程,熟练掌握操作技能,具备应急处置知识。密闭操作,防止泄漏,加强通风。远离火种、热源,工作场所严禁吸烟。生产、使用苯的车间及贮苯场所应设置泄漏检测报警仪,使用防爆型的通风系统和设备,配备两套以上重型防护服。戴化学安全防护眼镜,穿防静电工作服,戴橡胶手套,建议操作人员佩戴过滤式防毒面具(半面罩)。 储罐等容器和设备应设置液位计、温度计,并应装有带液位、温度远传记录和报警功能的安全装置,重点储罐等应设置紧急切断装置。 避免与氧化剂、酸类、碱金属接触。 生产、储存区域应设置安全警示标志。灌装时应控制流速,且有接地装置,防止静电积聚。配备相应品种和数量的消防器材及泄漏应急处理设备。2、特殊要求3、操作安全(1)一旦发生物品着火,应用干粉灭火器、二氧化碳灭火器、砂土灭火。(2)苯生产和使用过程中注意以下事项:——必须穿戴好劳动保护用品;——系统漏气时要站在上风口,同时佩戴好防毒面具进行作业;——接触高温设备时要防止烫伤;——设备的水压、油压保持正常,有关管线要畅通。(3)生产设备的清洗污水及生产车间内部地坪的冲洗水须收入应急池,经处理合格后才可排放。(4)充装时使用万向节管道充装系统,严防超装。4、储存安全(1)储存于阴凉、通风良好的专用库房或储罐内,远离火种、热源。库房温度不宜超过37℃,保持容器密封。(2)应与氧化剂、酸类、碱金属等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。在苯储罐四周设置围堰,围堰的容积等于储罐的容积。储存区应备有泄漏应急处理设备和合适的收容材料。(3)注意防雷、防静电,厂(车间)内的储罐应按《建筑物防雷设计规范》(GB 50057)的规定设置防雷防静电设施。(4)每天不少于两次对各储罐进行巡检,并做好记录,发现跑、冒、滴、漏等隐患要及时联系处理,重大隐患要及时上报。5、运输安全(1)运输车辆应有危险货物运输标志、安装具有行驶记录功能的卫星定位装置。未经公安机关批准,运输车辆不得进入危险化学品运输车辆限制通行的区域。(2)苯装于专用的槽车(船)内运输,槽车(船)应定期清理;用其他包装容器运输时,容器须用盖密封。槽车安装的阻火器(火星熄灭器)必须完好。槽车上要备有2只以上干粉或二氧化碳灭火器和防爆工具。禁止使用易产生火花的机械设备和工具装卸。运输车辆进入厂区,必须安装静电接地装置和阻火器,车速不超过5km/h。(3)严禁与氧化剂、酸类、碱金属等混装混运。运输时运输车辆应配备泄漏应急处理设备。不得在人口稠密区和有明火等场所停靠。高温季节应早晚运输,防止日光暴晒。运输苯容器时,应轻装轻卸。严禁抛、滑、滚、碰。严禁用电磁起重机和链绳吊装搬运。装运时,应妥善固定。(4)苯管道输送时,注意以下事项: ——苯管道架空敷设时,苯管道应敷设在非燃烧体的支架或栈桥上。在已敷设的苯管道下面,不得修建与苯管道无关的建筑物和堆放易燃物品;——管道不应穿过非生产苯所使用的建筑物;——管道消除静电接地装置和防雷接地线,单独接地。防雷的接地电阻值不大于10Ω,防静电的接地电阻值不大于100Ω;——苯管道不应靠近热源敷设;——管道采用地上敷设时,应在人员活动较多和易遭车辆、外来物撞击的地段,采取保护措施并设置明显的警示标志;——苯管道外壁颜色、标志应执行《工业管道的基本识别色、识别符号和安全标识》(GB 7231)的规定;——室内管道不应敷设在地沟中或直接埋地,室外地沟敷设的管道,应有防止泄漏、积聚或窜入其他沟道的措施。五、应急处置原则1、急救措施吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给氧。如呼吸停止,立即进行人工呼吸。就医。食入:饮足量温水,催吐。就医。皮肤接触:脱去污染的衣着,用肥皂水或清水彻底冲洗皮肤。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。2、灭火方法喷水冷却容器,尽可能将容器从火场移至空旷处。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:泡沫、干粉、二氧化碳、砂土。用水灭火无效。3、泄漏应急处置 消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式空气呼吸器,穿防毒、防静电服。作业时使用的所有设备应接地。禁止接触或跨越泄漏物。尽可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。小量泄漏:用砂土或其它不燃材料吸收。使用洁净的无火花工具收集吸收材料。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,减少蒸发。喷水雾能减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用防爆泵转移至槽车或专用收集器内。 作为一项紧急预防措施,泄漏隔离距离至少为50m。如果为大量泄漏,下风向的初始疏散距离应至少为300m。以上资料来源于《2011-60种重点监管的危险化学品名录的通知》
请问芳疗师需要具备什么专业知识,不学化学可以么,要去哪里学,大学学什么专业? 谢谢~
成都中医药大学成人教育学院与四川怡仙堂职业培训学校强强联手,立足中医理论,以芳香技能为主对社会开展芳疗行业的成人大专及成人本科学历教育,紧随国家改革的步伐和市场的需求。懂得不!?
执业药师2017年药物化学重点记忆之抗病毒药
第七章 抗病毒药 按机理和结构分四类:核苷、非核苷类、蛋白酶抑制剂、其他类 第一节 核苷类 核苷的基本结构: 共同作用机制:在体内转变成三磷酸形式而发挥作用 一、非开环核苷类药物 1.齐多夫定 化学名:3′-叠氮基-2′,3′-双脱氧 胸腺嘧啶核苷 第一个可抑制艾滋病病毒 机制:抗逆转录酶 性质:对光热敏感,低温避光保管 毒性:骨髓抑制,原因:代谢物3′-氨基产物 2.司他夫定 2",3"双键,骨髓抑制毒性低 3.拉米夫定 ①3"S,双脱氧硫代胞嘧啶 ②β-D-(+)和β-L-(-)两种异构体 ③抗HIV抗乙肝,骨髓抑制毒性小 构效关系: (1)5"位羟基必需; (2)3"位可叠氮、双键、氟取代,或硫替代 (3)碱基可以替代 二、开环核苷类(无糖环) 阿昔洛韦 化学名:9-(2-羟乙氧甲基) 鸟嘌呤 性质:1位N的H弱酸性,可溶NaOH成Na盐,溶于水 作用特点:广谱,抗疱疹首选 第二节 非核苷类 核苷类机理:需转变成三磷酸形式而发挥作用 非核苷类:不需要,不单独用,与核苷类合用 化学名:11环丙基-5,11-二氢-4-甲基-6 H二吡啶并[3,2-β:2′,3′-e][1,4]-二氮卓 -6-酮 仅可抑制HIV病毒逆转录酶,快速形成耐药性 第三节 蛋白酶抑制剂 结构特点:含吡啶、哌嗪、茚 不能和特非那定、阿斯咪唑、三唑仑、咪达唑仑等合用 与酶诱导剂利福平不能合用 第四节 其他抗病毒药 1.利巴韦林 化学名为:1-β-D- 呋喃核糖-1H-1,2,4-三氮唑-3-羧酰胺 广谱,包括艾滋病前期 2.金钢烷胺 对称三环胺 抑制病毒吸附及穿入宿主细胞,预防和治疗A型流感病毒 3.奥司他韦(新) 全碳六元环,乙酯性前药 神经氨酸酶抑制剂,对禽流感有效 补充基本知识:前药原理 (1)什么是前药 是指一些无药理活性的化合物,在体内经代谢生物转化或化学途径,被转化为活性的药物 (2)设计前药的目的 前药修饰是药效潜伏化的一种方法,为克服先导化合物的种种不良特点 2017年执业药师报名时间
双脱氧末端终止法与化学法测序技术有何差异
原理不同,反应不同,模板链不同。无空格Sanger双脱氧链终止法原理:双脱氧核糖核苷三磷酸(ddNTP)不会与正常的脱氧核糖核苷三磷酸(dNTP)形成磷酸二酯键,从而链的随机终止,建立4个系统,就可得到4个套组(nested无空格sets),在一个胶板上同时电泳,就可读出模板链的互补链的顺序。Maxam-Gilbert化学修饰法将双链或单链DNA经过不同的化学方法降解,得到随机的短的DNA片段,再通过电泳分离读取顺序。每次只能在一个特定的核苷酸处降解:G反应:硫酸二甲脂(DMS)使鸟嘌呤N7甲基化,A+G反应:甲酸使嘌呤环上的氮质子化导致糖苷键被削弱,进而嘌呤环被嘧啶取代,C+T反应:肼能够裂解嘧啶环,进而导致其脱落,C反应:在一定浓度的条件下,肼只对胞嘧啶起作用,无空格相同点:4个反应系统,标记相同,一块凝胶,4个泳道。