化学

DNA图谱 / 问答 / 标签

巯基的化学性质

巯基既有还原性,又有酸性,求酸性比醇酚强

巯基的化学简式

  解:巯基的化学简式为--SH

巯基点击化学最佳波长

巯基点击化学最佳波长550nm--800nm巯基点击化学反应的众多优点和其在化学合成、材料科学、生物应用方面的重要应用,使其成为研究的热点。本文利用巯基反应的高效性和高度选择性,一方面制备了多种序列规整的聚合物,另一方面合成了功能性分子,将其应用于基因传递,光热治疗等方面,论文主要研究内容分为以下四个部分: 1.通过连续的巯基-烯迈克尔加成反应和巯基-烯自由基点击反应制备序列规整的聚合物。首先利用硫代内酯与伯胺的开环反应在原位生成巯基,这些巯基可以通过巯基-烯迈克尔加成反应与甲基丙烯酸烯丙酯的缺电子碳-碳双键发生反应,但不能在没有自由基的情况下与甲基丙烯酸烯丙酯中富电子的烯丙基反应。迈克尔加成反应和开环反应完成后,形成含有烯丙基和巯基的中间体。通过紫外光照射,巯基能够与富电子的烯丙基双键通过自由基巯基-烯点击化学发生反应,得到了高分子量、序列规整的聚合物。 2.通过联合使用巯基-烯点击反应以及胺基-炔点击化学反应制备序列规整的聚合物。利用胺和巯基与不同基团(硫代内酯,甲基丙烯酸酯,丙炔酸酯)反应的高选择性,通过依次加入单体来控制聚合物的序列结构。所有反应都在温和的反应条件下进行,具有100%的原子效率,而且可以在一锅中完成聚合。成功合成了两种DABCBA型序列共聚物。核磁共振谱图和GPC结果证实了高分子量序列规整聚合物的形成。此外,在聚合物中引入氧化还原反应性的二硫键,使该序列规整聚合物可以降解。 3.聚阳离子压缩DNA能力强,免疫原性低,适应性强,使其具有广泛的前景。然而,较低的转染效率和不可避免的细胞毒性是阳离子聚合物用于基因传递中面临的挑战。在本项研究中,通过连续使用巯基-氯,巯基-炔点击化学反应,合成了具有树状结构的聚硫醚。通过低分子量支化聚乙烯亚胺和树枝状硫醚之间的迈克尔加成反应制备了一种新型的Janus树枝状聚合物。两亲性的树枝状聚合物可以自组装成具有高表面电荷电位(+91.8mV)的稳定的纳米胶束。该纳米粒子表现出了更高的基因转染效率和更低的细胞毒性。 4.合成了基于酰基磺酰胺的pH响应的两性离子,该两性离子对血液和肿瘤之间的微小pH差异(pH7.4与<6.5)具有响应性:pH>7.0时,为两性离子,pH<6.5时,重排为阳离子。利用金纳米粒子和巯基的配位作用,得到了表面修饰有两性离子的金纳米粒子。修饰后的纳米粒子能够在肿瘤低pH环境下被细胞优先内吞,并且显著延长体内循环时间。结果显示,两性离子修饰的金纳米粒子在肿瘤中显著增加积累并且提高了光热治疗的效果。这项工作表明,使用pH响应的两性离子修饰的金纳米粒子减弱了过量的表面电荷对促进全身循环和肿瘤靶向的负面效果,提高了光热治疗的效果。

作用于DNA化学结构的药物是

【答案】:B1.烷化剂(如氮芥、环磷酰胺和噻替派等)属于作用于DNA化学结构的药物。2.干扰核酸生物合成的药物属于细胞周期特异性抗肿瘤药,分别在不同环节阻止DNA的合成,抑制细胞分裂增殖,属于抗代谢药。根据药物主要干扰的生化步骤或所抑制的靶酶的不同,可进一步分为:①二氢叶酸还原酶抑制剂(抗叶酸剂),如氨甲蝶呤(MTX)等;②胸苷酸合成酶抑制剂,影响尿嘧啶核苷的甲基化(抗嘧啶剂),如氟尿嘧啶(5-FU),替加氟(FT207)及优福定(UFT)等;③嘌呤核苷酸互变抑制剂(抗嘌呤剂),如巯嘌呤(6-MP),6-硫鸟嘌呤(6-TG)等;④核苷酸还原酶抑制剂,羟基脲(HU);⑤DNA多聚酶抑制剂,如阿糖胞苷(AraC)等。3.拓扑异构酶抑制药直接抑制拓扑异构酶,阻止DNA复制及抑制RNA合成。包括拓扑异构酶Ⅰ抑制药和拓扑异构酶Ⅱ抑制药,拓扑异构酶Ⅰ抑制药的代表药有依立替康、拓扑替康、羟喜树碱;拓扑异构酶Ⅱ抑制药的代表药有依托泊苷、替尼泊苷。4.长春新碱(VCR)、长春碱(VLB)、紫杉醇及秋水仙碱等属于干扰有丝分裂、影响微管蛋白装配的药物,干扰有丝分裂中纺锤体的形成,使细胞停止于分裂中期。

与抗代谢药5-FU化学结构相似的物质是

5-FU(5-氟尿嘧啶)是胸腺嘧啶的类似物,抑制胸苷酸的合成。

与抗代谢药5-Fu化学结构相似的物质是

【答案】:C5-Fu化学结构与胸腺嘧啶相似,5-Fu在体内转变成FdUMP,是胸苷酸合酶的抑制剂,使dTMP合成受到阻断。

药物化学2(多选,简答)

10.AD3.ACD4.BD1. 合成类镇痛药的按结构可以分成几类 吗啡烃类:吗啡分子除去呋喃环后的母核; 苯吗喃类:进一步简化吗啡烃的结构,打开C环合成了一系列苯吗喃衍生物; 苯基哌啶类:代表药哌替啶(杜冷丁); 氨基酮类:只保留吗啡结构中的苯环和碱性氮原子,断开其余的四个环,得到的衍生物为苯基哌啶的开环物,同样具有较强的镇痛作用。2. 这些药物的化学结构类型不同,但为什么都具有类似吗啡的作用 “这些药物的化学结构类型不同”是指吗啡及其衍生物包括合成镇痛药吗? 现在科学界普片是认同“三点受体学说”:1.药物分子中具有一个平坦的芳香结构,与受体中的平坦部位通过范德华力相互作用;2.具有一个碱性中心,在生理pH下,大部分电离为阳离子,并通过静电力与受体表面的阴离子部位相结合;3.碱性中心和平坦的芳香结构共平面,并且烃基部分凸出于平面的前方,恰好可以嵌入受体中的凹槽部分产生疏水性结合。

生物化学方面的问题

生物化学是一门边缘学科,研究的是生命的化学,所以与其它有关的生物学科必然有或多或少的关系。生物学科总是互相为用,互相渗透的。生物体不只一种,因此生物化学有研究动物(包括昆虫)方面的,也有研究植物方面的,还有研究微生物方面的。它们之间有差异、也有共同之处。生物化学在医药、卫生、农业及工业等方面都有应用,是一门基础医学学科,也是一门基础农学学科,而在工业上,如食品加工、酿造、制药、生物制剂制备、以及制革等上,都有应用。 (一)生物化学是从有机化学及生理学发展起来的 一直到现在,它与有机化学及生理学之间,仍然关系密切。了解生物分子的结构及性质,并将其合成,乃是有机化学和生物化学的共同课题;在分子水平上弄清生理功能,显然是生理学和生物化学的一个共同目的。从现在的趋向来看,生理学是在更多地采用生物化学的方法,使用生物化学的指标,以解释许多生理现象。 (二)微生物学及免疫学 在研究病原微生物的代谢、病毒的化学本质,以及防治措施等,无不应用生物化学的知识和技术。就免疫学而言,不论是体液免疫,还是细胞免疫,都必须在分子水平上,才能阐明机理问题,近来一些生物化学家常以微生物,尤其是细菌为研究材料;这样,一方面可验证在动物体内得到的结果,另一方面由于细菌繁殖生长极其迅速,为在分子水平上研究遗传,提供有利条件;于是应运而生出生化遗传学,又称分子遗传学,进而又派生出遗传工程学。由此不难看出,生物化学与微生物学、免疫学及遗传学之间的关系是何等密切。 (三)生物物理学是从生物化学发展起来的 主要应用物理学的理论和方法来研究生物体内各种生物分子的性质和结构,能量的转变,以及生物体内发生的一些过程,如生物发电及发光。生物物理学与生物化学总是相辅相成的。随着量子化学的发展,生物体内化学反应的机理,特别是酶促反应的机理,将来必定要应用生物分子内及作用物分子内电子结构的改变来加以说明。 (四)近代药理学往往以酶的活性、激素的作用及代谢的途径等为其发展的依据,于是出现了生化药理学及分子药理学等。病理生理学也注重运用生物化学的原理及方法来研究生理功能的失调及代谢途径的紊乱。甚至,组织学、病理解剖学及寄生虫学等学科,也开始应用生物化学的知识和方法,以探讨和解决它们的问题。这些学科的名称之前,现在多冠以“分子”字样,就是这方面的一个证明。 (五)生物化学称为医学学科的基础,在医药卫生的各学科中广泛应用,是理所当然的。事实也是如此。临床医学及卫生保健,在分子水平上,探讨病因,作出论断,寻求防治,增进健康,莫不运用生物化学的知识和技术。镰状细胞性贫血已被证明是血红蛋白β链N未端第六位上的谷氨酸为缬氨酸所取代的结果。关于许多疾病的防治方面,免疫化学无疑是医务工作者所熟知的一种重要的预防、治疗及诊断手段。肿瘤的治疗,不论是放射疗法,抑或是化学疗法,都是使肿瘤细胞中重要的生物分子,如DNA、RNA、蛋白质等分子,改变或破坏其结构,或抑制其生物合成。放射疗法主要是对DNA起作用。而抗肿瘤药物,如抗代谢物、烷化剂、有丝分裂抑制剂及抗生素等,有的在DNA生物合成中起作用,有的在RNA生物合成中起作用,还有的在蛋白质生物合成中起作用,当然不能除外有的药物能抑制不只一种生物合成过程。只要这三种生物分子中任何一种的生物合成有阻碍,都会使肿瘤细胞遭到不同程度的打击,其最致命的要算是破坏DNA的生物合成了,至于用生物化学的方法及指标作为诊断的手段,最为人们所熟知的莫若肝炎诊断中的血液谷丙转氨酶了。总之,生物化学在临床医学及卫生保建上的应用的例子是很多的。(一)物质组成及生物分子 生物体是由一定的物质成分按严格的规律和方式组织而成的。人体约含水55-67%,蛋白质 15~18%,脂类 10~15%,无机盐3~4% 及糖类1~2%等。从这个分析来看,人体的组成除水及无机盐之外,主要就是蛋白质、脂类及糖类三类有机物质。其实,除此三大类之外,还有核酸及多种有生物学活性的小分子化合物,如维生素、激素、氨基酸及其衍生物、肽、核苷酸等。若从分子种类来看,那就更复杂了。以蛋白质为例,人体内的蛋白质分子,据估计不下100000种。这些蛋白质分子中,极少与其它生物体内的相同。每一类生物都各有其一套特有的蛋白质;它们都是些大而复杂的分子。其它大而复杂的分子,还有核酸、糖类、脂类等;它们的分子种类虽然不如蛋白质多,但也是相当可观的。这些大而复杂的分子称为“生物分子”。生物体不仅由各种生物分子组成,也由各种各样有生物学活性的小分子所组成,足见生物体在组成上的多样性和复杂性。 大而复杂的生物分子在体内也可降解到非常简单的程度。当生物分子被水解时,即可发现构成它们的基本单位,如蛋白质中的氨基酸,核酸中的核苷酸,脂类中脂肪酸及糖类中的单糖等。这些小而简单的分子可以看作生物分子的构件,或称作“构件分子”。它们的种类为数不多,在每一种生物体内基本上都是一样的。实际上,生物体内的生物分子仅仅是由不多几种构件分子借共价键连接而成的。由于组成一个生物分子的构件分子的数目多,它的分子就大;因为构件分子不只一种,而且其排列顺序又可以是各种各样,由此而形成的生物分子的结构,当然就复杂。不仅如此,某些生物分子在不同情况下,还会具有不同的立体结构。生物分子的种类是非常多的。自然界约一百三十余万种生物体中,据估计总大约有1010~ 1012种蛋白质及1010种核酸;它们都是由一些构件分子所组成。构件分子在生物体内的新陈代谢中,按一定的组织规律,互相连接,依次逐步形成生物分子、亚细胞结构、细胞组织或器官,最后在神经及体液的沟通和联系下,形成一个有生命的整体。 (二)物质代谢 生物体内有许多化学反应,按一定规律,继续不断地进行着。如果其中一个反应进行过多或过少,都将表现为异常,甚至疾病。一旦这些反应停止,生命即告终结。 生物体内参加各种化学反应的分子和离子,不仅有生物分子,而更多和更主要的还是小的分子及离子。有人认为,没有小分子及离子的参加,不能移动或移动不便的生物分子便不能产生各种生命攸关的生物化学反应。没有二磷酸腺苷(ADP)及三磷酸腺苷(ATP)这样的小分子作为能量接受、储备、转运及供应的媒介,则体内分解代谢放出的能,将会散发为热而被浪费掉,以致一切生理活动及合成代谢无法进行。再者,如果没有Mg2+、Mn2+、Ca2+、K+等离子的存在,体内许多化学反应也不会发生,凭借各种化反应,生物体才能将环境中的物质(营养素)及能量加以转变、吸收和利用。营养素进人体内后,总是与体内原有的混合起来,参加化学反应。在合成反应中,作为原料,使体内的各种结构能够生长、发育、修补、替换及繁殖。在分解反应中,主要作为能源物质,经生物氧化作用,放出能量,供生命活动的需要,同时产生废物,经由各排泄途径排出体外,交回环境,这就是生物体与其外环境的物质交换过程,一般称为物质代谢或新陈代谢。据估计一个人在其一生中(按60岁计算),通过物质代谢与其体外环境交换的物质约相当于60000kg水,10000kg糖类,1600kg蛋白及1000kg脂类。 (三)物质代谢的调节控制 物质代谢的调节控制是生物体维持生命的一个重要方面。物质代谢中绝大部分化学反应是在细胞内由酶促成,而且具有高度自动调节控制能力。这是生物的重要特点之一。一个小小的活细胞内,几近两千种酶,在同一时间内,催化各种不同代谢中各自特有的化学反应。这些化学反应互不妨碍,互不干扰,各自有条不紊地以惊人的速度进行着,而且还互相配合。结果,不论是合成代谢还是分解代谢,总是同时进行到恰到好处。以蛋白质为例,用人工合成,即使有众多高深造诣的化学家,在设备完善的实验室里,也需要数月以至数年,或能合成一种蛋白质。然而在一个活细胞里,在37℃及近于中性的环境中,一个蛋白质分子只需几秒钟,即能合成,而且有成百上千个不相同的蛋白质分子,几乎象在同一个反应瓶中那样,同时在进行合成,而且合成的速度和量,都正好合乎生物体的需要。这表明,生物体内的物质代谢必定有尽善尽美的安排和一个调节控制系统。根据现有的知识,酶的严格特异性、多酶体系及酶分布的区域化等的存在,可能是各种不同代谢能同时在一个细胞内有秩序地进行的一个解释。在调节控制方面,动物体内,除神经体液发挥着重要作用之外,作用物的供应及输送、产物的需要及反馈抑制,基因对酶的合成的调控,酶活性受酶结构的改变及辅助因子的丰富与缺乏的影响等因素,亦不可忽视。 (四)结构与功能 组成生物体的每一部分都具有其特殊的生理功能.从生物化学的角度,则必须深入探讨细胞、亚细胞结构及生物分子的功能。功能来自结构。欲知细胞的功能,必先了解其亚细胞结构;同理,要知道一种亚细胞结构的功能,也必先弄清构成它的生物分子。关于生物分子的结构与其功能有密切关系的知识,已略有所知。例如,细胞内许多有生物催化剂作用的蛋白质——酶;它们的催化活性与其分子的活性中心的结构有着密切关系,同时,其特异性与其作用物的结构密切相关;而一种变构酶的活性,在某种情况下,还与其所催化的代谢途径的终末产物的结构有关。又如,胞核中脱氧核糖核酸的结构与其在遗传中的作用息息相关;简而言之,DNA中核苷酸排列顺序的不同,表现为遗传中的不同信息,实际是不同的基因。生物化学近年来在这方面的发展极为迅速,有人将这部分内容叫作分子生物学。 在生物化学中,有关结构与功能关系的研究,才仅仅开始;尚待大力研究的问题很多,其中重大的,有亚细胞结构中生物分子间的结合,同类细胞的相互识别、细胞的接触抑制、细胞间的粘合、抗原性、抗原与抗体的作用、激素、神经介质及药物等的受体等。 (五)繁殖与遗传 生物体有别干无生物的另一突出特点是具有繁殖能力及遗传特性。一切生物体都能自身复制;复制品与原样几无差别,且能代代相传,这就是生物体的遗传特性。遗传的特点是忠实性和稳定性,三十多年前,对遗传的了解,还不够深入。基因还只是一个神秘莫测的术语。近年来,随着生物化学的发展,已经证实,基因只不过是DNA分子中核苷酸残基的种种排列顺序而已。现在DNA分子的结构已不难测得,遗传信息也可以知晓,传递遗传信息过程中的各种核糖核酸也已基本弄清,不但能在分子水平上研究遗传,而且还有可能改变遗传,从而派生出遗传工程学。如果能将所需要的基因提出或合成,再将其转移到适当的生物体内去,以改变遗传、控制遗传,这不但能解除人们一些疾患,而且还可以改良动、植物的品种,甚至还可能使一些生物,尤其是微生物,更好为人类服务,可以预见在不远的将来,这一发展将为人类的幸福作出巨大的贡献。生物化学是一门较年轻的学科,在欧洲约在160年前开始,逐渐发展,一直到1903年才引进“生物化学”这个名词而成为一门独立的学科,但在我国,其发展可追溯到远古。我国古代劳动人民在饮食、营养、医、药等方面都有不少创造和发明,生物化学的发展可分为:叙述生物化学、动态生物化学及机能生物化学三个阶段。 (一)叙述生物化学阶段 1.饮食方面:公元前21世纪,我国人民已能造酒,相传夏人仪狄作酒,禹饮而甘之,作酒必用曲,故称曲为酒母,又叫做酶,与媒通,是促进谷物中主要成分的淀粉转化为酒的媒介物。现在我国生物化学工作者将促进生物体内化学反应的媒介物(即生物催化剂)统称为酶,从《周礼》的记载来推测,公元前12世纪以前,已能制饴,饴即今之麦芽糖,是大麦芽中的淀粉酶水解谷物中淀粉的产物。《周礼》称饴为五味之一。不但如此,在这同时,还能将酒发酵成醋。醋亦为五味之一。《周礼》上已有五味的描述。可见我国在上古时期,已使用生物体内一类很重要的有生物学活性的物质——酶,为饮食制作及加工的一种工具。这显然是酶学的萌芽时期。 2.营养方面:《黄帝内经·素问》的“藏气法时论”篇记载有“五谷为养,五畜为益,五果为助,五菜为充”,将食物分为四大类,并以“养”、“益”、“助”、“充”表明在营养上的价值。这在近代营养学中,也是配制完全膳食的一个好原则。谷类含淀粉较多,蛋白质亦不少,宜为人类主食,是生长、发育以及养生所需食物中之最主要者;动物食品含蛋白质,质优且丰富,但含脂肪较多,不宜过多食用,可用以增进谷类主食的营养价值而有益于健康,果品及蔬菜中无机盐类及维生素较为丰富,且属于粗纤维,有利食物消化及废物的排出;如果膳食能得到果品的辅助,蔬菜的充实,营养上显然是一个无可争辩的完全膳食。膳食疗法早在周秦时代即已开始应用,到唐代已有专书出现。盂诜(公元7世纪)著《食疗本草》及昝殷(约公元8世纪)著《食医必鉴》等二书,是我国最早的膳食疗法书籍。宋朝的《圣济总录》(公元前12世纪)是阐明食治的。元朝忽思慧(公元14世纪)针对不同疾患,提出应用的食物及其烹调方法,并编写成《饮膳正要》。由此可看出我国古代医务工作者应用营养方面的原理,试图治疗疾患的一些端倪。 3.医药方面:我国古代医学对某些营养缺乏病的治疗,也有所认识,如地方性甲状腺肿古称“瘿病”,主要是饮食中缺碘所致,有用含碘丰富的海带、海藻、紫菜等海产品防治。公元 4世纪,葛洪著《肘后百一方》中载有用海藻酒治疗瘿病的方法。唐·王焘(公元8世纪)的《外台秘要》中载有疗瘿方36种,其中27种为含碘植物。而在欧洲直到公元1170年才有用海藻及海绵的灰分治疗此病者。脚气病是缺乏维生素B1的病。孙思邈(公元581~682年)早有详细研究,认为是一种食米区的疾病,分为“肿”、“不肿”及“脚气入心”三种,可用含有维生素B1的车前子、防风、杏仁、大豆、槟榔等治疗。酿酒用的曲及中药中的神曲(可生用)均含维生素B1较丰富,且具有水解糖类的酶,可用以补充维生素B1的不足,亦常用以治疗胃肠疾患。夜盲症古称“雀目”,是一种缺乏维主素A的病症。孙思邈首先用含维生素A较丰富的猪肝治疗。我国最早的眼科专著《龙木论》记载用苍术、地肤子、细辛、决明子等治疗雀目。这些药物都是含有维生素A原的植物。 我国研究药物最早者据传为神农。神衣后世又称炎帝,是始作方书,以疗民疾者。《越绝书》上有神农尝百草的记载。自此以后,我国人民开始用天然产品治疗疾病,如用羊靥(包括甲状腺的头部肌肉)治甲状腺肿,紫河车(胎盘)作强壮剂,蟾酥(蟾蜍皮肤疣的分泌物)治创伤,羚羊角治中风,鸡内金止遗尿及消食健胃等。而最值得一提的是秋石。秋石是从男性尿中沉淀出的物质,用以治病者。其制取确实是最早从尿中分离类固醇激素的方法,其原理颇与近代有所相同。近代的方法为Windaus等在本世纪30年代所创,而我国的方法则出自11世纪沈括(号存中)著的《沈存中良方》中,现仍可在《苏沈良方》中寻着。其详细制法,在《本草纲目》上亦有记载,可概括为用皂角汁将类固醇激素,主要为睾酮,从男性尿中沉淀出来,反复熬煎制成结晶,名为秋石。皂角汁中含有皂角苷,是常用以提炼固醇类物质的试剂。这样看来,人类利用动物产品,调节生理功能,治疗疾病是从10世纪开始,实为内分泌学的萌芽。 明代李时珍(公元1522~1596年)撰著《本草纲目》,凡52卷,共载药物1800余种,其中除植物药物外,尚载鱼类63种,兽类123种,昆虫百余种,鸟类77种及介类45种。书中还详述人体的代谢物、分泌物及排泄物等,如人中黄(即粪)、淋石(即尿)、乳汁、月水、血液及精液等。这一巨著不但集药物之大成,对生物化学的发展也不无贡献。 这样看来,中国古代在生物化学的发展上,是有一定贡献的。但是由于历代封建王朝的尊经崇儒,斥科学为异端,所以近代生物化学的发展,欧洲就处于领先地位。18世纪中叶, Scheele研究生物体(植物及动物)各种组织的化学组成,一般认为这是奠定现代生物化学基础的工作。随后,Lavoisier于1785年证明,在呼吸过程中,吸进的氧气被消耗,呼出二氧化碳,同时放出热能,这意味着呼吸过程包含有氧化作用,这是生物氧化及能代谢研究的开端。接着,Beaumont(1833年)及Bernard(1877年)在消化基础上,Pasteur(1822~1895年)在发酵上,以及Liebig(1803~1873年)在生物物质的定量分析上,都作出显著的贡献。1828年Wohler在实验室里将氰酸铵转变成尿素,氰酸铵是一种普通的无机化合物,而尿素是哺乳动物尿中含氮物质代谢的一种主要产物,人工合成尿素的成功,不但为有机化学扫清了障碍,也为生物化学发展开辟了广阔的道路。自此直到20世纪初叶,对生物体内的物质,如脂类、糖类及氨基酸的研究,核质及核酸的发现,多肽的合成等,而更有意义的则是在1897年Buchner制备的无细胞酵母提取液,在催化糖类发酵上获得成功,开辟了发酵过程在化学上的研究道路,奠定了酶学的基础。9年之后,Harden与Young又发现发酵辅酶的存在,使酶学的发展更向前推进一步。 以上包括我国古代及欧洲的发明创造、研究发现,均可算是生物化学的萌芽时期,虽然也有生物体内的一些化学过程的发现和研究,但总的说来,还是以分析和研究组成生物体的成分及生物体的分泌物和排泄物为主,所以这一时期可以看作叙述生物化学阶段。 (二)动态生物化学阶段 从20世纪开始,生物化学进入了一个蓬蓬勃勃的发展时期。在营养方面,研究了人体对蛋白质的需要及需要量,并发现了必需氨基酸、必需脂肪酸、多种维生素及一些不可或缺的微量元素等。在内分泌方面,发现了各种激素。许多维生素及激素不但被提纯,而且还被合成。在酶学方面Sumner于1926年分离出尿酶,并成功地将其做成结晶。接着,胃蛋白酶及胰蛋白酶也相继做成结晶。这样,酶的蛋白质性质就得到了肯定,对其性质及功能才能有详尽的了解,使体内新陈代谢的研究易于推进。在这一时期,我国生物化学家吴宪等在血液分析方面创立了血滤液的制备及血糖的测定等方法,至今还为人们所采用;在蛋白质的研究中,提出了蛋白质变性学说;在免疫化学上,首先使用定量分析方法,研究抗原抗体反应的机制;在营养方面,比较荤膳与素膳的营养价值,并发现动物的消化道可因膳食中营养素价值的不同及丰富与否而发生一定的改变;食素膳者与食荤膳者相比,胃稍大而肠较长。自此以后,生物化学工作者逐渐具备了一些先进手段,如放射性核素示踪法,能够深入探讨各种物质在生物体内的化学变化,故对各种物质代谢途径及其中心环节的三羧酸循环,已有了一定的了解。第二次世界大战后,特别从50年代开始,生物化学的进展突飞猛进;对体内各种主要物质的代谢途径均已基本搞清楚,所以,这个时期可以看作动态生物化学阶段。 (三)机能生物化学阶段 近20多年来,除早已在研究代谢途径时所使用的放射性核素示踪法之外,还建立了许多先进技术及方法。例如,在分离和鉴定各种化合物时,有各种各样敏感而特异的电泳法及层析法,还有特别适用于分离生物大分子的超速离心法;在测定物质的化学组成时,可使用自动分析仪,如氨基酸自动分析仪等;甚至在测定氨基酸在蛋白质分子中的排列顺序时,也有可供使用的自动顺序分析仪。还有不少近代的物理方法和仪器(如红外、紫外、X线等各种仪器),用以测定生物分子的性质和结构。在知道生物分子的结构之后,就有可能了解其功能,还有可能用人工方法合成。1965年我国的生物化学工作者和有机化学工作者首先人工合成了有生物学活性的胰岛素,开阔了人工合成生物分子的途径。除此之外,生物化学家也常常采用人工培养的细胞及繁殖迅速的细菌,作为研究材料,并用现代的先进手段,不但把糖类、脂类及蛋白质的分解代谢途径弄得更清楚,而且还将糖类、脂类、蛋白质、核酸、胆固醇、某些固醇类激素、血红素等的生物合成基本上己搞明白;不但测出了某些有生物学活性的重要蛋白质的结构(包括一、二、三及四级结构),尤其是一些酶的活性部位,而且还测出了一些脱氧核糖核酸(DNA)及核糖核酸(RNA〕的结构,从而确定了它们在蛋白质生物合成及遗传中的作用。体内构成各种器官及组织的组成成分都有其特殊的功能,而功能则来源于各种组成的分子结构;有特殊机能的器官和组织,无疑是由具有特殊结构的生物分子所构成。探索结构与功能之间的关系正是现时期的任务。所以,可以认为生物化学已进入机能生物化学阶段。

抗代谢抗肿瘤药(执业药师药物化学辅导精华)

干扰正常代谢反应进行的物质称为抗代谢物。临床应用的抗代谢抗肿瘤药是叶酸拮抗物、嘌呤拮抗物和嘧啶拮抗物,在体内通过抑制生物合成酶;或掺入生物大分子合成,形成伪大分子,干扰核酸的生物合成,使肿瘤细胞丧失功能而死亡。   抗代谢物是应用代谢拮抗原理设计的,在结构上与代谢物类似,一般是将正常代谢物的结构生物作细小改变,例如将代谢物结构中的-H换为-F或-CH3;将-OH换为-SH或-NH2.这种改变应用了电子等排原理。   抗代谢抗肿瘤药按作用原理分为嘧啶拮抗物、嘌呤拮抗物、叶酸拮抗物。   一、嘧啶拮抗物   嘧啶拮抗物有尿嘧啶衍生物和胞嘧啶衍生物,用于临床的药物例如氟尿嘧啶(Fluorouracil)、替加氟(Tegafur)是尿嘧啶衍生物。盐酸阿糖胞苷(CytarabineHydrochloride)是胞嘧啶衍生物。1.氟尿嘧啶(Fluorouracil)   化学名:5-氟-2,4(1H,3H)-嘧啶二酮用氟原子取代代谢物尿嘧啶结构中5位的氢原子,得到抗代谢物氟尿嘧啶。-H与-F为非经典的电子等排体,氟的原子半径与氢的相近,抗代谢物氟尿嘧啶分子的体积与代谢物尿嘧啶分子的体积几乎相等,而且碳氟键很稳定,在代谢过程中不易分解,因此抗代谢物能在分子水平代替正常代谢物。氟尿嘧啶在体内转变为氟尿嘧啶脱氧核苷,抑制胸腺嘧啶合成酶,使酶失活,抑制DNA的合成,导致肿瘤细胞死亡。   氟尿嘧啶抗瘤谱比较广,对消化道癌和其他实体肿瘤有良好疗效,但毒副作用较大。对氟尿嘧啶进行结构改造,发展了一些氟尿嘧啶衍生物用于临床,例如替加氟(Tegafur,呋氟尿嘧啶)、卡莫氟(Carmofur)等,二者均为氟尿嘧啶的前体药物,在体内转变为氟尿嘧啶发挥抗癌作用,不良反应较轻。   2.盐酸阿糖胞苷(CytarabineHydrochloride)   化学名:1-β-D-阿拉伯呋喃糖基-4-氨基-2(1H)-嘧啶酮盐酸盐阿糖胞苷在体内转化为活性的三磷酸阿糖胞苷,抑制DNA多聚酶及少量渗入DNA中,阻止DNA的合成,发挥抗肿瘤作用。阿糖胞苷口服吸收较差,需注射给药。由于该药在体内迅速被肝脏的胞嘧啶脱氨酶作用脱氨,生成无活性的尿嘧啶阿糖胞苷,因此需要静脉连续滴注给药,才能得到较好效果。盐酸阿糖胞苷临床用于急性粒细胞白血病。   为了延长的作用时间,将阿糖胞苷氨基酰化例如依诺他滨(Enocitabine),或环化形成环胞苷(Cyclocytidine),他们在体内代谢转变为阿糖胞苷而起作用,作用时间长,副作用较轻。   二、嘌呤拮抗物   巯嘌呤(6-Mercaptopurine)   化学名:6-嘌呤巯醇一水合物巯嘌呤为黄色结晶性粉末。化学结构为嘌呤环(芳香环)的6位有巯基取代,性质不稳定,遇光易变色。化学结构与黄嘌呤类似,在体内转变为有活性的6-巯代次黄嘌呤核苷酸(硫代肌苷酸),抑制腺酰琥珀酸合成酶和肌苷酸脱氢酶,从而抑制DNA和RNA的合成,可用于各种急性白血病的治疗。   三、叶酸拮抗物   叶酸是核酸生物合成的代谢物,叶酸缺乏时白细胞减少,因此叶酸拮抗物可用于治疗急性白血病。用于临床的例如甲氨喋呤(Methotrexate,MTX)。   甲氨喋呤(Methotrexate,MTX)   化学名:L-(+)-N-[4-[[(2,4-二氨基-6-蝶啶基)甲基]甲胺基]苯甲酰基]谷氨酸   性质:   1.甲氨喋呤为橙黄色结晶性粉末,几不溶于水。具酸、碱两性,可溶于稀盐酸,易溶于稀碱液。   2.在强酸性溶液中不稳定,酰胺键易被水解,失去活性。用途:甲氨喋呤为二氢叶酸还原酶抑制剂,对酶的抑制几乎是不可逆的,通过抑制二氢叶酸还原酶,抑制DNA和RNA的合成,阻碍肿瘤细胞的生长。临床用于急性白血病和绒毛膜上皮癌。临床上常与亚叶酸钙合用降低毒性。

生物化学的研究成果有哪些?

1、血清中肌酸激酶同工酶的电泳图谱用于诊断冠心病、转氨酶用于肝病诊断、淀粉酶用于胰腺炎诊断等。2、在治疗方面,磺胺药物的发现开辟了利用抗代谢物作为化疗药物的新领域,如5-氟尿嘧啶用于治疗肿瘤。3、青霉素的发现开创了抗生素化疗药物的新时代,再加上各种疫苗的普遍应用,使很多严重危害人类健康的传染病得到控制或基本被消灭。扩展资料:就研究方向而言,生物化学对与之关系比较密切的细胞学、微生物学、遗传学、生理学等领域皆产生了深刻的影响。通过对生物高分子结构与功能进行的深入研究,生物化学揭示了生物体物质代谢、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。生物学中有一些看来与生物化学关系不大的学科,如分类学和生态学,事实上都与生物化学有着密切的联系。甚至人们在探讨人口控制、世界食品供应、环境保护等社会性问题时,都需要从生物化学的角度加以考虑和研究。参考资料:百度百科-生物化学

药物化学问题,哪个为抗代谢药物

A是 6-巯嘌呤(6-MP)为嘌呤类衍生物,由于6-GMP对鸟苷酸激酶有亲和能力,故6-TG最后可以取代鸟嘌呤,掺入到核酸中去。它可以抑制嘌呤合成中的反应。临床用于治疗白血病,也可作为免疫抑制剂,用于肾病综合征、器官移植、红斑狼疮。主要不良反应是骨髓抑制和消化道反应外还可以引起高尿酸血症,用药后要充分水化及碱化尿液,减少高尿酸血症的发生。

药物化学——抗代谢抗肿瘤药

干扰正常代谢反应进行的物质称为抗代谢物。临床应用的抗代谢抗肿瘤药是叶酸拮抗物、嘌呤拮抗物和嘧啶拮抗物,在体内通过抑制生物合成酶;或掺入生物大分子合成,形成伪大分子,干扰核酸的生物合成,使肿瘤细胞丧失功能而死亡。   抗代谢物是应用代谢拮抗原理设计的,在结构上与代谢物类似,一般是将正常代谢物的结构生物作细小改变,例如将代谢物结构中的-H换为-F或-CH3;将-OH换为-SH或-NH2.这种改变应用了电子等排原理。   抗代谢抗肿瘤药按作用原理分为嘧啶拮抗物、嘌呤拮抗物、叶酸拮抗物。   一、嘧啶拮抗物   嘧啶拮抗物有尿嘧啶衍生物和胞嘧啶衍生物,用于临床的药物例如氟尿嘧啶(Fluorouracil)、替加氟(Tegafur)是尿嘧啶衍生物。盐酸阿糖胞苷(CytarabineHydrochloride)是胞嘧啶衍生物。1.氟尿嘧啶(Fluorouracil)   化学名:5-氟-2,4(1H,3H)-嘧啶二酮用氟原子取代代谢物尿嘧啶结构中5位的氢原子,得到抗代谢物氟尿嘧啶。-H与-F为非经典的电子等排体,氟的原子半径与氢的相近,抗代谢物氟尿嘧啶分子的体积与代谢物尿嘧啶分子的体积几乎相等,而且碳氟键很稳定,在代谢过程中不易分解,因此抗代谢物能在分子水平代替正常代谢物。氟尿嘧啶在体内转变为氟尿嘧啶脱氧核苷,抑制胸腺嘧啶合成酶,使酶失活,抑制DNA的合成,导致肿瘤细胞死亡。   氟尿嘧啶抗瘤谱比较广,对消化道癌和其他实体肿瘤有良好疗效,但毒副作用较大。对氟尿嘧啶进行结构改造,发展了一些氟尿嘧啶衍生物用于临床,例如替加氟(Tegafur,呋氟尿嘧啶)、卡莫氟(Carmofur)等,二者均为氟尿嘧啶的前体药物,在体内转变为氟尿嘧啶发挥抗癌作用,不良反应较轻。   2.盐酸阿糖胞苷(CytarabineHydrochloride)   化学名:1-β-D-阿拉伯呋喃糖基-4-氨基-2(1H)-嘧啶酮盐酸盐阿糖胞苷在体内转化为活性的三磷酸阿糖胞苷,抑制DNA多聚酶及少量渗入DNA中,阻止DNA的合成,发挥抗肿瘤作用。阿糖胞苷口服吸收较差,需注射给药。由于该药在体内迅速被肝脏的胞嘧啶脱氨酶作用脱氨,生成无活性的尿嘧啶阿糖胞苷,因此需要静脉连续滴注给药,才能得到较好效果。盐酸阿糖胞苷临床用于急性粒细胞白血病。   为了延长的作用时间,将阿糖胞苷氨基酰化例如依诺他滨(Enocitabine),或环化形成环胞苷(Cyclocytidine),他们在体内代谢转变为阿糖胞苷而起作用,作用时间长,副作用较轻。   二、嘌呤拮抗物   巯嘌呤(6-Mercaptopurine)   化学名:6-嘌呤巯醇一水合物巯嘌呤为黄色结晶性粉末。化学结构为嘌呤环(芳香环)的6位有巯基取代,性质不稳定,遇光易变色。化学结构与黄嘌呤类似,在体内转变为有活性的6-巯代次黄嘌呤核苷酸(硫代肌苷酸),抑制腺酰琥珀酸合成酶和肌苷酸脱氢酶,从而抑制DNA和RNA的合成,可用于各种急性白血病的治疗。   三、叶酸拮抗物   叶酸是核酸生物合成的代谢物,叶酸缺乏时白细胞减少,因此叶酸拮抗物可用于治疗急性白血病。用于临床的例如甲氨喋呤(Methotrexate,MTX)。   甲氨喋呤(Methotrexate,MTX)   化学名:L-(+)-N-[4-[[(2,4-二氨基-6-蝶啶基)甲基]甲胺基]苯甲酰基]谷氨酸   性质:   1.甲氨喋呤为橙黄色结晶性粉末,几不溶于水。具酸、碱两性,可溶于稀盐酸,易溶于稀碱液。   2.在强酸性溶液中不稳定,酰胺键易被水解,失去活性。用途:甲氨喋呤为二氢叶酸还原酶抑制剂,对酶的抑制几乎是不可逆的,通过抑制二氢叶酸还原酶,抑制DNA和RNA的合成,阻碍肿瘤细胞的生长。临床用于急性白血病和绒毛膜上皮癌。临床上常与亚叶酸钙合用降低毒性。

atp中特殊的化学键分解为什么是水解反应?

ATP(腺苷三磷酸)是一种高能分子,参与了许多生物过程,包括细胞内能量转移。ATP中磷酸基之间的键称为磷酸脱水键,这种键具有大量的存储能量。ATP的水解(即与水的反应)导致磷酸脱水键的断裂和能量释放。这个反应可以用以下方式表示:ATP + H2O -> ADP + Pi其中ADP是腺苷二磷酸,Pi是无机磷酸。ATP与水的反应被认为是水解反应,因为水分子充当催化剂,帮助打破键。水分子向一个磷酸基捐赠一个氢离子(H +),并从另一个磷酸基接收羟基离子(OH -),从而促进磷酸和水分子之间的新键的形成。这个反应释放了能量,然后可用于细胞过程,例如肌肉收缩,神经信号和分子跨越细胞膜的转运。

ATP水解化学方程式

atp水解需要水,但一般配平不需要写,即atp酶↹adp+pi+能量,两个箭头都有酶,但是水解,把下面一个箭头和酶去掉即可!

生物化学名解

文字太多,我上传了百度文库,敬请百度文库,搜索 “生物化学名词解释”或是写出你的邮箱,我发给你。生物化学名词解释第一章 氨基酸和蛋白质氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸。等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。第二章 蛋白质的空间结构构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm.β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe)。第三章 酶酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s])米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而υmax不变。非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。别构调节酶(allosteric modulator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。第四章 维生素和辅酶维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。生物素(biotin):参与脱羧反应的一种酶的辅助因子。辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素。转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。第五章 糖类醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。第六章 脂类化合物脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。被动转运(passive transport):那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程。第七章 核酸核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA .信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA .

生物化学判断

错。凝胶过滤中分子量大的移动快,凝胶电泳中分子量小的移动快。凝胶过滤原理:不同分子大小的蛋白质流经凝胶层析柱是,比凝胶珠孔径大的分子不能进入网状结构,而被排阻在凝胶珠之外随溶剂在凝胶珠之间的孔隙向下移动并最先流出柱外;比网孔小的分子能不同程度地自由出入凝胶珠的内外。由于不同大小的分子所经过的路径不同而得到分离,大分子物质先被洗脱出来,小分子物质后被洗脱出来。而凝胶电泳中整块胶板相当于一个分子筛,故大分子受到的阻力大而迁移慢,落在小分子后面。参见生物化学王镜岩(第三版)上册P303和P309。错。肌红蛋白与氧气的亲和力更强。参见生物化学王镜岩(第三版)上册P262。错。Km值小,则酶与底物的亲和力大。参见生物化学王镜岩(第三版)上册P360。错。维持蛋白质三级结构的作用力不包括共价键,共价键是维持蛋白质一级结构的作用力。另外,二硫键一般也是维持蛋白质三级结构的作用力。望采纳。

中学化学的英文术语

地址:http://jpkc.njau.edu.cn/biochemistry/file/2-8.doc供学生使用的《生物化学》重要术语中英语对照碳水化合物(carbohydrate)单糖(monosaccharide)寡糖(oligosaccharide)多糖(polysaccharide)醛糖(aldose)酮糖(ketose)蔗糖(sucrose)乳糖(lactose)麦芽糖(maltose)纤维二糖(cellobiose)多糖(polysaccharides)淀粉(starch)直链淀粉(amylose)支链淀粉(amylopectin)纤维素(cellulose)半纤维素(hemicellulose)糖原(glycogen)几丁质(chitin)糖胺聚糖(glycosaminolgycan)脂类(lipids)脂肪酸(fatty acid)甘油三酯(glycerol triester)亲水脂类(amphipathic lipids)蜡(wax)磷酸甘油脂(phosphoglyceride)甘油磷脂(glycerophospholipid)磷脂酰胆碱(phosphatidylcholine)磷脂酰乙醇胺(phosphatidylethanolamine)磷脂酰丝氨酸(phoshatidylserine)磷脂酰肌醇(phosphatidylinositol, PI)肌醇三磷酸(inositol-1,4,5-trisphosphate,IP3)二脂酰甘油(diacylglycerol,DAG)磷脂酸(phosphatidic acid,PA)磷脂酶A2(phospholipase A2,PLA2)磷脂酶C(phospholipase C,PLC)磷脂酶D(phospholipase D,PLD)溶血磷脂(1ysophospholipid)鞘磷脂(sphingomyelin)神经酰胺(ceramide)类固醇(steroids)萜类(terpenes)胆固醇(cholesterol)麦角固醇(ergosterol)蛋白质 protein 简单蛋白质 simple protein氨基酸 amino acid 结合蛋白质 conjugated protein多肽 polypeptide肽 peptide肽键 peptide bond 介电常数 dielectric constant范德华力 van der waals force层析法 chromatography吸附层析法 adsorption chromatography分配系数 partition or distribution confficient活性肽 active peptide二硫键 disulfide bond兼性离子 zwitterion 一级结构 primary structure 疏水效应 hydrophobic effectSDS-聚丙烯酰胺凝胶电泳 SDS-PAGE 毛细管电泳(capillary eletrophoresis, CE)离子交换层析 ion exchange chromatography同源蛋白 homologous protein 构象 conformation构象角 conformatiomal angle 糖脂(glycolipid)糖基甘油酯(glycosylglyceride)鞘糖脂(glycosphingolipid)脑苷脂(cerebroside)N-乙酰神经氨酸(N-acetylneuraminic acid)神经节苷脂(ganglioside)硫酸脑苷脂(cerebroside sulfate)糖蛋白(glycoproteins)蛋白聚糖(proteoglycans)生物膜(biomembrane)膜脂(membrane lipids)膜蛋白(membrane proteins)脂质双层分子(lipid bilayers)外周蛋白(peripheral protein)外源性(extrinsic protein)内在蛋白(integral protein)内源性蛋白(intrinsic protein)跨膜蛋白(transmembrane proteins)流动镶嵌模型(fluid mosaic model)简单扩散(simple diffusion)协助扩散(facilitated diffusion)被动运输(passive transport)主动运输(active transport)介导性运输(mediated transport)非介导性运输(nonmediated transport)载体蛋白(carrier protein)通道蛋白(channel protein)离子通道(ionic channel)离子载体(ionophore)内吞作用(endocytosis)胞饮作用”(pinocytosis)外排作用(exocytosis)基团转移(group translocation)脂蛋白(lipoprotein)染色体(chromosome)染色质(chromatin)组蛋白(histone)核小体(nucleosome)病毒(virus)噬菌体(bacteriophage或简称phage)变性 denaturation 沉降系数(S)Svedberg(S)抗体 antibody 亲和层析法 affinity chromatography盐溶 salting in 盐析 salting out二级结构 secondary structure 三级结构 tertiary structure a-螺旋 a-helix 超二级结构 super-secondaery structure结构域 structure domain 氢键 hydrogen bend 疏水相互作用 hydrophoblic interaction 肌红蛋白 myoglobin 寡聚蛋白质 oligomeric protein 无规则卷曲 randon coil 复性 renaturation 镰刀状细胞贫血病 sickle-cell anermia 酶(enzyme)酶的专一性(specificity)单体酶(monomeric enzyme)寡聚酶(oligomeric enzyme)多酶复合体系(multienzyme system)酶活性中心(active center of enzyme)催化基团(catalytic site)酶原(zymogen or proenzyme)诱导契合(induced-fit theory)抗体酶(abzyme)酸碱催化(acid-base catalysis)共价催化(covalent catalysis)激活剂(activator)抑制剂(inhibitor)可逆抑制(reversible inhibition)竞争性抑制作用(competitive inhibition)非竞争性抑制作用(noncompetitive inhibition)调节酶(modulator)别构酶(allosteric enzyme)同配位效应(isosteric effect)变构效应(allosteric effect)变构激活(allosteric activation )正协同效应(positive cooperative effect)负协同效应(negative cooperative effect)效应物(effector)维生素(vitamin)维生素缺少症(avitaminosis)调节中心(regulatory center)催化亚基(catalytic subunit)调节亚基(regulatory subunit)诱导酶(induced enzyme)结构酶(structural enzyme)核酶(ribozyme)辅酶(coenzyme)比活力(specific activity)脱氧核酶(deoxyribozyme)酶工程(enzyme engineering)酶纯度(purity of enzyme)酶活力(enzyme activity)a-淀粉酶(a-amylase)b-淀粉酶(b-amylase)脱支酶(debranching enzyme)淀粉的磷酸化酶(amylophosphorylase)糖酵解(glycolysis)三羧酸循环(tricarboxylic acid cycle,TCA)磷酸戊糖途径(pentose phosphate pathway,PPP)生物氧化(biological oxidation)烟酰胺脱氢酶类(nicotinamide dehydrogenase)黄素脱氢酶类(flavin dehydrogenase)铁硫蛋白类(iron-sulfur protein)泛醌(ubiquinone)细胞色素类(cytochromes)细胞色素氧化酶(cytochromeoxidase)鱼藤酮(rotenone)安密妥(amytal)杀粉蝶菌素(piericidine)抗霉素A(antimycin A)底物水平磷酸化(substrate-level phosphorylation)氧化磷酸化(oxidative phosphorylation)化学渗透假说(chemiosmotic coupling hypothesis)化学偶联假说(chemical coupling hypothesis)构象偶联假说(conformational coupling hypothesis)甘油-磷酸穿梭途径(glycerophosphate shuttle)苹果酸-天冬氨酸穿梭途径(malate- aspartate shuttle)异柠檬酸穿梭途径(isocitrate shuttle)能荷(energy charge)肉碱(肉毒碱,carnitine)乙醛酸体(乙醛酸循环体,glyoxysome)乙醛酸循环(glyoxylate cycle)酮体(ketone bodies)饱和脂肪酸的从头合成(de novo synthesis)谷氨酸脱氢酶(glutamate dehydrogenase, GDH) 转氨基作用(transamination)转氨酶(transaminase) 磷酸吡哆醛(pyridoxal phosphate,PLP)谷丙转氨酶(glutamic pyruvic transaminase,GPT或 alanine transaminase,ALT) 谷草转氨酶(glutamic oxaloacetic transaminase,GOT或 aspartate transaminase,AST)γ-谷氨酰-半胱氨酸合成酶(γ-glutamyl systeine synthetase,γ-ECS)谷胱甘肽(glutathione) 谷胱甘肽合成酶(glutathione synthetase) 生物固氮(biological nitrogen fixation) 固氮酶(nitrogenase)自身固氮微生物(diazatrophs) 共生固氮微生物(symbiotic microorganism)硝酸还原酶(nitrate reductase,NR) 亚硝酸还原酶(nitrite reductase,NiR)谷氨酸合酶(glutamate: oxo-glutarate aminotransferase,GOGAT)谷氨酰胺合成酶(glutamine synthetase,GS)腺苷-5"-磷酸硫酸酐(adenosine-5"-phosphosulfate,APS)3"-磷酸腺酐-5"-磷酰硫酸(3"-phosphoadenosine-5"-phosphosulfate,PAPS)5-磷酸核糖焦磷酸(phosphoribosyl pyrophosphaet,PRPP) 天冬氨酸转氨甲酰酶(aspartate trsnscarbamoy lase) 腺嘌呤磷酸核糖转移酶(adenine phosphoribosyl fransferase,APRT)黄嘌呤-鸟嘌呤磷酸核糖转移酶(hypoxanthineguanine phosphoribosyl transferase,HGPRT)谷胱甘肽还原酶(glutathione reductase,GR) 谷氧还蛋白(glutaredoxin)谷氧还蛋白还原酶(glutaredoxin reductase) 胸腺嘧啶核苷酸合酶(thymidylate synthase)DNA复制(DNA replication)中心法则(central dogma) 冈崎片段(Okazaki fragement)前导链(leading strand) 滞后链(lagging strand)引物(primer)复制叉(replication fork) 半保留式复制(semiconservative replication)模板(template)反转录(reverse transcription)转换(transition) 颠换(transversion)错配修复(mismatch repair)核苷酸切除修复(nucleotide excision repair)碱基切除修复(base excision repair)同源重组(homologous recombination)特异性重组(site-specific recombination) 转座子(transposon)启动子(promoter) 限制性内切酶(restriction endonuclease )修饰(modification) 单链结合蛋白(single stranded binding proteins, SSB)遗传密码(genetic code)读码框架(reading frame)移码突变(frame-shift mutation)简并性(degeneracy)同义密码子(synonymous codon)起始密码子(initiatlon codon)终止密码子(termination codon)摆动假说(wobble hypothesis)同功受体tRNA(isoaccepting tRNA)反密码子(anticodon)多核糖体(polyribisome)氨酰-tRNA合成酶(aminoacyl-tRNA synthetase)Shine –Dalgarno序列(Shine –Dalgarno sequence)起始因子(initiation factor)延伸因子(elongation factor)释放因子(release factor)转肽(transpeptidation)移位(translocation)分子伴侣(molecular chapeones)共翻译转移(co-translational translocation)翻译后转移(post-translational translocation)信号肽(signal sequence)信号识别颗粒(signal recognition particle SPR)代谢 (metabolism)代谢调节 (metabolic regulation)共价修饰 (covalent modification)反馈抑制 (feedback inhibition)操纵子模型 (operon model)衰减作用 (attenuation)级联放大作用 (amplification cascade)变(别)构效应 (allosteric effect)诱导和阻遏 (induction and repression)蛋白激酶 C (protein kinase C,PKC)第二信使 (second messenger)受体 (receptor)G 蛋白 (guanosine triphosphate-binding protein)信号转导 (signal transduction)钙调素 (calmodulin,CaM) 磷酯酶 (phospholipase C,PLC)

别构酶的名词解释生物化学

生物化学的解释 运用化学的理论和方法 研究 生物的一门边缘科学。 词语分解 生物的解释 有 生命 的物体,具有生长、发育、繁殖等 能力 ,能通过新陈 代谢 作用与周围环境进行 物质 交换。 动物 、植物、微生物都是生物 森林 生物只有几只苍鹰在高空 盘旋 ,看不见旁的生物。;;《孟姜女》详细解释.泛指 自然 界中一切 化学的解释 研究物质的组成、结构和 性质 及其转化的学科详细解释.研究物质的组成、结构、性质和变化 规律 的科学,是自然科学中的 基础 学科。.指 赛璐珞 。如:这把梳子是化学的。

细胞质内基质化学按分子量大小可以分为三类,小分子,中分子,大分子(其中分子的,核苷酸及其衍生物等?

核苷酸合成主要分为从头合成与补救合成两种途径。1.从头合成是利用磷酸核糖、氨基酸、一碳单位、二氧化碳等简单物质为原料经过一系列促反应生成。2.补救合成是利用现成的嘌呤或嘌呤核苷、嘧啶或嘧啶核苷通过磷酸核糖转移或磷酸化直接合成。还有就是嘧啶环是加在磷酸核糖上的

补救途径名词解释生物化学

生物化学的解释 运用化学的理论和方法 研究 生物的一门边缘科学。 词语分解 生物的解释 有 生命 的物体,具有生长、发育、繁殖等 能力 ,能通过新陈 代谢 作用与周围环境进行 物质 交换。 动物 、植物、微生物都是生物 森林 生物只有几只苍鹰在高空 盘旋 ,看不见旁的生物。;;《孟姜女》详细解释.泛指 自然 界中一切 化学的解释 研究物质的组成、结构和 性质 及其转化的学科详细解释.研究物质的组成、结构、性质和变化 规律 的科学,是自然科学中的 基础 学科。.指 赛璐珞 。如:这把梳子是化学的。

补救途径名词解释生物化学

生物化学的解释运用化学的理论和方法 研究 生物的一门边缘科学。 词语分解 生物的解释 有 生命 的物体,具有生长、发育、繁殖等 能力 ,能通过新陈 代谢 作用与周围环境进行 物质 交换。 动物 、植物、微生物都是生物 森林 生物只有几只苍鹰在高空 盘旋 ,看不见旁的生物。;;《孟姜女》详细解释.泛指 自然 界中一切 化学的解释 研究物质的组成、结构和 性质 及其转化的学科详细解释.研究物质的组成、结构、性质和变化 规律 的科学,是自然科学中的 基础 学科。.指 赛璐珞 。如:这把梳子是化学的。

生物化学填空题两道 1.嘌呤核苷酸补救合成途径的酶是()和(),如果补救合成途径的酶缺乏,()。

嘌呤核苷酸补救合成途径的酶是(腺嘌呤磷酸核糖转移酶(APRT))和(次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)),如果补救合成途径的酶缺乏,(自毁容貌症或Lesch-Nyhan综合症)。体内重要的转氨酶是(谷丙转氨酶)和(谷草转氨酶);前者在(肝)组织中活性高;后者在(心肌)组织中活性高;正常情况下血清中活性(很低);临床上以此作为(疾病诊断和预后)的参考指标之一。

与抗代谢药5-FU化学结构相似的物质是A腺嘌呤B鸟嘌呤C胸腺嘧啶D尿嘧啶E胞嘧啶

【答案】:考点:5-FU答案与解析:D。氟尿嘧啶(flu.r.umcil,5-FU)是尿嘧啶5位上的氢被氟取代的衍生物。5-FU在细胞内转变为5.氟尿嘧啶脱氧核苷酸(5F—dUMP),而抑制脱氧胸苷酸合成酶,阻止脱氧尿苷酸(dUMP)甲基化转变为脱氧胸苷酸(dTMP),从而影响DNA的合成。此外,5-FU在体内可转化为5.氟尿嘧啶核苷,以伪代谢产物形式掺入RNA中干扰蛋白质的合成,故对其他各期细胞也有作用。

生物化学英文缩写《急急急急急急》!?

5-FU,胸苷酸合成酶抑制药,氟尿嘧啶5-HT,5-羟色胺,又名血清素6-MP,6-巯基嘌呤AC,腺苷酸环化酶Ach,乙酰胆碱ACP,Acyl Carrier Protein,酰基-载体蛋白质ADH,己二酸二酰肼ALT(GPT),谷丙转氨酶ADP,腺苷二磷酸AST(GOT),谷草转氨酶ATP,腺苷三磷酸C,胞嘧啶CA,这个不太记得了CaM,景天科酸代谢cAMP,腺苷-3",5"-环化一磷酸cDNA,环状DNAcGMP,鸟苷-3",5"-环化一磷酸CM,这个也不记得了CoA,辅酶ACT,这好像是医学里头的吧!Cyt,细胞色素DAG,不记得啦!DNA,这个就不用说了吧!学生物的都知道啦DNApol,聚合DNAdNDP,F-1,6-2P,果糖-1,6-二磷酸F-1,6-BP,和上面一样啊!F-6-P,果糖-6-磷酸FAD黄腺甘酸怎么这么多啊!算了,你自己看一下生化书吧!考试也不考这多啊!记一些常见的就行啊!

氟尿嘧啶的化学名为

氟尿嘧啶,其化学名为5-氟-2,4(1H,3H)-嘧啶二酮。氟尿嘧啶是5-氟尿嘧啶溶于注射用水并加氢氧化钠的无菌溶液,溶液的pH约为8.9。氟尿嘧啶是尿嘧啶的同类物,尿嘧啶是核糖核酸的一个组分。本药是以抗代谢物而起作用,在细胞内转化为有效的氟尿嘧啶脱氧核苷酸后,通过阻断脱氧核糖尿苷酸受细胞内胸苷酸合成酶转化为胸苷酸,而干扰DNA的合成。氟尿嘧啶同样可以干扰RNA的合成.静脉用药后,氟尿嘧啶广泛分布于体液中,并在4小时内从血中消失。它在被转换成核苷酸后。被活跃分裂的组织及肿瘤所优先摄取,氟尿嘧啶容易进入脑脊液中。约20%以原型从尿排泄,其余大部分在肝中由一般对尿嘧啶代谢的机制所代谢。五氟尿嘧啶和6-巯基嘌呤作为最早的抗癌药物,均从海参中提炼。

尿酸化学式

尿酸是鸟类和爬行类的主要代谢产物,化学式是C5H4N4O3,微溶于水,易形成晶体。正常人体尿液中产物主要为尿素,含少量尿酸。尿酸是嘌呤代谢的终产物,为三氧基嘌呤,其醇式呈弱酸性。各种嘌呤氧化后生成的尿酸随尿排出。尿酸简介正常情况下,体内的尿酸大约有1200毫克,每天新生成约600毫克,同时排泄掉600毫克,处于平衡的状态。但如果体内产生过多来不及排泄或者尿酸排泄机制退化,则体内尿酸滞留过多,当血液尿酸浓度大于7毫克/分升,导致人体体液变酸,影响人体细胞的正常功能,长期置之不理将会引发痛风。另外过于疲劳或是休息不足也可导致代谢相对迟缓进而导致痛风发病。血中尿酸全部从肾小球滤过,其中98%在近曲小管中段又被分泌到肾小球腔内,然后50%重吸收的尿酸在近曲小管中段又被分泌到肾小管腔内,在近曲小管直段又有40%~44%被重吸收,只有6%~10%尿酸排出。正常人体内尿酸的生成与排泄速度基本恒定。体液中尿酸含量变化,可以充分反映出人体内代谢、免疫等机能的状况。[2] 尿酸高人群日常保健做好十件事。保持理想体重,超重或肥胖就应该减轻体重。避免吃炖肉或卤肉;痛风并发高脂血症者,脂肪摄取应控制在总热量的20%至25%以内;大量喝水,每日应该喝水2000mL至3000mL,促进尿酸排除;少吃盐,每天应该随制在2克至5克以内;不用强烈刺激的调味品或香料;限制嘌呤摄入。嘌呤是细胞核中的一种成分,只要含有细胞的食物就含有嘌呤,动物性食品中嘌呤含量较多。碳水化合物可促进尿酸排出,不宜使用抑制尿酸排出的药物。控制热量的摄入也具有降低尿酸和减少痛风发作的作用。研究发现地中海饮食对痛风患者最有利,适当补充豆制品可补充蛋白质。奶制品:尤其是低脂奶制品可降低血尿酸水平,减少痛风的发病率。豆类:并非痛风患者的禁忌豆制品(如豆腐脑、豆腐、豆浆等)可弥补限制红肉摄入带来的蛋白质摄入减少还可降低冠心病的发病风险新鲜水果选择含果糖量较低的水果如青梅青瓜西瓜椰子水草莓樱桃菠萝桃子李子橄榄等摄入。建议痛风患者吃随帝茶可碱化尿液有利于尿酸排泄从而降低血尿酸水平。 [3] 每日饮茶量保证尿量在1500mL/d以上,最好>2000mL/d。同时提倡戒烟,禁啤酒和白酒,如饮红酒宜适量,发作期或进展期痛风患者应严格禁酒。坚持运动,控制体重。每日中等强度运动30分钟以上,肥胖者应减体重,使体重控制在正常范围。 尿酸的积聚主要有四个原因:第一是过量食用高嘌呤的食物;第二是体内嘌呤代谢出现问题;第三是排泄量过少;第四是尿酸无法正常排泄。

在光化学烟雾形成过程中,如果碳氢化合物是丙烯,试用方程式写出光化学反应

通过光化学烟雾模拟实验,已经初步明确在碳氢化合物和氮氧化物相互作用方面主要有以下基本反应:(1) NO2的光解是光化学烟雾形成的主要起始反应,并生成O3: NO2 + hν → NO + O (1) O + O2 + M → O3 + M (2) O3 + NO → NO2 + O2 (3)所产生的O3要消耗在NO的氧化上而无剩余,所以要产生光化学烟雾必需有碳氢化合物存在。(2) 碳氢化合物(HC)被-OH、O和O3氧化,产生醛、酮、醇、酸等产物以及中间产物RO2-、HO2-、RC-O(酰基)等重要的自由基: RH + O → RO2- (4) RH + O3 → RO2-+ O (5) RH + -OH → RO2-+ H2O (6) RCHO与-OH反应如下: RCHO + -OH → RC-O(酰基) + H2O RC-O + O2 → RC(O)O2-(过氧酰基 )(3)过氧自由基引起NO向NO2转化,并导致O3和PAN等氧化剂的生成(自由基传递形成稳定的最终产物,使自由基消除而终止反应): RO2-+ NO → NO2 + RO-(RO2-包括HO2-) (7) OH + NO → HNO2 (8) OH + NO2 → HNO3 (9) RC(O)O2-+ NO2 → RC(O)O2NO2 (10)由于反应(7)使NO快速氧化成NO2,从而加速NO2光解,使二次产物O3净增。同时RO2-(如丙烯与O3反应生成的双自由基CH3C-HOO-)与O2和NO2相继反应产生过氧乙酰硝酸酯(PAN)类物质。 CH3C-HOO- + O2 → CH3C(O)OO- + -OH CH3C(O)OO- + NO2 → CH 3C(O)OONO2 (PAN)可以认为上述反应是大大简化了的光化学烟雾形成的基本反应。1986年Seinfeld用12个化学反应概括了光化学烟雾形成的整个过程:引发反应: NO2 + hν → NO + O O + O2 + M → O3 + M NO + O3 → NO2 + O2 链传递反应: RH + -OH → RO2-+ H2O RCHO + -OH → RC(O)O2-+ H2O RCHO + hν → RO2-+ HO2-+ CO HO2-+ NO → NO2 + -OH RO2-+ NO → NO2 + R′CHO + HO2 RC(O)O2-+ NO → NO2 + RO2-+ CO2 终止反应: OH + NO2 → HNO3 RC(O)O2-+ NO2 → RC(O)O2NO2 RC(O)O2NO2 → RC(O)O2-+ NO2

化学等效平衡问题

1.文字有点繁琐,我这么说吧若转到一边后完全相等的话,就可以看作这两个反应起始反应物条件一样,若在相同条件下反应,理论上平衡时生成物的量也是相等的,故对应的平衡后各物质浓度 物质的量分数 体积分数 质量分数 应该是相等的,但转化率不一定,转化率=某物质转化量/该物质起始量.而物质的量就更不可能一样了.2.对于这个反应,由于右边只有一种物质,则增加这种物质对于整个反应来说相当于加压,而反应时恒压的,故平衡应不移动.同样对于左边,成比例充入也等于加压,但记住是按照平衡时左边2种物质的比例加入,而不是反应方程式的比例!3.这里LZ想问的应该是在恒温恒容下吧?如果是恒压就没必要说了,因为反应前后体积不变的反应是不受压强变化而变化的,同第2问可知加压平衡不移动.而在恒温恒容下若加压则由于反应前后体积不变,不受压强影响则平衡也不移动.注:由于是恒压,虽然加入的量多了,但其比例仍然不变,相当于把反应扩大为原来n倍来生产(n>1) 则 物质浓度 物质的量分数 体积分数 质量分数 应该一样,但物质的量 和转化率肯定就不一样了.

初中化学计算题该掌握哪些方法?

初中化学计算题该掌握哪些方法? 最重要的是利用化学方程式解题。掌握好这个其他方法都是由它衍生出来的。 初中化学计算题,速度 首先计算出N元素的质量分数:14/{12+16+2*(14+2)}=X 然后:300*98%*X 所得就是N的含量 初中化学计算题怎么算 初三化学计算专题练习 计算是中考必考内容,是试卷的最后一题,也会穿插在实验题、探究题中,约占4~7分。中考中的典型题型:化学反应方程式与溶液中的方程式计算题,金属与酸反应生成氢气的计算题,图表型、影象型分析计算题。主要分为三大类 初中化学计算题有哪些型别 :wenku.baidu./link?url=w_zy0UOyiGUkm5W9tBXXFflznQnUb8EO2eIKN8t821lo7RYgoectoe8j7hmRKonX4-e8nH71ij2oKlEeZtPVewS3bDHkfmfMYbZNuXwnqBG 初中化学计算题技巧35题 一、质量守恒法化学反应遵循质量守恒定律,各元素的质量在反应前后是守恒的。抓住守恒这个中心,准确建立已知量与待求量的等量关系,是用质量守恒法解题的关键。二、差量法根据化学反应前后某一状态的物质之间的质量差与反应物或生成物的质量成正比例的关系进行计算的方法称为差量法。在化学反应中,虽然从整体上看存在着质量守恒的关系,但某一状态的物质(例如固态物质或液态物质)的质量在反应前后会发生反应(增加或减少),这一差值称为差量。差量与反应物或生成物之间有着正比例关系,通过这种比例关系可以计算出与之相关的待求量。因此,寻找差量,正确建立差量与待求量的比例关系,是用差量法解题的关键。在有沉淀或气体生成的化学反应中,常用差量法进行计算。三、关系式法在涉及多步化学反应的计算中,根据起始反应物与最终生成物的关系式进行计算的方法称为关系式法。 初中化学计算题演算法和技巧 搞清楚题目中给定的物质条件,存在的化学反应,在给定的条件下是否存在过量,发生其他的反应 初中化学计算题,急等,简单 2KClO3= 2KCl + 3O2↑ 245 96 10g xg 245/10=96/x x=3.9g 求一点初中化学计算题 解: 23.(08湖北宜昌)(2分)化肥硝酸铵的化学式为(NH4NO3)。试求: (1)硝酸铵中N、H、O三种元素的质量比 ; (2)为了保证某一农作物获得3.5㎏氮元素,则需要 ㎏硝酸铵。 24.(08湖北宜昌)(5分)50g Ca(NO3)2溶液与50g K2CO3溶液混合后,恰好完全反应。经过滤、干燥、称量,得到5g沉淀。反应的化学方程式是:K2CO3+Ca(NO3)2==CaCO3↓+2KNO3。请计算: (1)参加反应的K2CO3的质量。 (2)过滤后所得溶液的溶质质量分数。 25.(08江苏常州)(6分)某校化学兴趣小组为测定某硝酸铵样品的纯度,将10g样品溶于30g水后,再加入13.7g氢氧化钠浓溶液共热,两者恰好完全反应(硝酸铵中的杂质不与氢氧化钠反应,也不溶于水,硝酸铵与氢氧化钠的反应方程式为:NH4NO3+NaOH △ NaNO3+H2O+NH3↑)。把产生的所有NH3用足量的硫酸溶液吸收,同时测量2分钟内硫酸溶液增加的质量,结果如下表所示: 时间/s 0 20 30 40 60 80 100 120 增加的质量/g 0 0.7 m 1.2 1.5 1.6 1.7 1.7 试回答下列问题: (1)请在下面的座标纸上,以反应时间为横座标,以产生的NH3质量为纵座标,画出能够表明产生气体的质量随时间变化的关系曲线; (2)表中m约为 ; (3)硝酸铵样品的纯度为 ; (4)试计算反应后所得硝酸钠溶液的溶质质量分数(不考虑反应过程中水损失的质量)。 26.(08江苏南通)(4分)2008年5月12日四川汶川大地震后,为了预防疫情,防疫人员使用了各种消毒剂对环境进行消毒。亚氯酸钠(NaClO2)是一种重要的消毒剂。试计算: (1)亚氯酸钠中Na、Cl、O三种元素的质量之比为_____________________________。 (2)现要配制质量分数为16%的亚氯酸钠消毒液1500 kg,需要亚氯酸钠_________kg。 27.(08江苏南通)(5分)阳光牌小包装“脱氧剂”成分为Fe粉、活性炭及少量NaCl、水。使用一段时间后,其中的Fe粉会转变成Fe2O3而变质。某化学兴趣小组欲探究使用过的阳光牌“脱氧剂”的变质程度(已变质的Fe粉占变质前Fe粉的质量分数),设计并进行如下探究过程。 步骤(1)取食品包装袋中的阳光牌“脱氧剂”一袋,将里面的固体溶于水,过滤、洗涤、干燥滤渣。 步骤(2)取步骤(1)中的滤渣8.0 g,加入足量的稀H2SO4与滤渣充分反应,过滤、洗涤、干燥得固体1.2 g。 步骤(3)取步骤(2)中的滤液,加入足量的NaOH溶液,得到的固体经洗涤后转移到坩埚中,充分加热、冷却、称量,得到8.0g Fe2O3(注:滤液中的Fe元素已全部转化为Fe2O3)。求: (1)8.0 g滤渣中Fe和Fe2O3两种物质的总质量。 (2)该“脱氧剂”在未变质时,Fe粉和活性炭的质量之比。 (3)该“脱氧剂”的变质程度。 28.(08江苏徐州)(6分)鸡蛋壳的主要成分是碳酸钙。为了测定某鸡蛋壳中碳酸钙的质量分数,小群同学进行了如下实验:将鸡蛋壳洗净、干燥并捣碎后,称取10g 放在烧杯里,然后往烧杯中加入足量的稀盐酸90g,充分反应后,称得反应剩余物为97.14g 。(假设其他物质不与盐酸反应) (1)产生二氧化碳气体 g。 (2)计算该鸡蛋壳中碳酸钙的质量分数。 29.(08山东) (6分)环保部门对某工厂的废水进行分析,结果表明:废水中含少量硫酸。取一定量废水用2%的氢氧化钠溶液中和(已知废水中的其它成分不与氢氧化钠反应),至PH等于7 时,消耗氢氧化钠溶液质量为40g,同时测得反应后溶液质量为138g。请计算该工厂排放的废水中硫酸的质量分数。 30.(08山东临沂)(6分)刘明用石灰石(杂质不与酸反应,也不溶于水)和稀盐酸反应制取二氧化碳,在准备将反应后的废液倒进废液缸时,发现实验桌上有一瓶未知质量分数的Na2CO3溶液,他决定利用该废液,测定Na2CO3溶液中溶质的质量分数。他将废液过滤,然后向废液中慢慢滴加Na2CO3溶液,加入Na2CO3溶液的质量与生成沉淀质量的关系如右图所示。 (1)在加入Na2CO3溶液的过程中,开始时没有发现沉淀生成,说明滤液中的溶质除含有CaCl2外,还含有______________________; (2)计算Na2CO3溶液中溶质的质量分数。(计算结果精确到0.1%) 初中化学计算题怎么做? 化学计算题是中学化学中最重要、最基本的题型。如何提高计算题的教学效果是很值得研究的课题。近些年来,本人对此也进行了积极的探索和有益的尝试,这里,笔者根据自己的教学实践谈几点浅见。 一、设计梯度,诱发深入 化学计算题中,学生最伤脑筋无疑是综合题,这类题目文字繁多、资料多、综合性强,尽管学生掌握了一些解简单题的知识和经验,但因综合分析能力差,不善于化繁为简,不能对知识准确迁移,因而觉得十分棘手。这类题目看似高深莫测,其实,也不过是由一些简单题目复合而成。如果老师能给学生设计合理的知识梯度,诱发深入,则会取得较好的效果。 例.在一溶液中含有氯化钠、硫酸钠、碳酸钠三种钠盐,为了测定含量: (1)先加入40 g 10.4%的氯化钡溶液刚好完全反应,共产生沉淀4.32 g; (2)用足量的稀硝酸处理沉淀,产生0.44 g气体; (3)在滤液中加入足量的硝酸银溶液,共产生8.61 g沉淀,求三种钠盐各多少克? 初中学生看了这道题目,有的茫然不知所措,有的感到似曾相识,却理不出头绪,有的好像找到了解题途径,但对是否正确没有把握,这时,可出示下面的题目。 (1)NaCl、Na2SO4、Na2CO3三种物质哪些可以与BaCl2溶液反应,产物是什么; (2)Na2CO3、Na2SO4共24.8 g,其中含Na2CO3 10.6 g,用足量的BaCl2与其作用,共产生沉淀若干克,再用稀硝酸处理,能产生CO2多少克? (3)若要生成143.5 g氯化银,需NaCl几克。 讲完这三道题,再作上面的题目,心理就有底了,这里要特别向学生强调,滤液中的NaCl来自三部分,既有原混合物中固有的,又有Na2CO3,Na2SO4与BaCl2作用生成的。 二、发散思维,拓展思路 溶质的质量分数是初中化学中一个非常重要的概念,这部分计算题也是计算题的难点之一,有些题中隐蔽一些几乎可以乱真的迷惑因素,所谓明修栈道,暗渡陈仓,即使一些好学生也往往被一些表象所迷惑,不能透过现象看本质。如果我们能够每做一个型别的题目,然后作以小结,使学生产生深刻的印象,以后碰见此类题目,就不会“大上其当”。 表1 一组求溶质质量分数的习题 以上题目的出现,先让学生自己动手做,学生可能会出现这样或那样的错误,“你们做的是否正确呢”,在存在疑问的心理状态下更有利于学生的求知欲从潜伏状态转入活跃状态,这是激励学生学习动机的最佳时机,如果教师能准确把握这个时机,在学生思维的最佳突破口给予点拨,这对学生的智慧发展无疑将会产生积极的影响。 三、举一反三,触类旁通 对于化学计算题中同一型别的题目,它们在某些形式上有所变化和发展,在教学中应分门别类地归纳总结。 例1.把50 g 98%的H2SO4稀释成20%的H2SO4溶液,问稀释后溶液的质量是多少? 2.把50 g 98%的H2SO4稀释成20%的H2SO4溶液需水多少克?需水多少毫升? 3.配制500 g 20%H2SO4溶液需要98%的H2SO4多少克? 以上题目,虽内容和形式不尽相同,但相互间存在着变化演绎关系,只要仅仅抓住“稀释前后溶质的质量不变”这一关键,稍作点拨学生便恍然大悟,从而正确解题,这对于培养学生的发散思维是十分有益的。 四、启发思维,妙思巧解 在化学计算题的教学中,既要重视基础,让学生掌握常规的解题方法,也应重视技能,尽可能寻求妙思巧解,使学生的解题能力得以升华。 例.在t ℃时,有某物质的溶液n g,将其分成两等份,一份自然蒸发掉10 g的水,溶液即成饱和溶液;另一份只要加入3.6 g该物质,也将成为饱和溶液,求t ℃时此物质的溶解度。 本题资料较多,学生甚觉棘手,教师不必将答案直接简单地提供给学生,更不能越俎代疱,代替学生思考,充分利用学生思维处于“受激发状态”,急于得出答案的思维最佳良机,指点迷津,指出:“蒸发掉的水分与加入的溶质形成的溶液恰是饱和溶液”,这时,老师象擂鼓一样,重槌敲打,以留下深刻的印象。 化学计算题型甚多,切勿搞题海战术,而应该脚踏实地的将其归类,提高学生解计算题的能力。 初中化学计算题,应该怎么算? 一般来说都是先分析题意,找出关系式,再按照要求设未知数,然后根据关系式求解,最后是答。

怎么样的两个化学方程式可合并

两个反应中,其中一个反应的生成物是另一个反应的反应物,并且条件是相同的话就可以合并反应方程式这是针对化学反应的真实情况来合并的但是如果是用于化学计算上的话那么条件要素可以忽略直接一个反应的生成物是另一个反应的起始反应物就可以了~希望能够对您有帮助~

有关化学等效平衡的问题

先看条件,(气体体积前后变化的反应)恒温恒容,等量等效。要满足投料量能其实量。2molN2和6molH2相当于4molNH3(一边倒)第一题c就是4mol第二题 a、b一边倒到c是1.4 c要到4才能等效平衡 所以 c=2.6 反应的进行方向取决于Qc和K的大小,由已知可以求平衡常数,有现在的a/b/c可以求Qc,比较大小就知道反应怎么进行了。同理,可以求出c的取值,只要Qc<K就行了第三题 Qc>K

化学平衡三段法,若起始状态充入反应物和生成物,生成物的平衡状态应该是加还是减?

我不是很清楚三段法。你最后的2-x是代表什么?如果2x是代表反应的量,那么平衡时反应物的量应该是2-2x此时生成物都是:1+x反应物减少,生成物增加。

光化学烟雾的形成机理是什么?

主要是汽车尾气过量排放造成的,汽车尾气里含有大量氮氧化物以及挥发性有机物,在日光紫外线的照射下,发生光化学反应,生成臭氧(光化学烟雾的主要成分就是臭氧,90%),醛类,NO2,NO等,是一种淡蓝色的烟雾,同时,在“逆温”这种气象条件下,由于大气流动性差,气体不易扩散,就生成了光化学烟雾,纽约曾发生大规模的光化学烟雾事件。

怎样看高中化学中化学平衡中总物质的量不变

化学平衡是指在宏观条件一定的可逆反应中,化学反应正逆反应速率相等,反应物和生成物各组分浓度不再改变的状态。逆:化学平衡研究的对象是可逆反应。   等:平衡时,正逆反应速率相等,即v正=v逆。(对于同一个物质,v正=v逆数值上相等;对于不同物质,vA正:vB逆=a:b,即等于系数比)   动:平衡时,反应仍在进行,是动态平衡,反应进行到了最大程度。   定:达到平衡状态时,反应混合物中各组分的浓度保持不变,反应速率保持不变,反应物的转化率保持不变,各组成成份的(百分)含量保持不变。   变:化学平衡跟所有的动态平衡一样,是有条件的,暂时的,相对的,当条件发生变化时,平衡状态就会被破坏,由平衡变为不平衡,再在新的条件下建立新平衡。   同:对于一个确定的可逆反应,不管是从反应物开始反应,还是从生成物开始反应,亦或是从反应物和生成物同时开始, 只要满足各组分物质浓度相当,都能够达到相同的平衡状态。 1.等效平衡   同一可逆反应,一定条件下,当改变起始时反应物或生成物物质的量或物质的量浓度,达到平衡时,混合物中各组分的百分组成相等,这样的平衡称等效平衡。   2.规律与判断   (1) 一般可逆反应,恒温恒容时,当起始反应物或生成物的物质的量通过化学计量数换算相同时,则建立等效平衡。   如反应 2SO2+O2=(可逆)=2SO3 在(A)、(B)条件时建立等效平衡   (A) 起始时加入:2mol SO2 + 1mol O2   (B) 起始时加入:2mol SO3   注意:此情况下,无论反应物还是生成物,起始时物质的量一定要与化 学计量数比相同。   (2) 一般可逆反应,恒温恒压时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,即建立等效平衡。   如反应 2SO2+O2=(可逆)=2SO3 在(C)、(D)时建立等效平衡   (C)起始时加入:1mol SO2 + 1mol O2   (D)起始时加入:2mol SO2 + 2mol O2   (3) 对于反应前后体积不变的气体反应,恒温恒容时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,建立等效平衡。   如反应 H2+I2(气) 2HI 在(E)、(F)时建立等效平衡   (E)起始时加入:1mol H2+2mol I2   (F)起始时加入:2mol H2+4mol I2

高中化学,等效平衡定义没看懂。。什么叫做起始加入情况不同的同一可逆反应

只是起始加入情况不同的同一可逆反应达到平衡后,任何相同组分的质量分数(或体积分数)都相同,这样的平衡互为等效平衡。在相同条件下,同一可逆反应体系,不管从正反应开始,还是从逆反应开始都可以建立同一平衡状态,也就是等效平衡,还可以从中间状态(既有反应物也有生成物)开始,平衡时各物质的浓度对应相等。由于化学平衡状态与条件有关,而与建立平衡的途径无关因而,同一可逆反应,从不同状态开始,只要达到平衡时条件(温度,浓度,压强等)完全相同,则可形成等效平衡。(方程式前后气体系数之和不同时)只要能使各物质的初始物质的量分别相等,就可以建立相同平衡。即两平衡的关系是相等关系。两个平衡的所有对应平衡量(包括正逆反应速率、各组分的物质的量分数、物质的量浓度、气体体积分数、质量分数等)完全相等。(方程式前后气体系数之和相同时)只要能使各物质初始物质的量之比相等就可以建立相似平衡。即两平衡的关系是相似关系。两平衡中各组分的物质的量分数、气体体积分数、质量分数、只要有一种物质百分含量相等;而两平衡中的正逆反应速率、各组分平衡时的物质的量及物质的量浓度等对应成比例。

如何理解化学等效平衡

1.等效平衡 同一可逆反应,一定条件下,当改变起始时反应物或生成物物质的量或物质的量浓度,达到平衡时,混合物中各组分的百分组成相等,这样的平衡称等效平衡。 2.规律与判断 (1) 一般可逆反应,恒温恒容时,当起始反应物或生成物的物质的量通过化学计量数换算相同时,则建立等效平衡。 如反应 2SO2+O2 2SO3 在(A)、(B)条件时建立等效平衡 (A) 起始时加入:2molSO2 + 1molO2 (B) 起始时加入:2molSO3 注意:此情况下,无论反应物还是生成物,起始时物质的量一定要与化 学计量数比相同。 (2) 一般可逆反应,恒温恒压时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,即建立等效平衡。 如反应 2SO2+O2 2SO3 在(C)、(D)时建立等效平衡 (C)起始时加入:1molSO2 + 1molO2 (D)起始时加入:2molSO2 + 2molO2 (3) 对于反应前后体积不变的气体反应,恒温恒容时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,建立等效平衡。 如反应 H2+I2(气) 2HI 在(E)、(F)时建立等效平衡 (E)起始时加入:1molH2+2molI2 (F)起始时加入:2molH2+4molI2 3.应用 利用等效平衡原理进行平衡问题分析2例 例1. 在相同条件下(T=500K),相同体积的甲乙两从容,甲中充入1gSO2和1gO2,乙中充入2gSO2和2gO2,下列叙述中不正确的是( ) (A) 反应速率:乙>甲 (B) 平衡混合物中SO2的体积分数:乙>甲 (B)SO2的转化率:乙>甲 (D) 平衡时O2的体积分数:甲>乙 [简析] 若将乙容器的容积扩大2倍,则甲乙为等效平衡;再将乙容器容积恢复到原 体积,则压强增大,反应速率增大,平衡向生成SO3的方向移动,故(A)、(C)、 (D)项都是正确的,只有(B)项是错误的。答案(B)。 例2.在一定温度下,将a molPCl5通入一容积不变的密闭容器中,达到如下平衡: PCl5(气) PCl3(气)+ Cl2 (气) 测得平衡混合气的压强为P1 ;此时,再向此反应器中通入a mol PCl5,在温度不变时,重新达到平衡时,测得压强为P2,则P1 与P 2 的关系是( ) (A)2P1>P2 (B) 2P1<P2 (C) 2P1=P2 (D) P2 >P1 [简析] 第二次平衡,可以这样设计:将容器体积扩大1倍,通入2a mol PCl5,此时建立的平衡与第一次平衡相同,压强相等;再将容器体积恢复为原容积,压强增大,平衡向逆反应方向移动,混合气总物质的量减小,建立新平衡,即第二次平衡,故 P1 < P2 < 2P1。答案(A、D)。 应用等效平衡原理分析有关化学平衡问题的一般思路: 根据已知条件,先合理变换条件,使之成为等效平衡;然后将体系恢复为原条件,再 恢复原条件

怎么样的两个化学方程式可合并

两个反应中,其中一个反应的生成物是另一个反应的反应物,并且条件是相同的话就可以合并反应方程式这是针对化学反应的真实情况来合并的但是如果是用于化学计算上的话那么条件要素可以忽略直接一个反应的生成物是另一个反应的起始反应物就可以了~希望能够对您有帮助~

高二化学平衡 可逆符号我不会打,就用等号代替!

按照题目的理解,应该是向容器中加入了A物质,由于A为固体,所以A分解后达到平衡,体系中只有B、C两种气体,而且它们的物质的量之比一定为2:1,即等于化学方程式中化学计量数之比。平均相对分子质量数值上等于平均摩尔质量,即用气体的总质量除以气体的总物质的量,也等于各组分的相对分子质量乘以该组分的物质的量分数然后再相加(如本题即等于B的相对分子质量除以2/3再加上C的相对分子质量乘以1/3),这个平均相对分子质量与是否达到平衡是无关的,因为无论是否达到平衡,BC的物质的量之比均为2:1。所以混合气体的平均相对分子质量不变不能说明得到平衡状态。同样,无论是否平衡,B的体积百分含量均为2/3,B的体积百分含量不变也不能说明反应达到平衡状态

化学反应有哪几种基本反应类型?

  四大基本反应类型是化学反应中十分重要的反应类型,分别为:化合反应,分解反应,置换反应和复分解反应。     化合反应:化合反应指的是由两种或两种以上的物质反应生成一种新物质的反应。其中部分反应为氧化还原反应,部分为非氧化还原反应。此外,化合反应一般释放出能量。可简记为A+B=AB.  分解反应:由一种物质生成两种或两种以上其它的物质的反应叫分解反应。简称一分为二,表示为AB=A十B。只有化合物才能发生分解反应。  置换反应:一种单质与化合物反应生成另外一种单质和化合物的化学反应,是化学中四大基本反应类型之一,包括金属与金属盐的反应,金属与酸的反应等。可简记为AB+C=A+CB.  复分解反应:由两种化合物互相交换成分,生成另外两种化合物的反应。其实质是:发生复分解反应的两种物质在水溶液中相互交换离子,结合成难电离的物质----沉淀、气体、水,使溶液中离子浓度降低,化学反应即向着离子浓度降低的方向进行。可简记为AB+CD=AD+CB。

化学平衡的等效平衡

1.等效平衡(1)定义同一可逆反应,一定条件下,当改变起始时反应物或生成物物质的量或物质的量浓度,达到平衡时,混合物中各组分的百分组成相等,这样的平衡称等效平衡。(2)产生原因平衡,只与温度、压强和浓度有关,与加料顺序无关。根据气体状态方程,pV=nRT,可以发现:如果保持温度不变,恒容体系,只要“一边倒”之后,各组分n相同,压强也相同,平衡状态也相同。如果保持温度不变,恒压体系,只要“一边倒”之后,各组分n成同一比例,浓度也相同,那么平衡状态也相同。2.规律与判断(1) 一般可逆反应,恒温恒容时,当起始反应物或生成物的物质的量通过化学计量数换算相同时,则建立等效平衡。如反应 2SOu2082+Ou2082=(可逆)=2SOu2083 在(A)、(B)条件时建立等效平衡(A) 起始时加入:2mol SOu2082 + 1mol Ou2082(B) 起始时加入:2mol SOu2083注意:此情况下,无论反应物还是生成物,起始时物质的量一定要与化学计量数比相同。(2) 一般可逆反应,恒温恒压时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,即建立等效平衡。如反应 2SOu2082+Ou2082=(可逆)=2SOu2083 在(C)、(D)时建立等效平衡(C)起始时加入:1mol SOu2082 + 1mol Ou2082(D)起始时加入:2mol SOu2082 + 2mol Ou2082(3) 对于反应前后体积不变的气体反应,恒温恒容时,当起始反应物或者生成物的物质的量比(不一定要求与化学计量数比相同)相同时,建立等效平衡。如反应 Hu2082+Iu2082(气) 2HI 在(E)、(F)时建立等效平衡(E)起始时加入:1mol Hu2082+2mol Iu2082(F)起始时加入:2mol Hu2082+4mol Iu20823.应用利用等效平衡原理进行平衡问题分析2例例1在相同条件下(T=500K),相同体积的甲乙两容器,甲中充入1mol SOu2082和1mol Ou2082,乙中充入2mol SOu2082和2mol Ou2082,下列叙述中不正确的是( )(A) 反应速率:乙> 甲  (B) 平衡混合物中SOu2082的体积分数:乙> 甲(B)SOu2082的转化率:乙> 甲  (D) 平衡时Ou2082的体积分数:甲> 乙简析若将乙容器的容积扩大2倍,则甲乙为等效平衡;再将乙容器容积恢复到原体积,则压强增大,反应速率增大,平衡向生成SOu2083的方向移动,故(A)、(C)、(D)项都是正确的,只有(B)项是错误的。答案(B)。例2在一定温度下,将a molPClu2085通入一容积不变的密闭容器中,达到如下平衡: PClu2085(g)=(可逆)=PClu2083(g)+Clu2082(g) 测得平衡混合气的压强为Pu2081 ;此时,再向此反应器中通入a mol PClu2085,在温度不变时,重新达到平衡时,测得压强为Pu2082,则Pu2081 与Pu2082 的关系是( )(A)2Pu2081>Pu2082 (B) 2Pu2081<Pu2082 (C) 2Pu2081=Pu2082 (D) Pu2082 >Pu2081简析第二次平衡,可以这样设计:将容器体积扩大1倍,通入2a mol PClu2085,此时建立的平衡与第一次平衡相同,压强相等;再将容器体积恢复为原容积,压强增大,平衡向逆反应方向移动,混合气总物质的量减小,建立新平衡,即第二次平衡,故 Pu2081 < Pu2082 < 2Pu2081。答案(A、D)。应用等效平衡原理分析有关化学平衡问题的一般思路:根据已知条件,先合理变换条件,使之成为等效平衡;然后将体系恢复为原条件,再恢复原条件。关于等效平衡难点——推“隔板”问题例:在一个容积固定的反应容器中, 有一可以左右滑动的密封隔板, 两侧分别进行如下图所示的可逆反应:各物质的起始加入量如下: A、B、C 均为 4.0 mol, D为 6.5 mol, F为 2 mol, 设E 为 x mol, 当x 在一定范围内变化时, 均可以通过调节反应器的温度时两侧反应都达到平衡, 且隔板恰好处于反应器的正中位置。当x = 4.5时, 则右侧反应起始时向 正反应,要使起始反应维持向该方向进行, x 的最大值应小于7。若x 分别为 4.5 和 5.0, 则在这两种情况下, 当反应达到平衡时, A的物质的量两种情况下不相同,因为温度不同。x = 3.0时, 右侧反应在起始时向逆反应, 要使起始反应维持向该方向进行, x 的最小值应大于2.5x = 4.5时, 左右两侧反应体系达到平衡后, 向左侧反应器中充入a mol A气体, 当左右两侧再次达到平衡状态时, 则a 的取值范围为0<a<2。等效平衡新题型——等效热问题例:已知:① H2(g)+N2(g)+3O2(g) =2HNO3(l);△H1= —348.2KJ/mol,②2NO(g)= N2(g)+ O2(g);△H2= —180.5 KJ/mol,③3NO2(g)= N2(g)+3O2(g); △H3= —99.6 KJ/mol ④H2O(l)= H2(g)+ O2(g);△H4= +285.84 KJ/mol,⑤H2O(l)= H2O(g);△H5= +44.02 KJ/mol,⑥3NO2(g) +H2O(g)=(可逆)2HNO3(l)+ NO(g);△H6 。在一恒温恒压的密闭容器中充入5mol NO2和8mol H2O(g),记为平衡Ⅰ,达平衡时生成1molNO。相同条件下同一容器中充入xmol NO2,ymol H2O(g)和3molNO,记为平衡Ⅱ,达平衡时,NO的质量分数与平衡Ⅰ相同,且放出热量115.73KJ,则x=11,y=29。简析:△H6= —115.73KJ/mol,算出在平衡Ⅰ平衡时放出热量115.73KJ,平衡时剩余NO2:2 mol,H2O(g):7 mol,NO:1 mol。因为平衡Ⅱ与平衡Ⅰ等效,且放出热量相同,又因为有3molNO充入,所以需要NO2:2*3=6 mol,H2O(g):7*3=21 mol维持平衡状态,再充入与平衡Ⅰ完全相同的NO2、H2O(g)则就与原平衡放出热相同且等效,所以x=6+5=11 mol,y=21+8=29 mol,这是如今出现的较难的等效平衡问题,一旦与热联系起来就不好建立理想模型了,本题的思考方法值得借鉴。

光合作用的光化学反应是指

关于光合作用的光化学反应是指介绍如下:又称光化学反应或光化作用。物质一般在可见光或紫外线的照射下而产生的化学反应。在环境中主要是受阳光的照射,污染物吸收光子而使该物质分子处于某个电子激发态,而引起与其它物质发生的化学反应。如光化学烟雾形成的起始反应是二氧化氮(NO2)在阳光照射下,吸收紫外线(波长2900~4300A)而分解为一氧化氮(NO)和原子态氧(O,三重态)的光化学反应,其反应式为NO2+ 由此开始了链反应,导致了臭氧及与其它有机烃化合物的一系列反应而最终生成了光化学烟雾的有毒产物。光化学反应可引起化合、分解、电离、氧化还原等过程。主要可分为两类:一类是光合作用,如绿色植物使二氧化碳和水在日光照射下,借植物叶绿素的帮助,吸收光能,合成碳水化合物。另一类是光分解作用,如高层大气中分子氧吸收紫外线分解为原子氧;染料在空气中的褪色,胶片的感光作用等。大气污染的化学原理比较复杂,它除了与一般的化学反应规律有关外,更多的由于大气中物质吸收了来自太阳的辐射能量(光子)发生了光化学反应。使污染物成为毒性更大的物质(叫做二次污染物)。光化学反应是由物质的分子吸收光子后所引发的反应。分子吸收光子后,内部的电子发生能级跃迁,形成不稳定的激发态,然后进一步发生离解或其它反应。

化学题目

(1)盐酸和醋酸都是一元酸,硫酸是二元酸,在相同的物质的量时,硫酸的氢离子是盐酸、醋酸的2倍。(这里的氢离子是指所有形式的,包括电离和未电离)。 所以中和NaOH的能力:2A=2C=B(2)氢离子的浓度相同且体积相同,由于盐酸或硫酸是强酸,已经完全电离,氢离子就是这么多,而醋酸是弱酸,还未完全电离,大量的氢离子还以分子的形式储备,随着溶液中氢离子数量的减少慢慢释放补充。 所以产生气体的体积:A=B<C(3)氢离子的浓度相同且体积相同,【起始反应速率一样】。但是正如前面分析,强酸溶液的氢离子不断减少会使得反应速率减慢,而弱酸会不断补充使得氢离子浓度保持相对稳定, 所以时间长短:C<A=B

问两个高中化学平衡的题目 想了半天没一点思路 根本没摸着门道

1、增压情况:转化率NH3变小,HI不变,NO2变大2、1:起始通入1molN2,3molH2和2molNH3发生反应=起始通入2molN2,6molH2相对分子质量之比=物质的量的反比。8:(8-2x)=1.6:1。x=1.5.N2的转化率=1.5/2=0.752:起始通入2molN2,6molH2=起始通入4molNH3。平衡时0.5molN2,N2的物质的量范围[0,0.5)3:PV=nRT,V正比n平衡时n=5mol,1L。5/8=1/x。x=1.6L

如何确定化学平衡中的取值范围

达到平衡时生成0.6 mol CO2。再通入4 molH2O(g),在上述条件下达到平衡后,求生成CO2的物质的量范围。解假设加入H2O(g)反应向正方向进行到底,由于初始CO为1 mol,故生成的CO2也为1 mol;假设加H2O(g)后平衡不移动,CO2仍为0.6mol,而可逆反应中以上情况均是不可能的,故0.6mol<n(CO2)<1 mol例2在体积固定的密闭容器中通人各为 1 molA、C、D,xmol B发生反应,A(g)+4 B(g)?2C(g)+D(g)。当x在一定范围内变化时,均可以通过调节反应器的温度,使反应达到平衡时保持容器中气体总物质的量为5 mol。 (1)若欲使起始反应维持正方向进行,求x的取值范围。 (2)若欲使起始反应维持逆方向进行,求x的取值范围。解析(1)要维持起始时反应正方向进行,考虑消耗量最多的物质B极限值有两点:一是B完全消耗,二是B完全没有消耗。假设B完全消耗,有(1-x/4)+(1+x/2)+(1+x/4)=5,x=4,这为最大极限值(因为正反应是气体物质的量减小的方向,如果x大于某个值之后,无论反应怎样向正反应方向进行,平衡时总物质的量都会大于5)。假设曰完全没有消耗,则有1+1+1+x=5,x=2为最小极限值(因为B若消耗,总量就会小于5),以上均为不可能达到的极端情况,故x的取值范围为2<x<4.(2)若要维持起始时反应逆方向进行,对于消耗量最多的c极限值有两点:一是c完全消耗,二是G完全没有消耗。假设c完全消耗,则有(1+0.5)+(x+2)+(1-0.5)=5,x=1为最小极限值;假设c完全没有消耗,则有1+1+l+z=5,x=2为最大极限值,以上均为不可能达到的极端情况,故x的取值范围为:l<x<2。二、等效转化法对于同一可逆反应,在温度和体积相同时,可以从反应物开始,也可以从生成物开始,还可以从反应物与生成物的混合物开始,只要起始状态有相同的物料关系,最后都能达到相同  

一道关于化学平衡的题!

方程式需要知道.

高中化学问题 为什么和金属反应的起始速率相同

因为PH相同,因此反应开始是溶液中的H+浓度相等,所以开始时反应速率相同

在2L的密闭容器中,一定条件下发生化学反应:2NO(g)+2CO(g)?N2(g)+2CO2(g)△H=-746.4kJ?mol-1.

A、前10秒钟内,v(N2)=1mol2L10s=0.05mol/(L?s),速率之比等于化学计量数之比,故前10s内v(NO)=2v(N2)=2×0.05mol/(L?s)=0.1mol/(L?s),前5s反应物的浓度更大,反应速率更快,故前5s的平均速率大于前10s的平均速率,即前5秒钟内,用NO表示的平均反应速率大于0.1mol/(L?s),故A错误;B、升高温度正、逆反应速率都增大,故B错误;C、可逆反应达平衡时,用不同物质表示正、逆速率之比等于化学计量数之比,v正(CO)=2v逆(N2)时正、逆速率之比等于化学计量数之比,说明反应到达平衡状态,故C正确;D、NO与氧气反应,NO浓度降低,瞬间反应物的浓度降低,正反应速率降低,故D错误;故选:C.

热化学方程式CO2(g)+H2(g) CO(g)+H2O(g);△H=Q kJ/mol的理解正确

只有D是正确的;即1mol的反应物 CO2(g)和1 mol 的反应物H2O(g)在理想的"完全反应"时所放出的热量;所以,由此可见,A,B,C都是错误的.

各路化学高手,鄙人等效平衡概念死活不懂,还有关计算根本看不明白。愿大虾们能够举例并助我一臂。

1.等效平衡 同一可逆反应,一定条件下,当改变起始时反应物或生成物物质的量或物质的量浓度,达到平衡时,混合物中各组分的百分组成相等,这样的平衡称等效平衡。 2.规律与判断 (1) 一般可逆反应,恒温恒容时,当起始反应物或生成物的物质的量通过化学计量数换算相同时,则建立等效平衡。 如反应 2SO2+O2 2SO3 在(A)、(B)条件时建立等效平衡 (A) 起始时加入:2molSO2 + 1molO2 (B) 起始时加入:2molSO3 注意:此情况下,无论反应物还是生成物,起始时物质的量一定要与化 学计量数比相同。 (2) 一般可逆反应,恒温恒压时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,即建立等效平衡。 如反应 2SO2+O2 2SO3 在(C)、(D)时建立等效平衡 (C)起始时加入:1molSO2 + 1molO2 (D)起始时加入:2molSO2 + 2molO2 (3) 对于反应前后体积不变的气体反应,恒温恒容时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,建立等效平衡。 如反应 H2+I2(气) 2HI 在(E)、(F)时建立等效平衡 (E)起始时加入:1molH2+2molI2 (F)起始时加入:2molH2+4molI2 3.应用 利用等效平衡原理进行平衡问题分析2例 例1. 在相同条件下(T=500K),相同体积的甲乙两从容,甲中充入1gSO2和1gO2,乙中充入2gSO2和2gO2,下列叙述中不正确的是( ) (A) 反应速率:乙>甲 (B) 平衡混合物中SO2的体积分数:乙>甲 (B)SO2的转化率:乙>甲 (D) 平衡时O2的体积分数:甲>乙 [简析] 若将乙容器的容积扩大2倍,则甲乙为等效平衡;再将乙容器容积恢复到原 体积,则压强增大,反应速率增大,平衡向生成SO3的方向移动,故(A)、(C)、 (D)项都是正确的,只有(B)项是错误的。答案(B)。 例2.在一定温度下,将a molPCl5通入一容积不变的密闭容器中,达到如下平衡: PCl5(气) PCl3(气)+ Cl2 (气) 测得平衡混合气的压强为P1 ;此时,再向此反应器中通入a mol PCl5,在温度不变时,重新达到平衡时,测得压强为P2,则P1 与P 2 的关系是( ) (A)2P1>P2 (B) 2P1<P2 (C) 2P1=P2 (D) P2 >P1 [简析] 第二次平衡,可以这样设计:将容器体积扩大1倍,通入2a mol PCl5,此时建立的平衡与第一次平衡相同,压强相等;再将容器体积恢复为原容积,压强增大,平衡向逆反应方向移动,混合气总物质的量减小,建立新平衡,即第二次平衡,故 P1 < P2 < 2P1。答案(A、D)。 应用等效平衡原理分析有关化学平衡问题的一般思路: 根据已知条件,先合理变换条件,使之成为等效平衡;然后将体系恢复为原条件,再 恢复原条件

光化学烟雾的总反应方程式

1.总反应式是3O2=(光照,NO2)2O3。 光化学烟雾是由于汽车尾气和工业废气排放造成的,一般发生在湿度低、气温在24-32℃度的夏季晴天的中午或午后。汽车尾气中的烯烃类碳氢化合物和二氧化氮(NO2)被排放到大气中后,在强烈的阳光紫外线照射下,会吸收太阳光所具有的能量。这些物质的分子在吸收了太阳光的能量后,会变得不稳定起来,原有的化学链遭到破坏,形成新的物质。这种化学反应被称为光化学反应,其产物为含剧毒的光化学烟雾。 2.主学:光化学烟雾的主要成分汽车、工厂等污染源排入大气的碳氢化合物(CH)和氮氧化物(NOx)等一次污染物,在阳光的作用下发生化学反应,生成臭氧(O3)、醛、酮、酸、过氧乙酰硝酸酯(PAN)等二次污染物,参与光化学反应过程的一次污染物和二次污染物的混合物所形成的烟雾污染现象叫做光化学烟雾.光化学烟雾的化学反应过程20世纪40年代,在美国加利福尼亚州洛杉矶首先发现了光化学烟雾。1951年A.J.哈根最先指出臭氧是氮氧化物、碳氢化合物和空气的混合物通过光化学反应生成的。以后F. W. 温特发现臭氧与不饱和烃(如汽车废气中的烃类)的化学反应产物跟洛杉矶烟雾有相同的伤害效应。形成臭氧的活性有机物和氮氧化物的主要来源是汽车排放的尾气。 通过对光化学烟雾形成的模拟实验,已经初步明确在碳氢化合物和氮氧化物的相互作用方面主要有以下过程: 1、污染空气中NO2的光解是光化学烟雾形成的起始反应。 2、碳氢化合物被HO、O等自由基和臭氧氧化,导致醛、酮、醇、酸等产物以及重要的中间产物RO2、HO2、RCO等自由基的生成。 3、过氧自由基引起NO向NO2的转化,并导致O3和PAN等的生成。 光化学反应中生成的臭氧、醛、酮、醇、PAN等统称为光化学氧化剂,以臭氧为代表,所以光化学烟雾污染的标志是臭氧浓度的升高。由此可见光化学烟雾的成分有臭氧

化学反应的起始速率与什么有关

气体压强,温度,溶液浓度,催化剂

关于化学等效变换

1.等效平衡 同一可逆反应,一定条件下,当改变起始时反应物或生成物物质的量或物质的量浓度,达到平衡时,混合物中各组分的百分组成相等,这样的平衡称等效平衡。 2.规律与判断 (1) 一般可逆反应,恒温恒容时,当起始反应物或生成物的物质的量通过化学计量数换算相同时,则建立等效平衡。 如反应 2SO2+O2 2SO3 在(A)、(B)条件时建立等效平衡 (A) 起始时加入:2molSO2 + 1molO2 (B) 起始时加入:2molSO3 注意:此情况下,无论反应物还是生成物,起始时物质的量一定要与化 学计量数比相同。 (2) 一般可逆反应,恒温恒压时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,即建立等效平衡。 如反应 2SO2+O2 2SO3 在(C)、(D)时建立等效平衡 (C)起始时加入:1molSO2 + 1molO2 (D)起始时加入:2molSO2 + 2molO2 (3) 对于反应前后体积不变的气体反应,恒温恒容时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,建立等效平衡。 如反应 H2+I2(气) 2HI 在(E)、(F)时建立等效平衡 (E)起始时加入:1molH2+2molI2 (F)起始时加入:2molH2+4molI2 3.应用 利用等效平衡原理进行平衡问题分析2例 例1. 在相同条件下(T=500K),相同体积的甲乙两从容,甲中充入1gSO2和1gO2,乙中充入2gSO2和2gO2,下列叙述中不正确的是( ) (A) 反应速率:乙>甲 (B) 平衡混合物中SO2的体积分数:乙>甲 (B)SO2的转化率:乙>甲 (D) 平衡时O2的体积分数:甲>乙 [简析] 若将乙容器的容积扩大2倍,则甲乙为等效平衡;再将乙容器容积恢复到原 体积,则压强增大,反应速率增大,平衡向生成SO3的方向移动,故(A)、(C)、 (D)项都是正确的,只有(B)项是错误的。答案(B)。 例2.在一定温度下,将a molPCl5通入一容积不变的密闭容器中,达到如下平衡: PCl5(气) PCl3(气)+ Cl2 (气) 测得平衡混合气的压强为P1 ;此时,再向此反应器中通入a mol PCl5,在温度不变时,重新达到平衡时,测得压强为P2,则P1 与P 2 的关系是( ) (A)2P1>P2 (B) 2P1<P2 (C) 2P1=P2 (D) P2 >P1 [简析] 第二次平衡,可以这样设计:将容器体积扩大1倍,通入2a mol PCl5,此时建立的平衡与第一次平衡相同,压强相等;再将容器体积恢复为原容积,压强增大,平衡向逆反应方向移动,混合气总物质的量减小,建立新平衡,即第二次平衡,故 P1 < P2 < 2P1。答案(A、D)。 应用等效平衡原理分析有关化学平衡问题的一般思路: 根据已知条件,先合理变换条件,使之成为等效平衡;然后将体系恢复为原条件,再 恢复原条件

初中化学四大基本反应类型

初中化学四大基本反应类型:1、化合反应:化合反应指的是由两种或两种以上的物质反应生成一种新物质的反应。其中部分反应为氧化还原反应,部分为非氧化还原反应。此外,化合反应一般释放出能量。可简记为A+B=AB.2、分解反应:由一种物质生成两种或两种以上其它的物质的反应叫分解反应。简称一分为二,表示为AB=A+B。只有化合物才能发生分解反应。3、置换反应:一种单质与化合物反应生成另外一种单质和化合物的化学反应,包括金属与金属盐的反应,金属与酸的反应等。可简记为AB+C=A+CB.4、复分解反应:由两种化合物互相交换成分,生成另外两种化合物的反应。其实质是:发生复分解反应的两种物质在水溶液中相互交换离子,结合成难电离的物质——沉淀、气体、水(弱电解质),使溶液中离子浓度降低,化学反应即向着离子浓度降低的方向进行。可简记为AB+CD=AD+CB。扩展资料:反应条件:指化学反应所必须或可提高反应速率的方法,如:加热(△)、点燃、高温、电解、通电(电解)、紫外线或催化剂等。反应速率受到下列因素的影响:1、反应物浓度:如果增加通常将使反应加速。2、活化能:定义为反应起始或自然发生所需的最低能量。愈高的活化能表示反应愈难以启始,反应速率也因此愈慢。3、反应温度:温度提升将加速反应,因为愈高的温度表示有愈多的能量,使反应容易发生。4、催化剂:催化剂是一种通过改变活化能来改变反应速率的物质。而且催化剂在反应过程中不会破坏或改变,所以可以重复作用。

化学平衡中,起始放入反应物与生成物各一摩尔,那要怎么计算平衡后每个的物质的量

在未加之前,反应物是 假设是 xmol 平衡后是 ymol那么平衡 是 x:y 这个是可以由题算出来的,后 放入反应物与生成物各一摩尔 可以 将 生成物 全部转成反应物 得到 反应物一共是 x"mol平衡后, 生成物 就是 y"mol 等式为: x:y=x":y" 这样就知道 新的平衡后每个物质是多少了。如你举的例子, 如果 在 未 增加前 的 H2 N2 NH3 各是:6:2:0 如果 全部生成了 NH3 是 4mol ,但是平衡时 NH3 有 2mol 增加 物质 之后 , 可以将 反应物 全部转成生成物, 看 NH3是 多少mol 比如是x mol, 那 新的平衡后 NH3 是 ymol 有 公式 : 4:2=x:y一般 就算增加 物质都是成比例的,不会这样不按照反映比例来加, 不按比例增加是算不出来的。

如何反映一个化学反应的物质的量改不改变?

化学平衡是指在宏观条件一定的可逆反应中,化学反应正逆反应速率相等,反应物和生成物各组分浓度不再改变的状态。逆:化学平衡研究的对象是可逆反应。   等:平衡时,正逆反应速率相等,即v正=v逆。(对于同一个物质,v正=v逆数值上相等;对于不同物质,vA正:vB逆=a:b,即等于系数比)   动:平衡时,反应仍在进行,是动态平衡,反应进行到了最大程度。   定:达到平衡状态时,反应混合物中各组分的浓度保持不变,反应速率保持不变,反应物的转化率保持不变,各组成成份的(百分)含量保持不变。   变:化学平衡跟所有的动态平衡一样,是有条件的,暂时的,相对的,当条件发生变化时,平衡状态就会被破坏,由平衡变为不平衡,再在新的条件下建立新平衡。   同:对于一个确定的可逆反应,不管是从反应物开始反应,还是从生成物开始反应,亦或是从反应物和生成物同时开始, 只要满足各组分物质浓度相当,都能够达到相同的平衡状态。 1.等效平衡   同一可逆反应,一定条件下,当改变起始时反应物或生成物物质的量或物质的量浓度,达到平衡时,混合物中各组分的百分组成相等,这样的平衡称等效平衡。   2.规律与判断   (1) 一般可逆反应,恒温恒容时,当起始反应物或生成物的物质的量通过化学计量数换算相同时,则建立等效平衡。   如反应 2SO2+O2=(可逆)=2SO3 在(A)、(B)条件时建立等效平衡   (A) 起始时加入:2mol SO2 + 1mol O2   (B) 起始时加入:2mol SO3   注意:此情况下,无论反应物还是生成物,起始时物质的量一定要与化 学计量数比相同。   (2) 一般可逆反应,恒温恒压时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,即建立等效平衡。   如反应 2SO2+O2=(可逆)=2SO3 在(C)、(D)时建立等效平衡   (C)起始时加入:1mol SO2 + 1mol O2   (D)起始时加入:2mol SO2 + 2mol O2   (3) 对于反应前后体积不变的气体反应,恒温恒容时,当起始反应物或生成物的物质的量比(不一定要求与化学计量数比相同)相同时,建立等效平衡。   如反应 H2+I2(气) 2HI 在(E)、(F)时建立等效平衡   (E)起始时加入:1mol H2+2mol I2   (F)起始时加入:2mol H2+4mol I2

一道高二化学题

由于醋酸书弱酸,电离程度比盐酸小很多,所以体积和pH都相等的情况下,醋酸的浓度要比盐酸高很多反应结束后得到等量的氢气,这里不妨取一个极端值,假设甲中的盐酸反应完了,那么乙中的醋酸肯定还有剩余,因为在体积和pH都相等的情况下,醋酸的浓度要比盐酸高很多,而反应消耗的H+是相等的(因为产生的氢气相等),所以此时乙烧杯中的c (H+)比甲烧杯中的c (H+)大,那么在反应过程中肯定有个时间点,乙烧杯中的c (H+)超过了甲烧杯中的c (H+)【化学一加一】团队Edogawa_Ai_为您解答,如满意请采纳,如有疑惑请追问,谢谢O(∩_∩)O

一个可逆反应起始时怎样化学反应向逆反应方向进行

当生成物的量变多时(加入了生成物,或生成的够多了),反应减慢甚至相反方向进行比如CL2与H2O反应,在饱和NaCl中,Cl-的含量多,这个反应就停止了对峙反应也称可逆反应。在同一条件下,既能向正反应方向进行,同时又能向逆反应的方向进行的反应,叫做可逆反应 (reversible reaction)。 绝大部分的反应都存在可逆性,一些反应在一般条件下并非可逆反应,而改变条件(如将反应物置于密闭环境中、高温反应等等)会变成可逆反应。在学习可逆反应之前我们所接触的许多的反应都是可逆的,只不过可逆程度小而将其忽略了而已。

【化学】反应达到平衡时,如何判断反应的起始方向?

首先,要注意比较速率大小,用同一种物质的正逆反应速率,如果不同物质要注意化学反应计量数的影响。其次,弄清楚什么是正反应速率、逆反应速率,正反应速率向正反应方向进行的速率:反应物消耗速率、产物的生成速率(即左消耗,右生成)逆反应速率向逆反应方向进行的速率:反应物生成速率、产物的消耗速率(即左生成,右消耗)最后,判断方法如下v正>v逆,反应大趋势向正反应方向进行,说明平衡向正反应方向移动。v正<v逆,反应大趋势向逆反应方向进行,说明平衡向逆反应方向移动。v正=v逆≠0,达到化学平衡状态。例如:一密闭容器(即体积不变)a+3b=2c,某一时间生成速率1.23.63moll.min根据计量数可知,如果a的生成速率(v逆)为1.2moll.min,c的消耗速率(v逆)为2.4moll.min,该时间c的生成速率(v正)为3moll.min,即v正>v逆,平衡向正反应(右)方向移动。

光化学烟雾的总反应方程式

1、污染空气中NO2的光解是光化学烟雾形成的起始反应。 ( 化学式: NO2==NO+O(条件为光照) O+O2==O3 2NO+O2==2NO2 分析: 2NO2(排放的)==2NO[(3)式中有用)]+2O[(2)式中有用)](条件为光照) 2O[(1)式中的O]+2O2(空气中的)==2O3(刺激性气体) 2NO[(1)式中的NO]+O2==2NO2(生成NO2,开始继续反应) 综合一下: 3O2==2O3(光照,NO2) ) 2、碳氢化合物被HO、O等自由基和臭氧氧化,导致醛、酮、醇、酸等产物以及重要的中间产物RO2、HO2、RCO等自由基的生成。 3、过氧自由基引起NO向NO2的转化,并导致O3和PAN等的生成。 光化学反应中生成的臭氧、醛、酮、醇、PAN等统称为光化学氧化剂,以臭氧为代表,所以光化学烟雾污染的标志是臭氧浓度的升高。

若起始反应物浓度改变化学平衡如何变化

起始反应物浓度增大,化学平衡向正反应方向移动。起始反应物浓度减小,化学平衡向逆反应方向移动。

谷氨酸脱氨基的化学过程?

谷氨酸脱氨基的化学过程分成三步:第一阶段(糖酵解):1个分子的葡萄糖分解成2分子的丙酮酸,同时脱下4个(H),放出少量的能量,合成2个ATP,其余以热能散失,场所在细胞的基质中.  第二阶段(柠檬酸循环;三羧酸循环):2个分子的丙酮酸和6个分子的水中的氢全部脱下20个(H),生成6分子的二氧化碳,释放少量的能量,合成2个ATP,其余散热消失,场所线粒体机基质.  第三阶段(电子传递链;氧化磷酸化):在前两个阶段脱下的24个(H)与6个氧气分子结合成水,并释放大量的能量合成34个ATP,场所在线粒体的基质.(在线粒体内膜上

试描述联合脱氨基作用的化学过程(结构式表示)

联合脱氨基作用有两种方式,一种是以谷氨酸脱氢酶为中心,另一种是以嘌呤核苷酸循环为中心。谷氨酸脱氢酶在体内分布广、活性强,因此第一种联合脱氨基作用是体内大部分细胞的主要脱氨基方式,而在骨骼肌、心肌、肝脏以及脑细胞中可能是以嘌呤核苷酸循环为主,即第二种联合脱氨基作用。其它的脱氨基作用要么其关键酶分布范围小,要么活性低,因此都不是主要的脱氨基作用。

高二化学:为什么合金的熔沸点低于其成分金属?

将两种或两种以上的金属(或金属跟非金属)熔合而成的具有金属特性的物质叫做合金。合金比它的成分金属具有许多优良的物理、化学或机械加工性能。如硬铝(含2.2—4.9%Cu、0.2—1.8%Mg、0.3—0.9%Mn、少量的硅,其余是铝),有良好的机械性能、强度大又便于加工,而且密度小,可作轻型结构材料。目前世界各国生产的铝约有60%以上用于制造合金。铝的合金主要是在铝中加入铜、镁、锌、锰、硅等元素,有时还加入铬、钛、铍等元素。许多合金的熔点比它的成分金属的熔点要低。如铝硅合金(除铝外还含有4.0—13%的硅,0.2—1.5%的镁,0.5—8%的铜,0.1—0.9%的锰)的熔点比各成分金属的熔点都低。又如锡的熔点为231.9℃,铅的熔点为327.5℃,锡和铅按2∶1组成的合金熔点为180℃,比锡或铅的熔点都低,这种合金就是通常用的焊锡。又比如做保险丝材料的“伍德合金”,是锡、铋、镉、铅按1∶4∶1∶2质量比组成的合金,熔点仅67℃,比水的沸点还低。因此,当电路上电流过大、电线发热到70℃左右,保险丝即可熔化,自动切断电路,保证用电安全。现在使用相当广泛的高压锅易熔片,也是一种低熔点合金。当高压锅压力阀通路被堵,锅内压力增加,温度升高到熔片的熔点时,易熔片熔化通路打开,于是锅内减压、降温、从而保证了使用安全。但是组成上述低熔点合金的成分金属的熔点都在二、三百度以上。合金的硬度一般比组成合金的成分金属的硬度大。由铝或镁制成的轻合金往往比铝或镁的硬度要大得多。有时制成合金后,其硬度增大的程度是惊人的,例如在铜里加入1%的铍制成的铜合金,其硬度要比纯铜大7倍!合金可以分为三种类型:(1)金属固溶体:这是一种金属均匀地分布在另一种金属内形成的复合体,是固态溶液。固溶体只有一种晶格类型。像黄铜(67%Cu,33%Zn)、银与金的合金都是金属固溶体。(2)金属互化物:金属与金属之间生成的化合物。其组成有的是固定不变的,如铜化锌(ZnCu)、碳化铁(Fe3C)等;有的是可变的,如铜锡合金就有Cu5Sn、Cu31Sn8、Cu3Sn等多种不同组成。金属互化物不能用通常的化合价来解释。(3)机械混合物:其晶体由两种或两种以上的晶体结构混合而成,每一小晶体中只有一种金属。同前两类合金不同,机械混合物的组成是非均一的。钢、生铁、青铜等属这一类合金。从以上介绍可以看出,笼统地说合金是混合物或化合物都是不合适的。3.金属的熔沸点高低、硬度、密度大小的比较规律在金属晶体中,金属离子半径越小,阳离子电荷数越高,其金属键也就越强,金属的熔沸点也就越高,硬度、密度越大。

生物化学中 rNMP中的r表示什么?

核苷酸有核苷单磷酸、核苷酸二磷酸和核苷三磷酸,NMP(rNMP)、NDP(rNDP)和NTP(rNTP)分别表示核糖核苷单磷酸、核糖核苷二磷酸和核糖核苷三磷酸;dNMP、dNDP和dNTP分别表示脱氧核苷单磷酸、脱氧核苷二磷酸和脱氧核苷三磷酸。 r代表核糖 d代表脱氧

核苷二磷酸化学式

就是说,脱氧核糖核苷酸是由二磷酸核苷酸2"位上的羟基还原为氢,并脱掉两个磷酸集团形成的. 磷酸集团是由酶来脱掉的啊. 这句话的意思就是说 二磷酸核苷酸是脱氧核糖核苷酸的前体;二磷酸核苷酸通过被还原和去磷酸基团可以转变为脱氧核糖核苷酸.明白了么?

高1生物 磷酸激酶的具体作用是和磷酸酯酶的具体作用是 他们的化学本质是

磷酸激酶催化的是磷酸化和去磷酸化的反应;磷酸酯酶催化的是甘油磷脂的水解反应。一个是磷酸基团的转移,一个是酯水解反应。

核酸的化学结构式是什么?

这个问题没有直接的答案。蛋白质和核酸都是生物大分子,并没有一个统一的化学式。 首先说核酸,就目前而言,核酸一共有两大类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。核酸由多个(很多个)核苷酸组成。核苷酸的结构分为三部分:一分子五碳糖--核糖(有脱氧核糖和核糖两种)、一分子磷酸、一分子含氮碱基(有两种嘌呤--腺嘌呤和鸟嘌呤,三种嘧啶--胞嘧啶、胸腺嘧啶和尿嘧啶)。根据含氮碱基的不同,核苷酸有如下几类: 组成DNA: 腺嘌呤脱氧核糖核苷酸--可以简称脱氧腺苷酸 鸟嘌呤脱氧核糖核苷酸--可以简称脱氧鸟苷酸 胞嘧啶脱氧核糖核苷酸--可以简称脱氧胞苷酸 胸腺嘧啶脱氧核糖核苷酸--可以简称脱氧胸苷酸 组成RNA: 腺嘌呤核糖核苷酸--可以简称核糖腺苷酸 鸟嘌呤核糖核苷酸--可以简称核糖鸟苷酸 胞嘧啶核糖核苷酸--可以简称核糖胞苷酸 尿嘧啶核糖核苷酸--可以简称核糖尿苷酸 注意:没有尿嘧啶脱氧核糖核苷酸,也没有胸腺嘧啶核糖核苷酸。 每一类核酸由四种核苷酸组成,形成的核酸种类极多,因此,没有统一的化学式。 再说蛋白质, 蛋白质由氨基酸组成,组成蛋白质的氨基酸约有20种(这个数字我不太肯定,但有一点,并不是所有的氨基酸都参与组成蛋白质,至少现在研究表明,只有一些种类的α氨基酸才是蛋白质的组分),因此蛋白质种类因该说是趋于无穷的。 另外,一个完整的蛋白质有四级结构(个别蛋白质结构少于四级),氨基酸排列顺序只是一级结构,氨基酸长链还需经过折叠、螺旋等空间构象后才能成为有功能的蛋白质。从这一点再考虑,蛋白质的种类就更多,根本就不是一个化学式或是结构是所能概括的。 事实上,关于蛋白质和核酸结构的研究也可以算当今生物领域的一个研究热点,许多研究人员都在致力于测定各种蛋白质或核酸的结构,不断有报道说某种蛋白或核酸的结构被测定出来了,但是蛋白质和核酸的种类极多,这项工作远没有结束。

尿苷的化学本质是什么?

尿苷(Adenosine)是核苷的一种,各由核糖(呋喃核糖)与尿嘧啶的一部分组成,中间由β-N9-配糖键(β-N9-glycosidic bond)连结。

生物化学

这是《生物化学》复习题填空题:1.脂肪酸β-氧化的4步反应是氧化,水化,再氧化和硫解。2.一碳单位主要来源于丝氨酸、甘氨酸、组氨酸和色氨酸。3.膜受体种类有离子通道型受体,G蛋白耦联型受体,酶耦联的受体。4.DNA损伤修复的方式有光修复,切除修复,重组修复,sos修复。5.翻译的起始密码子是AUG,终止密码子有UAA,UAG,UGA。6.胸腺嘧啶分解代谢的终产物有_______,______,_______。7.mRNA的转录后加工包括首修饰、尾修饰、mRNA的剪接。8.常用的基因载体有质粒DNA,噬菌体DNA和病毒DNA。9.重组体导入受体菌的方式有转化,转染,感染。10.酶特异性类型有绝对特异性,相对特异性,立体异构特异性。11.酶促反应的机制有邻近效应与定向排列,多元催化,表面效应。12.酶活性中心的必需基团有结合基团,催化基团。13.蛋白质二级结构有αα,ββ,βββ14.维持蛋白质三级结构的次级键是蛋白质的多肽链。15.碱性氨基酸有精氨酸、赖氨酸和组氨酸。16.酸性氨基酸有天冬氨酸,谷氨酸17.维持蛋白质空间结构的次级键有氢键、疏水键、范德华力、离子键。18.胞浆中NADH的转运机制有α-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭。19.NADH呼吸链由复合体氧化型烟酰胺腺嘌呤二核苷酸,还原型烟酰胺腺嘌呤二核苷酸,辅酶Q组成。20.芳香族氨基酸有苯丙氨酸,酪氨酸和色氨酸。21.丙酮酸脱氢酶复合体有三种酶,为丙酮酸脱氢酶,TPP 转乙酰化酶,二氢硫辛酰胺脱氢酶。概念题:1.糖异生:指的是非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程。糖异生保证了机体的血糖水平处于正常水平。糖异生的主要器官是肝。肾在正常情况下糖异生能力只有肝的十分之一,但长期饥饿时肾糖异生能力可大为增强。2.糖酵解:指细胞在细胞质中分解葡萄糖生成丙酮酸的过程,此过程中伴有少量ATP的生成。3.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。4.肪动员:储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸及甘油并释放入血以供其他组织氧化利用,该过程称为脂肪动员5.腐败作用:在消化过程中,有一小部分蛋白质不被消化,也有一小部分消化产物不被吸收。肠道细菌对这部分蛋白质及其消化产物所起的作用,称为腐败作用6.一碳单位:指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲快基、甲酚基及亚氨甲基等。7.解链温度:DNA的解链温度(Tm)是引物的一个重要参数,它是当50%的引物和互补序列表现为双链DNA分子时的温度,一种DNA分子的Tm值大小与其所含碱基中的G+C比例相关,G+C比例越高,Tm值越高。8.DNA变性:加热或用碱处理双链DNA,使氢链断裂,结果DNA变成为单链,此称为DNA的变性。9.冈崎片段:相对比较短的DNA链(大约1000核苷酸残基),是在DNA的滞后链的不连续合成期间生成的片段10.端粒酶:细胞中有种酵素负责端粒的延长,其名为端粒酶。11.外显子:外显子就是在成熟mRNA中保留下的部分,也就是说成熟mRNA对应于基因中的部分。12.核酶:是具有催化功能的RNA分子。核酶又称核酸类酶、酶RNA、类酶RNA13.密码的摆动性:是指密码子的专一性主要由头两位碱基决定,而第三位碱基有较大的灵活性。14.信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端)。15.增强子:指增加同它连锁的基因转录频率的DNA序列。增强子是通过启动子来增加转录的。16.反式作用因子:参与基因表达调控的因子, 它们与特异的靶基因的顺式元件结合起作用17.基因载体:基因载体是作为基因导入细胞的工具。犹如火箭能把卫星射向九天一样,基因载体可以把目的基因送入靶细胞内,从而发挥目的基因的特定功能。18.c-文库:???19.蛋白质二级结构:protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。20. 第二信使:细胞表面受体接受细胞外信号后转换而来的细胞内信号称为第二信使21.蛋白质三级结构:蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。22.氧化磷酸化:是细胞中重要的生化过程,是细胞呼吸的最终代谢途径,位於糖酵解和三羧酸循环之后,是产生“能量通货”ATP的主要步骤23.酶:是生物体内多数反应的一种生物催化剂,除少数RNA外几乎都是蛋白质。24.受体:是细胞表面或亚细胞组分中的一种分子,可以识别并特异地与有生物活性的化学信号物质(配体)结合,从而激活或启动一系列生物化学反应,最后导致该信号物质特定的生物效应。25.模体:26.呼吸链:生物体内的氧化作用主要是通过脱氢来实现的。代谢物在脱氢酶的作用下,脱落的氢原子不能直接与氧结合成水,而需要一系列传递体的传递。这些传递体有些是递氢体,有些是递电子体,最后把氢原子传递给分子氧结合成水。这样由递氢体和递电子体按一定顺序排列成的整个体系称为呼吸链27.蛋白激酶:又称依赖于cAMP的蛋白激酶A,是一种结构最简单、生化特性最清楚的蛋白激酶。28.Km29.uf062氧化30.三羧酸循环:是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。31.同工酶:生物体内催化相同反应而分子结构不同的酶。简答题:1.简述酮体的生成过程。肝细胞缺乏利用酮体的酶,因此只能生成酮体,不能氧化酮体。酮体生成后由血液运往肝外组织。2.简述鸟氨酸循环过程。???3.简述联合脱氨基作用。所谓联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在L-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用。4. 酸戊糖途径的生理意义。磷酸戊糖途径的生理意义是生成5-磷酸核糖和NADPH + H+5.氨甲酰磷酸合成酶(CPS)I和II的区别。这两个酶是同工酶,I主要存在于线粒体中,将氨、二氧化碳合成为氨基甲酰磷酸参与鸟氨酸循环。II存在于胞浆中,II的氨来源于谷氨酰胺,将谷氨酰胺的氨基与二氧化碳结合形成氨基甲酰磷酸参与嘧啶合成6.参与DNA复制的酶类有哪些?各有何作用?7.DNA复制和逆转录有何异同?.(1)复制即为一条DNA双链解旋以自身为模板复制为2条DNA双链 逆转录是一条RNA单链复制出双链DNA,一般是少数病毒所特有的 (2)方向不同:复制是DNA到DNA,逆转录是RNA到DNA (3).酶不同:都需要解旋酶,复制需要DNA聚合酶,转录需要RNA聚合酶,逆转录需要逆转录酶和DNA聚合酶等等。8.复制与转录的异同点。(1).复制即为一条DNA双链解旋以自身为模板复制为2条DNA双链 转录是一条DNA双链解旋以自身为模板转录成一条RNA单链就是信使RNA (2).方向不同:复制是DNA到DNA,转录是DNA到RNA (3).酶不同:都需要解旋酶,复制需要DNA聚合酶,转录需要RNA聚合酶 9.试述原核生物启动子的结构特点及功能。启动子是DNA链上一段能与RNA聚合酶结合并能起始mRNA合成的序列,它是基因表达不可缺少的重要调控序列。没有启动子,基因就不能转录。原核生物启动子是由两段彼此分开且又高度保守的核苷酸序列组成,对mRNA的合成极为重要。10.简述RNA在蛋白质合成中的作用。(1)mRNA:DNA的遗传信息通过转录作用传递给mRNA,mRNA作为蛋白质合成模板,传递遗传信息,指导蛋白质合成。 (2)tRNA:蛋白质合成中氨基酸运载工具,tRNA的反密码子与mRNA上的密码子相互作用,使分子中的遗传信息转换成蛋白质的氨基酸顺序是遗传信息的转换器。 (3)rRNA 核糖体的组分,在形成核糖体的结构和功能上起重要作用,它与核糖体中蛋白质以及其它辅助因子一起提供了翻译过程所需的全部酶活性。11.简述操纵子的结构与功能。原核生物大多数基因表达调控是通过操纵子机制实现的。操纵子通常由 2个以上的编码序列与启动序列、操纵序列以及其他调节序列在基因组中成簇串联组成。12.简述基因工程的基本过程。(1)材料的准备:目的基因、载体、工具酶和受体细胞(宿主)的准备。用相同的限制 性内切酶分别将外源DNA和载体分子切开,以产生相同的黏性末端。 (2) 将目的基因与载体DNA进行体外重组,形成重组DNA分子。 (3)将重组的DNA分子引入受体细胞,并建立起无性繁殖系。 (4)筛选出所需要的目的无性繁殖系,并保证外源基因在受体细胞中稳定遗传、正确 表达。13.何谓蛋白质变性?变性后蛋白质性质有什么改变?蛋白质变性是指生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质变性后,分子结构松散,不能形成结晶,易被蛋白酶水解。如果变性条件剧烈持久,蛋白质的变性是不可逆的。14.什么是酶的共价修饰?特点是什么?某些酶分子上的基团可以在另一种酶催化下发生共价修饰作用(例如磷酸化或去磷酸化作用),从而引起酶活性的激活或抑制。这种作用称为共价修饰。特点`??? :(15.蛋白质别位调节及其特点。??16.什么是竞争性抑制?动力学特点有哪些?通过增加底物浓度可以逆转的一种酶抑制类型。一个竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使得Km增大,而Vmax不变。特点伐晓得~~`17.何谓酶原激活?机制是什么?某些酶在细胞内合成或初分泌时没有活性,这些没有活性的酶的前身称为酶原,使酶原转变为有活性酶的作用称为酶原激活。18.简述经膜受体介导的信号转导途径。???19.非竞争性抑制的概念及动力学特点。抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使得Vmax变小,但Km不变 动力学特点``??20.G蛋白结构特点及效应蛋白。G蛋白结构:地细胞内信号传导途径中起着重要作用的GTP结合蛋白,由α,β,γ三个不同亚基组成。效应蛋白``???21.胞内受体及信息传递过程。?22.比较糖的无氧氧化与有氧氧化的特点。(1)无氧氧化是指人体在缺氧或供氧不足的情况下,组织细胞内的糖原,人能经过一定的化学变化,产生乳酸,并释放出一部分能量的过程,也称糖酵解。(2)有氧氧化是指葡萄糖生成丙酮酸后,在有氧条件下,进一步氧化生成乙酰辅酶A,经三羧酸循环彻底氧化成水、二氧化碳及能量的过程。这是糖氧化的主要方式,是机体获得能量的主要途径。23.简述软脂酸(16C)的uf062氧化过程及能量的生成。 根本找不到~``NND``24.原核生物与真核生物RNA聚合酶的区别。```??25.原核生物与真核生物DNA聚合酶的区别。``???`

简述尿素的合成过程?动物生物化学的试题,拜托各位了 3Q

尿素在肝脏内通过鸟氨酸循环合成 1在Mg2+、ATP及N-乙酰谷氨酸(AGA)存在下,氨与CO2在氨基甲酰磷酸合成酶I(CPS-I)催化下,合成氨基甲酰磷酸, 反应消耗2分子ATP,合成部位在线粒体。CPS-I是一种变构酶,AGA是此酶的变构激活剂。 2.(瓜氨酸的合成)在鸟氨酸氨基氨基甲酰转移酶催化下,氨基甲酰磷酸与鸟氨酸缩合成瓜氨酸。反应部位在线粒体。 3.(精氨酸的合成)瓜氨酸在线粒体合成后, 即被转运到胞液,在胞液经精氨酸代琥珀酸合成酶的催化下,与天冬氨酸反应生成精氨酸代琥珀酸,此反应由ATP供能。其后,精氨酸代琥珀酸再经精氨酸代琥珀酸裂解酶作用下,裂解成精氨酸及延胡索酸。反应部位在胞液。 4.(尿素的生成)精氨酸受精氨酸酶的作用,水解生成尿素与鸟氨酸,反应部位在胞液。鸟氨酸可再进入线粒体并参与瓜氨酸的合成。

简述尿素的合成过程?动物生物化学的试题,

用二氧化碳和氨在高温、高压下合成氨基甲酸铵,经分解、吸收转化后,结晶,分离、干燥而成。另一种是将经过净化的氨与二氧化碳按摩尔比2.8~4.5混合进入合成塔,塔内压力为13.8~24.6 MPa,温度为180~200 ℃,反应物料停留时间为25~40 min。得到含过剩氨和氨基甲酸铵的尿素溶液,经减压降温,将分离出氨和氨基甲酸铵后的脲液蒸发到99.5%以上,然后在造粒塔造粒得到尿素成品。物理性质尿素易溶于水,在20℃时100毫升水中可溶解105克,水溶液呈中性反应。尿素产品有两种。结晶尿素呈白色针状或棱柱状晶形,吸湿性强,吸湿后结块,吸湿速度比颗粒尿素快12倍。粒状尿素为粒径1~2毫米的半透明粒子,外观光洁,吸湿性有明显改善。20℃时临界吸湿点为相对湿度80%,但30℃时,临界吸湿点降至72.5%,故尿素要避免在盛夏潮湿气候下敞开存放。在尿素生产中加入石蜡等疏水物质,其吸湿性大大下降。

补救途径名词解释生物化学

1、大多数细胞更新其核酸(尤其是RNA)过程中,要分解核酸产生核苷和游离碱基。细胞利用游离碱基或核苷重新合成相应核苷酸的过程称为补救合成途径。2、与从头合成不同,补救合成过程较简单,消耗能量亦较少。由二种特异性不同的酶参与嘌呤核苷酸的补救合成。腺嘌呤磷酸核糖转移酶催化PRPP与腺嘌呤合成AMP。3、嘌呤核苷酸补救合成是一种次要途径。其生理意义一方面在于可以节省能量及减少氨基酸的消耗。另一方面对某些缺乏主要合成途径的组织,如人的白细胞和血小板、脑、骨髓、脾等,具有重要的生理意义。例如Sesehue011Nyhan综合征是由于HGPRT的严重遗传缺陷所致。此种疾病是一种性连锁遗传缺陷,见于男性。

生物化学中嘌呤核苷酸的从头合成指什么?

嘌呤核苷酸的从头合成指,在肝脏、小肠粘膜和胸腺等器官中,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等为原料合成嘌呤核苷酸的过程. 主要反应步骤分为两个阶段:首先合成次黄嘌呤核苷酸(IMP),然后IMP再转变成腺嘌呤核苷酸(AMP)与鸟嘌呤核苷酸(GMP). 嘌呤环各元素来源如下:N1由天冬氨酸提供,C2由N10-甲酰FH4提供、C8由N5,N10-甲炔FH4提供,N3、N9由谷氨酰胺提供,C4、C5、N7由甘氨酸提供,C6由CO2提供. 嘌呤核苷酸从头合成的特点是:嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的. 反应过程中的关键酶包括PRPP酰胺转移酶、PRPP合成酶.PRPP酰胺转移酶是一类变构酶,其单体形式有活性,二聚体形式无活性.IMP、AMP及GMP使活性形式转变成无活性形式,而PRPP则相反. 从头合成的调节机制是反馈调节,主要发生在以下几个部位:嘌呤核苷酸合成起始阶段的PRPP合成酶和PRPP酰胺转移酶活性可被合成产物IMP、AMP及GMP等抑制;在形成AMP和GMP过程中,过量的AMP控制AMP的生成,不影响GMP的合成,过量的GMP控制GMP的生成,不影响AMP的合成;IMP转变成AMP时需要GTP,而IMP转变成GMP时需要ATP.,2,

医学生物化学!急!(填空)

自己查书吧,太专业。

生物化学PRDP是啥东西

写错了吧!应该是PRPP吧,全名为:5"磷酸核糖焦磷酸!是核糖5磷酸在PRPP合成酶的作用下形成的

生物化学prpp是什么

PRPP:全称是 5-磷酸核糖-1α-焦磷酸,简称:磷酸核糖焦磷酸。英文:Phosphoribosyl pyrophosphate,缩写PRPP。化学式:C5H13O14P3。PRPP是一种核糖衍生物。它是核糖C1的活化形式,由核糖-5-磷酸与ATP在核糖磷酸焦磷酸激酶催化下生成。PRPP 是各种核苷酸从头合成的必需酶的诱导剂,能加速酶生物合成的化学物。磷酸核糖焦磷酸

焦磷酸是易制爆化学品吗

不是。焦磷酸是一种无机化合物,化学式H4P2O7。是一种无色黏稠液体,久置生成结晶,为无色玻璃状。焦磷酸根有很强的配位性,用作催化剂及隐蔽剂等。用作催化剂,金属精制,有机过氧化物的稳定剂,并不是易爆化学品。

多焦磷酸化学式怎么写

焦磷酸(Pyrophosphoric acid)是一种无机化合物,化学式Hu2084Pu2082Ou2087。

焦磷酸的化学性质

1.用水稀释易变为正磷酸H4P2O7+H2O=2H3PO4易溶于水,其水溶液有强酸性:K1=7.5×10-1K2=6.2×10-2K3=1.7×10-6K4=6.0×10-9(焦磷酸、四偏磷酸或其他多聚磷酸的链状和环状结构是正磷酸脱水缩合而成的,均为缩合酸。一般缩合酸的酸性均大于单酸,这是因为缩合酸根离子体积大,其表面的负电荷密度降低很多,因此缩合酸易解离出质子。同类含氧酸的缩合程度越大,酸性越强)2.焦磷酸根遇银盐得白色焦磷酸银沉淀,在溶液中P2O74-转化为PO43-的速率非常慢,可用此反应鉴别P2O74-和PO43-(Ag3PO4为黄色沉淀);P2O74-+4Ag+=Ag4P2O7↓3.焦磷酸根有很强的配位性,过量的P2O74-能使难溶的焦磷酸盐(Cu2+、Ag+、Zn2+、Mg2+、Ca2+、Sn2+等)溶解形成配离子,如[Cu(P2O7)2]6-、[Sn(P2O7)2]6-等。

一道生物化学题目,高人赐教啊

除此外还有磷酸戊糖途径 本人语言表达不太好以下是我为你粘贴的也称为磷酸戊糖旁路(对应于双磷酸已糖降解途径,即Embden-Meyerhof途径)。是一种葡萄糖代谢途径。 一系列的酶促反应,可以因应不同的需求而产生多种产物,显示了该途径的灵活性。 葡萄糖会先生成强氧化性的5磷酸核糖,后者经转换后可以参与糖酵解后者是核酸的生物合成。部分糖酵解和糖异生的酶会参与这一过程。反应场所是细胞溶质(Cytosol)。所有的中间产物均为磷酸酯。过程的调控是通过底物和产物浓度的变化实现的。 磷酸戊糖途径的发现 (1)在组织中加入酵解抑制剂,如碘乙酸或氟化物等,葡萄糖仍可以被消耗,证明葡萄糖还有酵解以外的其他代谢途径。 (2)用同位素14C分别标记葡萄糖C1和C6,如果糖酵解是唯一代谢途径,则14C1和14C6生成14CO2的速度相等。而实验结果表明,14C1更容易氧化成14CO2。 根据上述实验,Racker等人发现了糖代谢的磷酸戊糖途径。 磷酸戊糖途径的任务 1 产生NADPH(注意:不是NADH!NADPH不参与呼吸链) 2 生成磷酸核糖,为核酸代谢做物质准备 3 分解戊糖 过程 磷酸戊糖途径可以分为氧化和非氧化两个部分。 磷酸戊糖途径(HMS途径)的部位:细胞质中。氧化部分 第一步和糖酵解的第一步相同,在已糖激酶的催化下葡萄糖生成6磷酸葡萄糖。后来在6-磷酸葡萄糖脱氢酶(这也是磷酸戊糖途径的限速酶)(Glucose-6-phosphat-dehydrogenase),6-磷酸葡糖酸内酯酶(6-Phosphogluconolactonase)和6-磷酸葡萄糖酸脱氢酶(6-Phosphogluconatdehydrogenase)的帮助下生成5-磷酸核酮糖。非氧化部分 其实是一系列的基团转移反应。在5-磷酸核酮糖的基础上可以通过一系列基团转移反应,将核糖转变成6-磷酸果糖和3-磷酸甘油醛而进入糖酵解途径。这需要有酶的帮助,比如转羟乙醛酶可以转移两个碳单位。而转二羟丙酮基酶则可转三个。 戊糖有两种,一种是醛糖,一种是酮糖,体内没有分解戊糖的酶,当机体需要分解时必须转成已糖或丙糖,那么机体是如何转变的呢? 首先,机体需要准备两个酮糖和一个醛糖,先让一个酮糖的一个二碳单位转到一个醛糖上形成一个碳七和一个碳三,然后将碳七上的三碳单位再转到碳三上形成碳四和磷酸果糖(C6),最后碳四再给与酮糖一个一碳单位,形成磷酸果糖和3-磷酸甘油醛。 虽然6-磷酸葡萄糖脱氢酶是磷酸戊糖途径的限速酶,但是磷酸戊糖途径的调节主要是通过底物和产物浓度的变化实现的。它是一“旁路”。当机体需要NADPH和磷酸核糖的时候,葡萄糖就会流入这一途径。特别是在脂肪酸和固醇合成发生的地方。 磷酸戊糖途径:指机体某些组织以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸己糖旁路。你可以看下书。
 首页 上一页  24 25 26 27 28 29 30 31 32 33 34  下一页  尾页