函数

DNA图谱 / 问答 / 标签

函数y=arcsinx的导数怎么求啊?

f(x)=arcsin(sinx)当x∈[-π/2,π/2]时,arcsin(sinx)=x当x∈(π/2,3π/2]时,π-x∈[-π/2,π/2)sinx=sin(π-x)∴arcsin(sinx)=π-x当x∈[2kπ-π/2,2kπ+π/2],k∈Zx-2kπ∈[-π/2,π/2],k∈Z∴arcsin(sinx)=x-2kπ,当x∈(2kπ+π/2,2kπ+3π/2],k∈Z(2k+1)π-x∈[-π/2,π/2)arcsin(sinx)=(2k+1)π-x即f(x)={x-2kπ,x∈[2kπ-π/2,2kπ+π/2],k∈Z{(2k+1)π-x,x∈(2kπ+π/2,2kπ+3π/2],k∈Z

arcsinx的平方求导函数求过程

y= (arcsinx)^2 y" = 2(arcsinx) . (arcsinx)" = 2(arcsinx) . /√(1-x^2)

y=arcsinx的反函数是什么?

反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin"y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;(2)一个函数与它的反函数在相应区间上单调性一致;(3)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。(4)一段连续的函数的单调性在对应区间内具有一致性;(5)严增(减)的函数一定有严格增(减)的反函数。

y=arcsinx的导数是什么函数

因为y=arcsinx,所以y"=1/√(1-x^2).他是一个偶函数,值域是正数。

反三角函数导数公式及推导过程

反三角函数指三角函数的反函数,由于基本三角函数具有周期性,所以反三角函数是多值函数。接下来给大家分享反三角函数的导数公式及推导过程。 反三角函数的导数公式 d/dx(arcsinx)=1/√(1-x^2);x≠±1 d/dx(arccosx)=-[1/√(1-x^2)];x≠±1 d/dx(arctanx)=1/(1+x^2);x≠±i d/dx(arccotx)=-[1/(1+x^2)];x≠±i 反三角函数的导数公式推导过程 反三角函数的导数公式推导过程是利用dy/dx=1/(dx/dy),然后进行相应的换元 比如说,对于正弦函数y=sinx,都知道导数dy/dx=cosx 那么dx/dy=1/cosx 而cosx=√(1-(sinx)^2)=√(1-y^2),所以dx/dy=√(1-y^2) y=sinx 可知x=arcsiny,而dx/dy=1/√(1-y^2),所以arcsiny的导数就是1/√(1-y^2) 再换下元arcsinx的导数就是1/√(1-x^2) 反三角函数 反三角函数是一种基本初等函数。它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。

反正弦函数y=arcsinx的导数怎么求?

已知:y=arcsinx则:siny=x,两边对x求导:(cosy)y"=1则:y"=1/(cosy)又:cosy=√(1-x^2)所以:y"=1/√(1-x^2)

反函数的导数?

考虑需要求导的函数y=x^(1/2),它存在反函数x=y^2。[x^(1/2)]"=1/(y^2)"=1/(2y)=1/[2x^(1/2)]=(1/2)x^(-1/2)。用反函数求导时,注意不能按习惯把要用的反函数x=y^2写成y=x^2反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin"y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。导函数如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。以上内容参考:百度百科-导数

arcsinx的反函数是什么?

arcsinx的反函数是y=sinx,反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin"y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。性质(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。(2)一个函数与它的反函数在相应区间上单调性一致。(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。(4)一段连续的函数的单调性在对应区间内具有一致性。(5)严增(减)的函数一定有严格增(减)的反函数。(6)反函数是相互的且具有唯一性。

利用秦九韶算法计算f(x)=8X^7+5X^6+3X^4+2X+1 当X=2时的函数值

解:秦九韶算法f(x)=8X^7+5X^6+3X^4+2X+1=(8X^6+5X^5+3X^3+2)X+1=((8X^5+5X^4+3X^2)X+2)X+1=(((8X^4+5X^3+3X)X)X+2)X+1=((((8X^3+5X^2+3)X)X)X+2)X+1=(((((8X^2+5X)X+3)X)X)X+2)X+1=((((((8X+5)X)X+3)X)X)X+2)X+1把X=2带入=((((((8*2+5)*2)*2+3)*2)*2)*2+2)*2+1=[(21*2*2+3)*2*2*2+2]*2+1=[87*2*2*2+2]*2+1=698*2+1=1397

用秦九韶算法求f(x)=3x^5+4x^4+2.5x^2+1.5x+6在x=3时的函数值

秦九韶算法把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式  f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]  =(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]  =((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]  =......  =(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].  求多项式的值时,首先计算最内层括号内一次多项式的值,即  v[1]=a[n]x+a[n-1]  然后由内向外逐层计算一次多项式的值,即  v[2]=v[1]x+a[n-2]  v[3]=v[2]x+a[n-3]  ......  v[n]=v[n-1]x+a[0]  这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。  (注:中括号里的数表示下标)  结论:对于一个n次多项式,至多做n次乘法和n次加法。本题:f(x)=((((3x+4)x+0)x+2.5)x+1.5)x+6f(3)=((((3x+4)x+0)+2.5)x+1.5)x+6v1=3*3+4=13v2=3v1+0=3*13=39v3=3v2+2.5=3*39+2.5=117+2.5=119.5v4=3v3+1.5=3*119.5+1.5=358.5+1.5=360v5=3v4+6=3*360+6=1080+6=1086即3x^5+4x^4+2.5x^2+1.5x+6在x=3时的函数值为1086。

指数函数f(x)经过点(-2,9),则f(2)等于多少?

视频教学:练习:1.某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的最少过滤次数为(参考数据:lg 2≈0.301,lg 3≈0.477)()A.10 B.9C.8 D.72.据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%.如果按此速度,设2010年的冬季冰雪覆盖面积为m,从2010年起,经过x年后,北冰洋冬季冰雪覆盖面积y与x的函数关系式是()3.某公司为激励创新,计划逐年加大研发奖金投入.若该公司2016年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2018年 B.2019年C.2020年 D.2021年4.某个病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=ekt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.5.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T,经过一定时间t后的温度是T,则T-Ta=(T-Ta)·,其中Ta表示环境温度,h称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min,那么降温到35 ℃时,需要多少时间?知识点二对数型函数模型6.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与时间x(年)近似满足关系y=alog3(x+2),观测发现2014年冬(作为第1年)有越冬白鹤3000只,估计到2020年冬有越冬白鹤()A.4000只 B.5000只C.6000只 D.7000只7.我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝(dB),对于一个强度为I的声波,其音量的大小η可由如下公式计算:η=10lg II0(其中I是人耳能听到的声音的最低声波强度).设η1=70 dB的声音强度为I1,η2=60 dB的声音强度为I2,则I1是I2的()A.76倍 B.10倍C.1076倍 D.ln 76倍8.已知地震的震级R与震源释放的能量E的关系式为R=23(lg E-C)(C为常数),则9.0级地震释放的能量约是7.1级地震释放的能量的________倍.(参考数据:102.85≈708)9.载人飞船是通过火箭发射的.已知某型号火箭的起飞重量M t是箭体(包括搭载的飞行器)的重量m t和燃料重量x t之和.在不考虑空气阻力的条件下,假设火箭的最大速度y km/s关于x的函数关系为y=k[ln (m+x)-ln (2m)]+4 ln 2(其中k≠0).当燃料重量为(e-1)m t时,该火箭的最大速度为4 km/s.(1)求此型号火箭的最大速度y km/s与燃料重量x t之间的函数关系式;(2)若此型号火箭的起飞重量是479.8 t,则应装载多少吨燃料(精确到0.1 t,取e≈2.718)才能使火箭的最大飞行速度达到8 km/s顺利地把飞船发送到预定的椭圆轨道?课件:教案:学习目标了解方程的根与函数零点的关系;理解函数零点的性质,掌握二分法,会用二分法求方程的近似解;了解直线上升、指数爆炸、对数增长,会进行指数函数、对数函数、幂函数增长速度的比较;[来源:学科网ZXXK]能熟练应用数学建模解决有关函数的实际应用问题.合作学习[来源:学科网ZXXK]一、知识回顾(一)全章知识点1.函数的零点,方程的根与函数的零点,零点的性质.2.二分法,用二分法求函数零点的步骤.3.几类不同增长的函数模型(直线上升、指数爆炸、对数增长),指数函数、对数函数、幂函数增长速度的比较.4.应用函数模型解决实际问题的基本过程.(二)方法总结1.函数y=f(x)的就是方程f(x)=的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题.2.一元二次方程根的讨论在高中数学中应用广泛,求解此类问题常有三种途径:(1)利用求根公式;(2)利用二次函数的图象;(3)利用根与系数的关系.无论利用哪种方法,根的判别式都不容忽视,只是由于二次函数图象的不间断性,有些问题中的判别式已隐含在问题的处理之中.3.用二分法求函数零点的一般步骤:已知函数y=f(x)定义在区间D上,求它在D上的一个变号零点x的近似值x,使它与零点的误差不超过正数ε,即使得|x-x|≤ε.(1)在D内取一个闭区间[a,b]u2286D,使.令a=a,b=b.(2)取区间[a,b]的中点,则此中点对应的横坐标为x=a+(b-a)=(a+b).计算f(x)和f(a).判断:如果f(x)=,;如果f(a)·f(x)0,则零点位于区间内,令a1=a,b1=x;如果f(a)·f(x)>,则零点位于区间内,令a1=x,b1=b.(3)取区间[a1,b1]的中点,则此中点对应的横坐标为x1=a1+(b1-a1)=(a1+b1).计算f(x1)和f(a1).判断:如果f(x1)=,则x1就是f(x)的零点,计算终止;如果f(a1)·f(x1)0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1;如果f(a1)·f(x1)>,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.…实施上述步骤,函数的零点总位于区间[an,bn]上,就是函数y=f(x)的近似零点,计算终止.这时函数y=f(x)的近似零点与真正零点的误差不超过ε.4.对于直线y=kx+b(k≥),指数函数y=m·ax(m>,a>1),对数函数y=logbx(b>1),(1)通过实例结合图象初步发现:当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快;(2)通过计算器或计算机得出多组数据,结合函数图象(图象可借助于现代信息技术手段画出)进一步体会:直线上升,其增长量固定不变;指数增长,其增长量成倍增加,增长速度是直线上升所无法企及的.随着自变量的不断增大,直线上升与指数增长的差距越来越大,当自变量很大时,这种差距大得惊人,所以“指数增长”可以用“指数爆炸”来形容;对数增长,其增长速度平缓,当自变量不断增大时,其增长速度小于直线上升.5.在区间(,+∞)上,尽管函数y=ax(a>1),y=logax(a>1),y=xn(n>)都是增函数,但是它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,y=ax(a>1)的增长速度越来越快,会远远超过y=xn(n>)的增长速度,而y=logax(a>1)的增长速度则会越来越慢.因此,总会存在一个x,当x>x时,.6.实际问题的建模方法.(1)认真审题,准确理解题意;(2)从问题出发,抓准数量关系,恰当引入变量或建立直角坐标系.运用已有的数学知识和方法,将数量关系用数学符号表示出来,建立函数关系式;(3)研究函数关系式的定义域,并结合问题的实际意义作出解答.必须说明的是:(1)通过建立函数模型解决实际问题,目的是通过例题培养学生应用数学的意识和分析问题的能力;(2)把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题所得出的关于实际问题的数学描述,即为数学模型.7.建立函数模型,解决实际问题的基本过程:二、例题讲解【例1】作出函数y=x3与y=3x-1的图象,并写出方程x3=3x-1的近似解.(精确到.1)【例2】分别就a=2,a=和a=画出函数y=ax,y=logax的图象,并求方程ax=logax的解的个数.【例3】根据上海市人大十一届三次会议上的政府工作报告,2013年上海完成GDP(国内生产总值)4035亿元,2014年上海市GDP预期增长9%,市委、市政府提出将本市常住人口每年的自然增长率控制在.08%,若GDP与人口均按这样的速度增长,则要使本市人均GDP达到或超过2013年的2倍,至少需年.(按:2013年本市常住人口总数约为1300万)【例4】某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt.(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.三、课堂练习课本P112复习参考题A组第1,2,3,4,5题.四、课堂小结1.函数与方程的紧密联系,体现在函数y=f(x)的零点与相应方程f(x)=的实数根的联系上;2.二分法是求方程近似解的常用方法,应掌握用二分法求方程近似解的一般步骤;3.不同函数模型能够刻画现实世界不同的变化规律.指数函数、对数函数以及幂函数就是常用的现实世界中不同增长规律的函数模型;4.函数模型的应用,一方面是利用已知函数模型解决问题;另一方面是建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测;5.在函数应用的学习中要注意充分发挥信息技术的作用.五、作业布置课本P112复习参考题A组第7,8,9题;B组第1,2题.参考答案二、例题讲解【例1】解:函数y=x3与y=3x-1的图象如图所示.在两个函数图象的交点处,函数值相等.因此,这三个交点的横坐标就是方程x3=3x-1的解.由图象可以知道,方程x3=3x-1的解分别在区间(-2,-1),(,1)和(1,2)内,那么,对于区间(-2,-1),(,1)和(1,2)分别利用二分法可以求得它精确到.1的近似解为x1≈-1.8,x2≈.4,x3≈1.5.【例2】解:利用Excel、图形计算器或其他画图软件,可以画出函数的图象,如下图所示.根据图象,我们可以知道,当a=2,a=和a=时,方程ax=logax解的个数分别为,2,1.【例3】解:设需n年,由题意得,[来源:Z&xx&k.Com]化简得≥2,解得n>8.答:至少需9年.【例4】解:由提供的数据知道,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数 Q=at+b,Q=a·bt,Q=a·logbt中的任意一个进行描述时都应有a≠,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数Q=at2+bt+c进行描述.以表格所提供的三组数据分别代入Q=at2+bt+c,得到解得所以描述西红柿种植成本Q与上市时间t的变化关系的函数为Q=t2-t+.(2)当t=-=150天时,西红柿种植成本最低,三、课堂练习1.C2.C[来源:学*科*网]3.设列车从A地到B地运行时间为T,经过时间t后列车离C地的距离为y,则y=函数图象为4.(1)圆柱形;(2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形;(4)呈下大上小的两节圆柱形.(图略)5.令f(x)=2x3-4x2-3x+1,函数图象如下所示:函数分别在区间(-1,),(,1)和区间(2,3)内各有一个零点,所以方程2x3-4x2-3x+1=的最大的根应在区间(2,3)内.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)=-.25.因为f(2.5)·f(3)0,所以x∈(2.5,3).再取(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈4.09.因为f(2.5)·f(2.75)0,所以x∈(2.5,2.75).同理,可得x∈(2.5,2.625),x∈(2.5,2.5625),x∈(2.5,2.53125),x∈(2.515625,2.53125),x∈(2.515625,2.5234375).由于|2.534375-2.515625|=.00781250.01,此时区间(2.515625,2.5234375)的两个端点精确到.01的近似值都是2.52,所以方程2x3-4x2-3x+1=精确到.01的最大根约为2.52.图文来自网络,版权归原作者,如有不妥,告知即删

求指数、对数函数的相关问题

我这有指数、对数的详细教案,需要的发加QQ530713578

高中数学:幂函数最新教案

发了

数学:求对数函数最新教案设计思路

发HI了

对数函数的性质教案

真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零, 底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1 在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于4,另一个等于-4)

find函数在finebi如何使用

find函数在finebi使用步骤如下:1、在报表设计器中选择需要使用find函数的单元格。2、点击“表达式编辑器”按钮,在弹出的窗口中输入如下表达式:find("需要查找的字符串","在哪个字符串中查找")3、点击“确定”按钮,表达式编辑器窗口将关闭。4、在单元格中显示查找结果的位置。如果要在报表中多个单元格中使用该函数,可以将该函数复制到其他单元格中。

什么是函数的拐点?怎样求拐点?

若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。我们可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:(1)求f""(x);(2)令f""(x)=0,解出此方程在区间I内的实根,并求出在区间I内f""(x)不存在的点;(3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f""(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。扩展资料必要条件,设函数f(x)在点的某领域内具有二阶连续导数,若(,f())是曲线的拐点,则,但反之不成立。第一充分条件直接根据拐点的定义,可以得到曲线存在拐点的第一充分条件。设函数f(x)在点的某邻域内具有二阶连续导数,若的两侧异号,则(,f())是曲线y=f(x)的一个拐点;若的两侧同号,则(,f())不是曲线的拐点。

什么是函数的拐点?

拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:⑴求f""(x);⑵令f""(x)=0,解出此方程在区间I内的实根,并求出在区间I内f""(x)不存在的点;⑶对于⑵中求出的每一个实根或二阶导数不存在的点x,检查f""(x)在这个点x左右两侧邻近的符号,那么当两侧的符号相反时,这个点(x,f(x))是拐点,当两侧的符号相同时,(x,f(x))不是拐点。扩展资料:类似术语:驻点相关对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。

函数的拐点是什么?

函数的拐点是事物发展过程中运行趋势或运行速率的变化,也就是指凸曲线与凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),那么这个关系式就叫函数关系式,简称函数。扩展资料:拐点的求法可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:⑴求f""(x);⑵令f""(x)=0,解出此方程在区间I内的实根,并求出在区间I内f""(x)不存在的点;

函数的拐点是什么意思

题库内容:拐点的解释(1) [point of inflection]∶把曲线上向上凹的弧从向下凹的弧分开 或者 相反 地分开的点 (2) [contraflexure]∶见反挠曲点 详细解释 平面曲线上一个点把曲线分成两部分,如果曲线在该点的一侧是凸的,在另一侧是凹的,就称这点是曲线的拐点。 词语分解 拐的解释 拐 ǎ 转折:拐弯。 骗:拐骗。拐卖。 走路不稳,跛:他走路一拐一拐的。 走路时 帮助 支持 身体的棍:拐棍。双拐。 部首 :扌; 点的解释 点 (点) ǎ 细小的痕迹或物体:点滴。斑点。点子(a.液体的小滴,如“水点点”;b.小的痕迹,如“油点点”;c. 打击 乐器演奏时的节拍,如“鼓点点”;d.主意,办法,如“请 大家 出点点”;e.最能说明问

函数的拐点是什么意思(函数的拐点是啥)

1.函数的拐点是事物发展过程中运行趋势或运行速率的变化,也就是指凸曲线和凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。 2.函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),那么这个关系式就叫函数关系式,简称函数。

函数的拐点是什么意思,函数的拐点是什么?

1.函数的拐点是事物发展过程中运行趋势或运行速率的变化,也就是指凸曲线和凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。 2. 拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧和凸弧的分界点)。 3.若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

三次函数的拐点是什么意思?

三次函数的拐点就是三次函数的对称中心,拐点求法:设三次函数 y=f(x)=ax^3+bx^2+cx+d a不为0,则y"=3ax^2+2bx+c,y""=6ax+2b,由a不为0,显然可以得到当x=-b/3a 附近 y""有正有负,也就是可以求得 x=-b/3a 是三次曲线凹弧和凸弧的分界点,从而点(-b/3a,f(-b/3a))是三次函数的拐点,也是三次函数的对称中心。扩展资料:三次函数性态的五个要点1、三次函数y=f(x)在(-∞,+∞)上的极值点的个数为导数等于0的横坐标。2、三次函数y=f(x)的图象与x 轴交点个数为根的数目。3、三次函数的单调性问题为求导数等于0的问题。4、三次函数f(x)图象的切线条数为可求的三角形的数目。5、融合三次函数和不等式,创设情境求参数的范围即可。参考资料来源:百度百科-三次函数

函数的拐点是什么意思?

总函数曲线的拐点是指总函数曲线上的一点,在这点的左侧,总函数曲线以递增的速度的上升,在这点的右侧,总函数曲线以递减的速度上升。当总函数为拐点时,其边际产量为最大值。我们可以依据这个规律求出这个拐点。在边际函数方程中,求边际函数的最大值,则可求出此点在x轴上的变量,则当总函数曲线中的x也取这个值时,就是总函数曲线的拐点。

Excel中怎样运用函数公式及分类汇总

第一,问题定义。原始数据如图所示,三列数据分别是公司、员工姓名和年龄。公司分别是A、B、C、D,然而这些数据都交错在一起,十分混乱,现在我们要做的就是将这些数据按照公司来进行分类汇总。第二,数据排序。在进行数据分类汇总之前,需要进行数据排序操作。在excel文档菜单栏中“数据”中选中“排序”项,在弹出的对话框中的“主要关键字”下拉菜单中选择“公司”,设定完毕后点击“确定”即可。第三,排序结果。在进行第二步操作之后,即可以看到数据的排序结果,如果所示。很明显,数据排列已经比原始数据排列清晰许多,公司名称依次按A、B、C、D排列。或许,会觉得这样已经够了,但是当数据量大时,这还远远不行。第四,数据分类。此时,仍然是选择excel菜单栏中的“数据”,然后选择其中的“分类汇总”,在弹出的对话框中分类字段为“公司名称”,分类方式选择“计数”,选定汇总项勾选“公司名称”,其他选项保持默认状态即可,点击“确定”。第五,分类结果。如图所示,分类汇总的结果十分漂亮。数据不仅按照A、B、C、D依次排列,而且还给出了各公司的员工数,分别是5、4、5、6,总计为20。当数据量很大,且项目繁多时,可以通过如上方法进行有效的分类汇总,非常方便。

使用avr studio编写Atmega16程序时中断函数该怎么写?定时器2的匹配中断名咋写

SIGNAL(中断向量名){ //中断处理程序}中断向量名的定义在iom16.h头文件中,文件位置在winavr安装目录/avr/include/avr下如果没记错的话定时器2匹配中断名应该是 TIMER2_COMP_vect友情提示:1.中断程序中操作的变量应在声明时加上 volatile 声明,否则gcc不认,会被优化掉2.切忌只有sei();开全局中断后才能进中断响应程序3.中断第一句话建议cli();关中断,最后一句话sei();开中断。

jmeter beanshell里面写了函数怎么调用

一、操作变量:通过使用Bean shell内置对象vars可以对变量进行存取操作    a) vars.get("name"):从jmeter中获得变量值    b) vars.put("key","value"):数据存到jmeter变量中二、操作属性:通过使用Bean shell内置对象props 可以对属性进行存取操作    a) props.get("START.HMS");  注:START.HMS为属性名,在文件jmeter.properties中定义     b) props.put("PROP1","1234");三、自定义函数:  在BeanShell中,我们可以使用java语言自定义函数来处理特定的逻辑,结合BeanShell的内置对象进行变量的存取,方便我们进行测试提高脚本的灵活性。示例:1、在Test Plan中添加一个变量:hello = kitty2、Debug sampler-1和Debug sampler-2什么都不处理,用来查询对比beahshell处理前后的结果3、BeanShell Sampler中的脚本如下:4、运行结果:Debug sampler-1中显示:hello=kittyBeanShell sampler中 返回结果为:success Debug sampler-1中显示:hello=world,jmeter=111111四、引用外部java文件:  有没有觉得上面(三)中自定义函数这样的方式太麻烦并且也不美观?而且如果我们已经有现成的java源文件或者class文件时,我们有没有什么办法直接在jemter中引用?这就是这部分要介绍的内容,直接上示例:1、假如我有一个java 源文件,名为:Myclass.java,代码如下:  package test;public class Myclass{ public int add(int a, int b) { return a + b; } }2、Bean Shell使用代码如下:  在bean shel中通过source("代码路径")方法引入java,然后调用方法和java一样,new一个class,再调用里面的add 方法。3、运行结果:五、引用外部class文件:  现在知道如何引用外部文件,有时候如果我们只有class文件怎么办呢?其实在jmeter中也可以直接引用class文件,示例如下:1、直接把上例中的java文件编译成class文件,如何编译请自行百度。2、Bean Shell使用代码如下:  用addClassPath("D:\")方法引入 class文件,在用import导入包及类,然后就可以像java一样调用了3、运行结果:六、引用外部Jar包:  上面四、五介绍了如何引用外部java和class文件,如果文件比较多时我们可以把它们打成一个jar包然后在jemter中调用,具体如何使用可以看我上一篇有介绍:Jmeter之Bean shell使用(一)。  在这里想补充一点的是jmeter中引入jar的方法:  1、上一篇中已使用过的:把jar包放到jmeter目录apache-jmeter-2.13libext下  2、在Test Plan的右侧面板最下方直接添加需要引用的jar包,如下图:

利用函数图像的凹凸性证明下列不等式 xlnx+ylny>(x+y)ln((x+y)/2),(x>0

(xlnx)""=(lnx+1)"=1/x>0,forx>0jensen不等式(xlnx+ylny)/2>=(x+y)/2*ln((x+y)/2)xlnx+ylny>=(x+y)*ln((x+y)/2)所谓用函数图象就是说割线的中点在弧的中点上边。

利用函数的图形的凹凸性证明不等式(m^m+n^n)^2>4((m+n)/2)^(m+n)),其中m>0,n>0。

求一下y=x^x函数在x>0的凹凸性(二阶导数),根据凹凸性与(中点函数值和函数值的平均数谁大谁小,凹函数后者大)之间的关系两边平方即可证得不等式。

能不能利用琴生不等式凹函数求最大值

能。Jensen不等式可求下凹(即上凸函数)的最大值。

函数的凹凸性的不等式

琴生(Jensen)不等式(也称为詹森不等式):(注意前提、等号成立条件)设f(x)为凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为凹函数,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),称为琴生不等式。加权形式为:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.

请问函数凹凸性是由谁提出的?

琴生,具体介绍到网上找,应该很多的。我最近刚看琴生不等式,好精妙~~~~~约翰·卢德维格·威廉·瓦尔德马尔·琴生(Johan Ludwig William Valdemar Jensen,1859年5月8日—1925年3月5日),一般称作约翰·琴生(Johan Jensen),是丹麦数学家和工程师。琴生最知名的是他的不等式。1915年琴生也证明了存在无穷多个非正则素数。还有翻译成延森、詹森的。我找到一个介绍他的网站~~~可是是英文的~~~我讨厌英语|||-_-http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Jensen.html他的生平http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Jensen.html我记得我的竞赛书上说他发明这个不等式的时候才定义的函数的凹凸性吧,经你这么一说我也不能肯定了~~~~~也许不是吧,他好像是有点晚了,呵呵。

能不能利用琴生不等式凹函数求最大值

Jensen不等式只是描述了凹函数的一个性质,就是因变量f(x)的加权平均值小于自变量x的加权平均值对应的因变量函数值。这个性质无法直接用于求解凹函数的最大值。

已知f(x)二阶可导,且f(x)是[a,b]上的凹函数,又知w(x)是[a,b]上的非负函数,且∫b→a w(x)=1,

1、a<=x<=b,而w(x)>=0,不等式乘以w(x)得aw(x)<=xw(x)<=bw(x)。在[a,b]上积分有b=b*∫b→a w(x)dx≥∫b→a x*w(x)≥a*∫b→a w(x)dx=a。2、由于f(x)是凹函数,由Jensen不等式,取xi=a+i(b-a)/n,i=1,2,...,n,dxi=(b-a)/nf[(求和(i=1到n)w(xi)xi*dxi)/(求和(i=1到n)w(xi)*dxi)]<=[求和(i=1到n)w(xi)f(xi)*dxi]/[求和(i=1到n)w(xi)*dxi]令n趋于无穷并利用积分的定义以及f(x)的连续性知道有f[(∫b→a x*w(x)dx)/(∫b→a w(x)dx)]<=[∫b→a w(x)*f(x)dx]/[∫b→a w(x)dx],注意到条件即知结论成立。

试判断函数f(x)=x+1/x的凹凸性,要具体过程

解题过程如下图:设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),则称f为I上的凹函数.若不等号严格成立,即“<”号成立,则称f(x)在I上是严格凹函数。扩展资料琴生(Jensen)不等式(也称为詹森不等式):(注意前提、等号成立条件)设f(x)为凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为凹函数。加权形式为:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……

[紧急求助]均值不等式可看作一个r函数,r为零时不能表示几何平均数吗,能否通过求导来证明均值不等式...

先取自然对数,然后求导。为了证明导数非负,需要对凸函数x*log(x)用jensen不等式,有点舍近求远了……具体一点说是这样的:证明:(sum a[i]^r / n)^(1/r) 是变量 r 的增函数取对数之后,函数变成 (1/r)*log(sum a[i]^r / n)。导数为:(1/r^2)*[(sum a[i]^r * log a[i]^r) / (sum a[i]^r) - log (sum a[i]^r / n)]令x[i] = a[i]^r,则只要证明:(sum x[i]*log(x[i]))/n >= (sum x[i] / n)*log(sum x[i] / n)由函数 x*log(x) 的jensen不等式立刻得到上式成立

求解,圈圈的 题目,利用函数的凹凸性,证明不等式

(1)构造指数函数f(t)=e^t, 则f"(t)=e^t>0,f""(t)=e^t>0. 故f(t)为下凸函数, 依Jensen不等式得 [f(x)+f(y)]/2>f[(x+y)/2] (x≠y时为严格不等式) ∴(e^x+e^y)/2>e^[(x+y)/2].(2)构造函数f(t)=tlnt (t>0), 则f"(t)=lnt+1,f""(t)=1/t>0, 故f(t)为下凸函数, 故依Jensen不等式得 [f(x)+f(y)]/2>f[(x+y)/2] (x≠y时,为严格不等式) ∴xlnx+ylny>2·[(x+y)/2]ln[(x+y)/2] 即xlnx+ylny>(x+y)ln[(x+y)/2].(3)构造幂函数f(t)=t^n, 则f"(t)=nt^(n-1), f""(t)=n(n-1)t^(n-2)>0, 故f(t)为下凸函数, 依Jensen不等式得 [f(x)+f(y)]/2>f[(x+y)/2] ∴(x^n+y^n)/2>[(x+y)/2]^n。

琴生(或詹森,Jensen)不等式成立是 一个函数是凸函数 的充要条件吗?或仅是必要

琴生不等式成立是一个函数是凸函数的必要不充分条件(琴生不等式成立的逆否命题)

高中数学三角函数特殊角的数值表

在高中数学中,三角函数属于出题点最多的一类题型了,特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。下面我为大家整理了三角函数特殊角的数值。 什么是三角函数 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。 三角函数对应数值 α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2 α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2) a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2 α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2 α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3 α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2) α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2 α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1 α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞ α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1 α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ 黄金三角对应数值 α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4 tαnα=√(25-10√5)/5 cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5) α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4 tαnα=√(5-2√5) cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5 α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5 cscα=√5-1 secα=√(50+10√5)/5 cotα=√(5-2√5) α=72°(2π/5) sinα=√(10+2√5)/4 cosα=(√5-1)/4 tαnα=√(5+2√5) cscα=√(50-10√5)/5 secα=√5+1 cotα=√(25-10√5)/5 通过比较可发现与黄金三角形相关的三角函数值有很强的对称性,这些数值的证明可以借助黄金三角形中的比例 两角和与差的三角函数对应数值 sin(a+b)=sin a cos b +cos a sin b cos(a+b)=cos a cos b -sin a sin b sin(a-b)=sin a cos b -cos a sin b cos(a-b)=cos a cos b +sin a sin b tan(a+b)=(tan a +tan b )/(1-tan a tan b ) tan(a-b)=(tan a -tan b )/(1+tan a tan b )

三角函数值都有哪些特殊角

特殊角例如30°、45°、60°,这些角的三角函数值参见下表格:扩展资料:1、常见的三角函数,包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。2、三角学输入中国,开始于明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学。在《大测》中,首先将sine译为”正半弦”,简称”正弦”,这就成了“正弦”一词的由来。参考资料:百度百科_三角函数

sin.tan.cos90度的三角函数值是多少?

  sin90度的三角函数值为1;  tan90度的角函数值不存在;  cos90度的三角函数值为0。  sin,cos,tan特殊角的三角函数值表:  sin(0,30,45,60,90)=0,1/2,根号2/2,根号3/2,1  cos(0,30,45,60,90)=1,根号3/2,根号2/2,1/2,0  tan(0,30,45,60,90)=0,根号3/3,1,根号3,不存在。

初中三角函数表口诀

进入初中,三角函数的学习往往是孩子数学分数的最大杀手,下面我就整理了初中三角函数表速记口诀,供大家参考。 初中常见三角函数值表 α=0°(0):sinα=0;cosα=1;tαnα=0;cotα→∞;secα=1;cscα→∞。 α=15°(π/12):sinα=(√6-√2)/4;cosα=(√6+√2)/4;tαnα=2-√3;cotα=2+√3;secα=√6-√2;cscα=√6+√2。 α=22.5°(π/8):sinα=√(2-√2)/2;cosα=√(2+√2)/2;tαnα=√2-1;cotα=√2+1;secα=√(4-2√2);cscα=√(4+2√2)。 α=30°(π/6)sinα=1/2;cosα=√3/2;tαnα=√3/3;cotα=√3;secα=2√3/3;cscα=2。 α=45°(π/4):sinα=√2/2;cosα=√2/2;tαnα=1;cotα=1;secα=√2;cscα=√2。 α=60°(π/3)sinα=√3/2;cosα=1/2;tαnα=√3;cotα=√3/3;secα=2;cscα=2√3/3。 α=67.5°(3π/8):sinα=√(2+√2)/2;cosα=√(2-√2)/2;tαnα=√2+1;cotα=√2-1;secα=√(4+2√2);cscα=√(4-2√2)。 α=75°(5π/12):sinα=(√6+√2)/4;cosα=(√6-√2)/4;tαnα=2+√3;cotα=2-√3;secα=√6+√2;cscα=√6-√2。 α=90°(π/2):sinα=1;cosα=0;tαnα→∞;cotα=0;secα→∞;cscα=1。 α=180°(π):sinα=0;cosα=-1;tαnα=0;cotα→∞;secα=-1;cscα→∞。 α=270°(3π/2):sinα=-1;cosα=0;tαnα→∞;cotα=0;secα→∞;cscα=-1。 α=360°(2π):sinα=0;cosα=1;tαnα=0;cotα→∞;secα=1;cscα→∞。 初中数学三角函数公式 锐角三角函数公式 sinα=∠α的对边/斜边 cosα=∠α的邻边/斜边 tanα=∠α的对边/∠α的邻边 cotα=∠α的邻边/∠α的对边 倍角公式 Sin2A=2SinA.CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2是sinA的平方sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a=tana·tan(π/3+a)·tan(π/3-a) 三倍角公式推导 sin3a=sin(2a+a)=sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 三角和 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积 sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2] cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 特殊角三角函数值记忆口诀 三十,四五,六十度,三角函数记牢固; 分母弦二切是三,分子要把根号添; 一二三来三二一,切值三九二十七; 递增正切和正弦,余弦函数要递减.

特殊角的三角函数值表(要带根号的)

sin0 0 sin30 0.5 sin45 二分之根号2 sin60 二分之根号3 sin90 1 cos0 1 cos30 二分之根号3 cos45 二分之根号2 cos60 0.5 cos90 0 tan0 0 tan30 三分之根号3 tan45 1 tan60 根号3 tan90 无 cot0 无 cot30 根号3 cot4...

三角函数公式大全 三角函数值对照表格

三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。下文我给大家整理了三角函数值表格及公式,供参考! 三角函数值对照表格 三角函数公式大全 两角和公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) cot(a+b)=(cotacotb-1)/(cotb+cota) cot(a-b)=(cotacotb+1)/(cotb-cota) 倍角公式 tan2a=2tana/[1-(tana)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 sin2a=2sina*cosa 半角公式 sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa)) cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) ue657 tan(a/2)=(1-cosa)/sina=sina/(1+cosa) 和差化积 2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b) ) 2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b) sina+sinb=2sin((a+b)/2)cos((a-b)/2) cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosb 积化和差公式 sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) pi=3.1415926.... cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tga=tana=sina/cosa 万能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) 其它公式 a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2

特殊函数三角函数值有哪些?

三角函数是数学中的一类特殊,它们包括正弦函数sine)、余弦函数(cosine)、正切函数(tangent)、切函数(cotangent)、正割函数(secant)和余割函数(cose cant)。这些函数在三学和数学中有着广泛的应用以下是一常见角度以弧度为)对应的三角函数的值:正弦函数(sine):sin(0) = 0sin(π/6) =sin(/4) √2/2sin(π/) = √3sin(π/2) = 1余弦函数(cosine:cos() = 1cos(π/6) = √3/2cos(/4) = √22cos(π/3) = 1/2cos(π/2) =0正切函数(t):tan( = 0tan(π/6) = 1/√3tan(π/4) = 1tan(π/3) = √3tan(π/2) = 无大(不存在)余切函数(cotangent):cot(0) = 无穷大(不存在)cot(π/6) = √3cotπ/4) = 1cot(π/3) = 1/√(π/2) = 正割函数(secant)sec(0) = () = 2/√sec(π/4) = √2sec(π/3) 2(π2 = 穷大(不存在)余割函数(ccant):csc(0) = 穷大(不存在)csc(/6) = 2cscπ/4) = √2csc(π/3) = 2/√3csc(/2) = 1需要注意的是,这些值仅为一些常见角度对应的三角函数值。对角度可以通过计算或数学工获得们精确。

三角函数值对照表全部

这个可以推出来的 sin cos tan 0 0 1 0 15 (√6-√2)/4 (√6+√2)/4 2-√3 30 1/2 √3/2 √3/3 45 √2/2 √2/2 1 60 √3/2 1/2 √3 75 (√6+√2)/4 (√6-√2)/4 2+√3 90 1 0 --- 105 (√6+√2)/4 (√2-√6)/4 -2-√3 120 √3/2 -1/2 -√3 135 √2/2 -√2/2 -1 150 1/2 -√3/2 -√3/3 165 (√6-√2)/4 (√2-√6)/4 √3-2 180 0 -1 0 还可以看清吧

常用的三角函数值表

这篇文章给大家分享一下常用的三角函数值表以及三角函数的计算公式,一起看一下具体的知识点内容。 常用的三角函数值表 三角函数两角和差计算公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cossinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) 三角函数积化和差计算公式 sinAsinB=-[cos(A+B)-cos(A-B)]/2 cosAcosB=[cos(A+B)+cos(A-B)]/2 sinAcosB=[sin(A+B)+sin(A-B)]/2 cosAsinB=[sin(A+B)-sin(A-B)]/2 三角函数和差化积计算公式 sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2] sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2] cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2] cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

特殊角的三角函数值

《特殊角的三角函数值》是人教版数学九年级下册第二十八章的内容,特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。具体的三角函数值如下表:扩展资料:黄金三角函数介绍:α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4 tαnα=√(25-10√5)/5cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5)α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4 tαnα=√(5-2√5)cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5

三角函数的定义域、值域、周期性及图表

这个嘛,你只要能画出它们的函数图像就可以了。例如sinx的图像,图像是连续的,x值取任意值y都有值与之对应,那它定义域就是r了,图像的y值在-1到1之间变化,那值域就是[-1,1]了。图像一直都是重复着(0,2π)的曲线,所以周期是2π(也就是说每过2π就重复一次)。奇函数是关于原点对称,你可以看图像是否关于原点对称,换句话说,你可以想象把图像沿着y=x或y=-x的直线对折,是否重合,重合的话就是奇函数。偶函数是关于y轴对称,你可以看图像沿着y轴对折,是否重合,重合的话就是偶函数。显然,sinx的图像是奇函数。单调性是看图像沿着x的正方向是向上升还是往下降,如果上升就是单调递增,下降是单调递减。在(-π/2,π/2)图像是上升的,所以在这段是递增~~cosx跟上面差不多,你自己按照我刚才的说法看看。再举一个例子。tanx的图像不连续,在π/2+kπ处没有相应的y值,也就是说x不能取π/2+kπ,所以定义域是{x|x≠π/2+kπ,k属于z}。而y值就显然是r了,任意值都可以取到。它一直重复(-π/2,π/2)段,长度是π,所以周期是π。沿着y=-x的直线对折能重合,所以是奇函数。在(-π/2,π/2)都是上升的,所以在(-π/2,π/2)里是单调递增。说得有点俗,但也是为了你能更好地理解

特殊角三角函数值怎么算?

特殊角例如30°、45°、60°,这些角的三角函数值参见下表格:扩展资料:1、常见的三角函数,包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。2、三角学输入中国,开始于明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学。在《大测》中,首先将sine译为”正半弦”,简称”正弦”,这就成了“正弦”一词的由来。参考资料:百度百科_三角函数

特殊角的三角函数值表(要带根号的)

sin0 0 sin30 0.5 sin45 二分之根号2 sin60 二分之根号3 sin90 1 cos0 1 cos30 二分之根号3 cos45 二分之根号2 cos60 0.5 cos90 0 tan0 0 tan30 三分之根号3 tan45 1 tan60 根号3 tan90 无 cot0 无 cot30 根号3 cot45 1 cot60 三分之根号3 cot90 0

高中特殊三角函数值表 三角函数诱导公式

三角函数特殊值是高中数学学习的重要知识点,那么,高中特殊三角函数值有哪些呢?下面我整理了一些相关信息,供大家参考! 特殊三角函数值表 三角函数特殊值,一般指特殊三角函数值,一般指在0,30°,45°,60°,90°,120°,150°,180°等角下的正余弦值、正切值等。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。 常见的三角函数包括正弦函数、余弦函数和正切函数。 三角函数诱导公式有哪些 特殊角的三角函数值,一般都以正角的来记忆。 6分之π的正弦值=1/2=3分之π的余弦值=cos60°,(下略)。 4分之π的正弦值=根号2/2=4分之π的余弦值。 3分之π的正弦值=根号3/2=6分之π的余弦值。 2分之π的正弦值=1= 0的余弦值。 6分之π的正切值=根号3/3=3分之π的余切值。 4分之π的正切值=1=4分之π的余切值。 3分之π的正切值=根号3=6分之π的余切值。 大于90度(2分之π)的记法,由诱导公式得到的来记忆。 负数(也就是负角)的三角函数值,也由诱导公式得到的来记忆。

基本三角函数值

30°,45°,60°这三个角的正弦值和余弦值的共同点是:分母都是2,若把分子都加上根号,则被开方数就相应地变成了1,2,3.正切的特点是将分子全部都带上根号,令分母值为3,则相应的被开方数就是3,9,27。扩展资料记忆口诀一三十,四五,六十度,三角函数记牢固;分母弦二切是三,分子要把根号添;一二三来三二一,切值三九二十七;递增正切和正弦,余弦函数要递减.记忆口诀二一二三三二一,戴上根号对半劈。两边根号三,中间竖旗杆。分清是增减,试把分母安。正首余末三,好记又简单。零度九十度,斜线z形连。端点均为零,余下竖横填。

三角函数sec所指的度数是?

sec的0°、30°、45°、60°、90°、120°、135°、150°、180°所对应的指分别为 1、2√3/3、√2、2、2、u2205、-2,-√2、-2√3/3、-1csc的0°、30°、45°、60°、90°、120°、135°、150°、180°所对应的指分别为 u2205、2、√2、2√3/3、1、2√3/3、√2、2、u2205解法:由sec=1/cos, csc=1/sin。将sin的0°、30°、45°、60°、90°、120°、135°、150°、180°的值和cos的0°、30°、45°、60°、90°、120°、135°、150°、180°的值分别带入即可求出具体值。sin的0°、30°、45°、60°、90°、120°、135°、150°、180°的值分别为 0、1/2、√2/2、√3/2、1、√3/2、√2/2、0cos的0°、30°、45°、60°、90°、120°、135°、150°、180°的值分别为 1、√3/2、√2/2、1/2、0、-1/2、-√2/2、-√3/2、-1扩展资料:在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。这些函数的值参见下表格:三角函数的一些诱导公式:sin(2kπ+α)=sin α、cos(2kπ+α)=cos α、tan(2kπ+α)=tan α、cot(2kπ+α)=cot αsec(2kπ+α)=sec α、csc(2kπ+α)=csc α、sin(π+α)=-sin α、cos(π+α)=-cos αtan(π+α)=tan α、cot(π+α)=cot α、sin(α-π)=-sin α、cos(α-π)=-cos αtan(α-π)=tan α、cot(α-π)=cot α、sec(α-π)=-sec α、csc(α-π)=-csc α推导方法:90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。定号法则:将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。参考资料:三角函数 百度百科

数学直角三角函数公式表

三角函数是数学中属于初等函数中的超越函数的函数。通常的三角函数是在平面直角坐标系中定义的。另一种定义是在直角三角形中,但并不完全。接下来分享直角三角函数公式表。 直角三角函数公式表 正弦:sinA=a/c (即角A的对边比斜边) 余弦:cosA=b/c (即角A的邻边比斜边) 正切:tanA=a/b (即角A的对边比邻边) 余切:cotA=b/a (即角A的邻边比对边) 正割:secA=c/b (即角A的斜边比邻边) 余割:cscA=c/a (即角A的斜边比对边) 任意角三角函数公式 假设在直角坐标系中,点A的坐标为(x,y),原点到点A的线段长为r,线段r和横坐标的夹角为α,则有三角函数的边角关系公式为: sinα=y/r cosα=x/r tanα=y/x cotα=x/y secα=r/x cscα=r/y 直角三角函数 三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。 在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边a=BC、斜边c=AB、邻边b=AC。

90度的三角函数值是多少?

90度的三角函数值如下:这里的三角函数值是1和0。具体的说sin90度=1、cos90度=0、tan90度=∞也可以说不存在、cot90度=0,所以综合起来就是1和0。这里需要注意,cos90°是0,因为余弦是邻边与斜边之比,90°直角的对边是斜边,而邻边可以看作是一个点,长度为0。三角函数的特点:常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。

sin,cos,tan特殊角的三角函数值表

sin(0,30,45,60,90)=0,1/2,根号2/2,根号3/2,1 cos(0,30,45,60,90)=1,根号3/2,根号2/2,1/2,0 tan(0,30,45,60,90)=0,根号3/3,1,根号3,不存在

sin,cos,tan特殊角的三角函数值表

sin(0,30,45,60,90)=0,1/2,根号2/2,根号3/2,1 cos(0,30,45,60,90)=1,根号3/2,根号2/2,1/2,0 tan(0,30,45,60,90)=0,根号3/3,1,根号3,不存在

高中三角函数公式表

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β sinα+sinβ=2

特殊角的三角函数值表有哪些?

特殊角的三角函数值表特殊角的三角函数值:sin0°=0,cos0°=1,tan0°=0;sin30°=1/2,cos30°=根号3/2,tan30°=根号3/3;sin45°=根号2/2,cos45°=根号2/2,tan45°=1;sin60°=根号3/2,cos60°=1/2,tan60°=根号3;sin90°=1,cos90°=0。扩展资料积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数怎么表示?

三角函数表如下图所示:扩展资料:1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。2、常见的三角函数包括正弦函数、余弦函数和正切函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。3、三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学、航海学、测绘学、工程学等其他学科中有广泛的用途。参考资料:三角函数_百度百科

三角函数的值等于多少 比如tan45度等于多少 要全面的

特殊角的三角函数值

30度,45度,60度的三角函数值是多少嘞?

30度、45度、60度的正弦、余弦、正切值是:正弦值:30度是二分之一;45度是二分之根号二 ;60度是二分之根号三 。余弦值:30度是二分之根号三 ;45度是二分之根号二 ;60度是二分之一 。正切值:30度是三分之根号三 ;45度是一 ;60度是根号三 。扩展资料:应用三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。它有六种基本函数函数名正弦余弦正切余切正割余割符号 sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边

三角函数性质总结表格

三角函数性质总结表格如下:三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

三角函数值表,怎么记?

sin30°=1/2;sin30=-0.988cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0tan90=-1.995;tan90°不存在扩展资料三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。参考资料百度百科-三角函数值

特殊角的三角函数值表(要带根号的)

sin0 0 sin30 0.5 sin45 二分之根号2 sin60 二分之根号3 sin90 1 cos0 1 cos30 二分之根号3 cos45 二分之根号2 cos60 0.5 cos90 0 tan0 0 tan30 三分之根号3 tan45 1 tan60 根号3 tan90 无 cot0 无 cot30 根号3 cot45 1 cot60 三分之根号3 cot90 0

30 60 45三角函数表?

三角函数表如下:三角函数的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。扩展资料:常用的和角公式1、sin(α+β)=sinαcosβ+ sinβcosα2、sin(α-β)=sinαcosβ-sinB*cosα3、cos(α+β)=cosαcosβ-sinαsinβ4、cos(α-β)=cosαcosβ+sinαsinβ5、tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)

正弦、余弦和正切的三角函数值是怎样表示的

三角函数值表:数关系tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系tanα=sinα/cosα cotα=cosα/sinα正弦二倍角公式sin2α = 2cosαsinα推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA拓展公式:sin2A=2sinAcosA=2tanAcos2A=2tanA/[1+tan2A]余弦二倍角公式余弦二倍角公式有三组表示形式,三组形式等价:1.Cos2a=Cos2a-Sin2a=[1-tan2a]/[1+tan2a]2.Cos2a=1-2Sin2a3.Cos2a=2Cos2a-1推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A正切二倍角公式tan2α=2tanα/[1-tan2α]推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tan2A]扩展资料以下关系,函数名不变,符号看象限.sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα以下关系,奇变偶不变,符号看象限sin(90°-α)=cosαcos(90°-α)=sinαtan(90°-α)=cotαcot(90°-α)=tanαsin(90°+α)=cosαcos(90°+α)=-sinαtan(90°+α)=-cotαcot(90°+α)=-tanαsin(270°-α)=-cosαcos(270°-α)=-sinαtan(270°-α)=cotαcot(270°-α)=tanαsin(270°+α)=-cosαcos(270°+α)=sinαtan(270°+α)=-cotαcot(270°+α)=-tanα参考资料:百度百科-三角函数值

三角函数在各种角度时的值是多少?

特殊角例如30°、45°、60°,这些角的三角函数值参见下表格:扩展资料:1、常见的三角函数,包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。2、三角学输入中国,开始于明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学。在《大测》中,首先将sine译为”正半弦”,简称”正弦”,这就成了“正弦”一词的由来。参考资料:百度百科_三角函数

完整初中三角函数值表

(1)特殊角三角函数值   sin0=0   sin30=0.5   sin45=0.7071 二分之根号2   sin60=0.8660 二分之根号3   sin90=1   cos0=1   cos30=0.866025404 二分之根号3   cos45=0.707106781 二分之根号2   cos60=0.5   cos90=0   tan0=0   tan30=0.577350269 三分之根号3   tan45=1   tan60=1.732050808 根号3   tan90=无   cot0=无   cot30=1.732050808 根号3   cot45=1   cot60=0.577350269 三分之根号3   cot90=0   (2)0°~90°的任意角的三角函数值,查三角函数表.(见下)   (3)锐角三角函数值的变化情况   (i)锐角三角函数值都是正值   (ii)当角度在0°~90°间变化时,   正弦值随着角度的增大(或减小)而增大(或减小)   余弦值随着角度的增大(或减小)而减小(或增大)   正切值随着角度的增大(或减小)而增大(或减小)   余切值随着角度的增大(或减小)而减小(或增大)   (iii)当角度在0°≤α≤90°间变化时,   0≤sinα≤1,1≥cosα≥0,   当角度在0°0.   “锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容.从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段.在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”.在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程.无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备.   附:三角函数值表   sin0=0,   sin15=(√6-√2)/4 ,   sin30=1/2,   sin45=√2/2,   sin60=√3/2,   sin75=(√6+√2)/2 ,   sin90=1,   sin105=√2/2*(√3/2+1/2)   sin120=√3/2   sin135=√2/2   sin150=1/2   sin165=(√6-√2)/4   sin180=0   sin270=-1   sin360=0

30 60 45三角函数表

三角函数表如下:三角函数的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。扩展资料:常用的和角公式1、sin(α+β)=sinαcosβ+ sinβcosα2、sin(α-β)=sinαcosβ-sinB*cosα3、cos(α+β)=cosαcosβ-sinαsinβ4、cos(α-β)=cosαcosβ+sinαsinβ5、tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)

sin,cos,tan特殊角的三角函数值表

sin(0,30,45,60,90)=0,1/2,根号2/2,根号3/2,1 cos(0,30,45,60,90)=1,根号3/2,根号2/2,1/2,0 tan(0,30,45,60,90)=0,根号3/3,1,根号3,不存在

sin tan cos函数表是?

sin@=对边 / 斜边cos@=邻边 / 斜边tan@=对边 / 邻边cot@=邻边 / 对边一、sin度数公式1、sin 30= 1/22、sin 45=根号2/23、sin 60= 根号3/2二、cos度数公式1、cos 30=根号3/22、cos 45=根号2/23、cos 60=1/2三、tan度数公式1、tan 30=根号3/32、tan 45=13、tan 60=根号3扩展资料:sin0=sin0°=0cos0=cos0°=1tan0=tan0°=0sin15=0.650;sin15°=0.259cos15=-0.759;cos15°=0.966tan15=-0.855;tan15°=0.268sin30°=1/2cos30°=0.866;参考资料来源:百度百科-三角函数值

三角函数数值表有多少

摘抄,参考. (1)特殊角三角函数值   sin0=0   sin30=0.5   sin45=0.7071 二分之根号2   sin60=0.8660 二分之根号3   sin90=1   cos0=1   cos30=0.866025404 二分之根号3   cos45=0.707106781 二分之根号2   cos60=0.5   cos90=0   tan0=0   tan30=0.577350269 三分之根号3   tan45=1   tan60=1.732050808 根号3   tan90=无   cot0=无   cot30=1.732050808 根号3   cot45=1   cot60=0.577350269 三分之根号3   cot90=0   (2)0°~90°的任意角的三角函数值,查三角函数表.(见下)   (3)锐角三角函数值的变化情况   (i)锐角三角函数值都是正值   (ii)当角度在0°~90°间变化时,   正弦值随着角度的增大(或减小)而增大(或减小)   余弦值随着角度的增大(或减小)而减小(或增大)   正切值随着角度的增大(或减小)而增大(或减小)   余切值随着角度的增大(或减小)而减小(或增大)   (iii)当角度在0°≤α≤90°间变化时,   0≤sinα≤1, 1≥cosα≥0,   当角度在0°0.   “锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容.从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段.在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”.在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程.无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备.   附:三角函数值表   sin0=0,   sin15=(√6-√2)/4 ,   sin30=1/2,   sin45=√2/2,   sin60=√3/2,   sin75=(√6+√2)/2 ,   sin90=1,   sin105=√2/2*(√3/2+1/2)   sin120=√3/2   sin135=√2/2   sin150=1/2   sin165=(√6-√2)/4   sin180=0   sin270=-1   sin360=0   sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383   sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346   sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087   sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931   sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074   sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474   sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027   sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015   sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675   sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994   sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027   sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731   sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375   sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582   sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475   sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941   sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708   sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474   sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239   sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386   sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678   sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009   sin67=0.9205048534524404 sin68=0.9271838545667873 sin69=0.9335804264972017   sin70=0.9396926207859083 sin71=0.9455185755993167 sin72=0.9510565162951535   sin73=0.9563047559630354 sin74=0.9612616959383189 sin75=0.9659258262890683   sin76=0.9702957262759965 sin77=0.9743700647852352 sin78=0.9781476007338057   sin79=0.981627183447664 sin80=0.984807753012208 sin81=0.9876883405951378   sin82=0.9902680687415704 sin83=0.992546151641322 sin84=0.9945218953682733   sin85=0.9961946980917455 sin86=0.9975640502598242 sin87=0.9986295347545738   sin88=0.9993908270190958 sin89=0.9998476951563913   sin90=1   cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738   cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733   cos7=0.992546151641322 cos8=0.9902680687415704 cos9=0.9876883405951378   cos10=0.984807753012208 cos11=0.981627183447664 cos12=0.9781476007338057   cos13=0.9743700647852352 cos14=0.9702957262759965 cos15=0.9659258262890683   cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535   cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017   cos22=0.9271838545667874 cos23=0.9205048534524404 cos24=0.9135454576426009   cos25=0.9063077870366499 cos26=0.898794046299167 cos27=0.8910065241883679   cos28=0.882947592858927 cos29=0.8746197071393957 cos30=0.8660254037844387   cos31=0.8571673007021123 cos32=0.848048096156426 cos33=0.838670567945424   cos34=0.8290375725550417 cos35=0.8191520442889918 cos36=0.8090169943749474   cos37=0.7986355100472928 cos38=0.7880107536067219 cos39=0.7771459614569709   cos40=0.766044443118978 cos41=0.754709580222772 cos42=0.7431448254773942   cos43=0.7313537016191705 cos44=0.7193398003386512 cos45=0.7071067811865476   cos46=0.6946583704589974 cos47=0.6819983600624985 cos48=0.6691306063588582   cos49=0.6560590289905074 cos50=0.6427876096865394 cos51=0.6293203910498375   cos52=0.6156614753256583 cos53=0.6018150231520484 cos54=0.5877852522924731   cos55=0.5735764363510462 cos56=0.5591929034707468 cos57=0.5446390350150272   cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001   cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468   cos64=0.43837114678907746 cos65=0.42261826174069944 cos66=0.4067366430758004   cos67=0.3907311284892737 cos68=0.3746065934159122 cos69=0.35836794954530015   cos70=0.3420201433256688 cos71=0.32556815445715675 cos72=0.30901699437494745   cos73=0.29237170472273677 cos74=0.27563735581699916 cos75=0.25881904510252074   cos76=0.24192189559966767 cos77=0.22495105434386514 cos78=0.20791169081775923   cos79=0.19080899537654491 cos80=0.17364817766693041 cos81=0.15643446504023092   cos82=0.13917310096006546 cos83=0.12186934340514749 cos84=0.10452846326765346   cos85=0.08715574274765836 cos86=0.06975647374412523 cos87=0.052335956242943966   cos88=0.03489949670250108 cos89=0.0174524064372836   cos90=0   tan1=0.017455064928217585 tan2=0.03492076949174773 tan3=0.052407779283041196   tan4=0.06992681194351041 tan5=0.08748866352592401 tan6=0.10510423526567646   tan7=0.1227845609029046 tan8=0.14054083470239145 tan9=0.15838444032453627   tan10=0.17632698070846497 tan11=0.19438030913771848 tan12=0.2125565616700221   tan13=0.2308681911255631 tan14=0.24932800284318068 tan15=0.2679491924311227   tan16=0.2867453857588079 tan17=0.30573068145866033 tan18=0.3249196962329063   tan19=0.34432761328966527 tan20=0.36397023426620234 tan21=0.3838640350354158   tan22=0.4040262258351568 tan23=0.4244748162096047 tan24=0.4452286853085361   tan25=0.4663076581549986 tan26=0.4877325885658614 tan27=0.5095254494944288   tan28=0.5317094316614788 tan29=0.554309051452769 tan30=0.5773502691896257   tan31=0.6008606190275604 tan32=0.6248693519093275 tan33=0.6494075931975104   tan34=0.6745085168424265 tan35=0.7002075382097097 tan36=0.7265425280053609   tan37=0.7535540501027942 tan38=0.7812856265067174 tan39=0.8097840331950072   tan40=0.8390996311772799 tan41=0.8692867378162267 tan42=0.9004040442978399   tan43=0.9325150861376618 tan44=0.9656887748070739 tan45=0.9999999999999999   tan46=1.0355303137905693 tan47=1.0723687100246826 tan48=1.1106125148291927   tan49=1.1503684072210092 tan50=1.19175359259421 tan51=1.234897156535051   tan52=1.2799416321930785 tan53=1.3270448216204098 tan54=1.3763819204711733   tan55=1.4281480067421144 tan56=1.4825609685127403 tan57=1.5398649638145827   tan58=1.6003345290410506 tan59=1.6642794823505173 tan60=1.7320508075688767   tan61=1.8040477552714235 tan62=1.8807264653463318 tan63=1.9626105055051503   tan64=2.050303841579296 tan65=2.1445069205095586 tan66=2.246036773904215   tan67=2.355852365823753 tan68=2.4750868534162946 tan69=2.6050890646938023   tan70=2.7474774194546216 tan71=2.904210877675822 tan72=3.0776835371752526   tan73=3.2708526184841404 tan74=3.4874144438409087 tan75=3.7320508075688776   tan76=4.0107809335358455 tan77=4.331475874284153 tan78=4.704630109478456   tan79=5.144554015970307 tan80=5.671281819617707 tan81=6.313751514675041   tan82=7.115369722384207 tan83=8.144346427974593 tan84=9.514364454222587   tan85=11.43005230276132 tan86=14.300666256711942 tan87=19.08113668772816   tan88=28.636253282915515 tan89=57.289961630759144   tan90=无取值

三角函数值的数值表

角α 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 弧度制 o π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sinα o 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0-10 cosα 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -101 tanα o √3/3 1 √3 ±∞-√3 -1 -√3/3 0±∞0 sin0=sin0°=0cos0=cos0°=1tan0=tan0°=0sin15=0.650;sin15°=(√6-√2)/4cos15=-0.759;cos15°=(√6+√2)/4tan15=-0.855;tan15°=2-√3sin30=-0.988;sin30°=1/2cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin75=-0.388;sin75°=cos15°cos75=0.922;cos75°=sin15°tan75=-0.421;tan75°=sin75°/cos75° =2+√3sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0tan90=-1.995;tan90°不存在sin105=-0.971;sin105°=cos15°cos105=-0.241;cos105°=-sin15°tan105=4.028;tan105°=-cot15°sin120=0.581;sin120°=cos30°cos120=0.814;cos120°=-sin30°tan120=0.713;tan120°=-tan60°sin135=0.088;sin135°=sin45°cos135=-0.996;cos135°=-cos45°tan135=-0.0887;tan135°=-tan45°sin150=-0.7149;sin150°=sin30°cos150=-0.699;cos150°=-cos30°tan150=-1.022;tan150°=-tan30°sin165=0.998;sin165°=sin15°cos165=-0.066;cos165°=-cos15°tan165=-15.041;tan165°=-tan15°sin180=-0.801;sin180°=sin0°=0cos180=-0.598;cos180°=-cos0°=-1tan180=1.339;tan180°=0sin195=0.219;sin195°=-sin15°cos195=0.976;cos195°=-cos15°tan195=0.225;tan195°=tan15°sin360=0.959;sin360°=sin0°=0cos360=-0.284;cos360°=cos0°=1tan360=-3.380;tan360°=tan0°=0cos72=[(√5)-1]/4(利用黄金等腰三角形可得出)sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009sin67=0.9205048534524404 sin68=0.9271838545667873 sin69=0.9335804264972017sin70=0.9396926207859083 sin71=0.9455185755993167 sin72=0.9510565162951535sin73=0.9563047559630354 sin74=0.9612616959383189 sin75=0.9659258262890683sin76=0.9702957262759965 sin77=0.9743700647852352 sin78=0.9781476007338057sin79=0.981627183447664 sin80=0.984807753012208 sin81=0.9876883405951378sin82=0.9902680687415704 sin83=0.992546151641322 sin84=0.9945218953682733sin85=0.9961946980917455 sin86=0.9975640502598242 sin87=0.9986295347545738sin88=0.9993908270190958 sin89=0.9998476951563913sin90=1cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733cos7=0.992546151641322 cos8=0.9902680687415704 cos9=0.9876883405951378cos10=0.984807753012208 cos11=0.981627183447664 cos12=0.9781476007338057cos13=0.9743700647852352 cos14=0.9702957262759965 cos15=0.9659258262890683cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017cos22=0.9271838545667874 cos23=0.9205048534524404 cos24=0.9135454576426009cos25=0.9063077870366499 cos26=0.898794046299167 cos27=0.8910065241883679cos28=0.882947592858927 cos29=0.8746197071393957 cos30=0.8660254037844387cos31=0.8571673007021123 cos32=0.848048096156426 cos33=0.838670567945424cos34=0.8290375725550417 cos35=0.8191520442889918 cos36=0.8090169943749474cos37=0.7986355100472928 cos38=0.7880107536067219 cos39=0.7771459614569709cos40=0.766044443118978 cos41=0.754709580222772 cos42=0.7431448254773942cos43=0.7313537016191705 cos44=0.7193398003386512 cos45=0.7071067811865476cos46=0.6946583704589974 cos47=0.6819983600624985 cos48=0.6691306063588582cos49=0.6560590289905074 cos50=0.6427876096865394 cos51=0.6293203910498375cos52=0.6156614753256583 cos53=0.6018150231520484 cos54=0.5877852522924731cos55=0.5735764363510462 cos56=0.5591929034707468 cos57=0.5446390350150272cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468cos64=0.43837114678907746 cos65=0.42261826174069944 cos66=0.4067366430758004cos67=0.3907311284892737 cos68=0.3746065934159122 cos69=0.35836794954530015cos70=0.3420201433256688 cos71=0.32556815445715675 cos72=0.30901699437494745cos73=0.29237170472273677 cos74=0.27563735581699916 cos75=0.25881904510252074cos76=0.24192189559966767 cos77=0.22495105434386514 cos78=0.20791169081775923cos79=0.19080899537654491 cos80=0.17364817766693041 cos81=0.15643446504023092cos82=0.13917310096006546 cos83=0.12186934340514749 cos84=0.10452846326765346cos85=0.08715574274765836 cos86=0.06975647374412523 cos87=0.052335956242943966cos88=0.03489949670250108 cos89=0.0174524064372836cos90=0tan1=0.017455064928217585 tan2=0.03492076949174773 tan3=0.052407779283041196tan4=0.06992681194351041 tan5=0.08748866352592401 tan6=0.10510423526567646tan7=0.1227845609029046 tan8=0.14054083470239145 tan9=0.15838444032453627tan10=0.17632698070846497 tan11=0.19438030913771848 tan12=0.2125565616700221tan13=0.2308681911255631 tan14=0.24932800284318068 tan15=0.2679491924311227tan16=0.2867453857588079 tan17=0.30573068145866033 tan18=0.3249196962329063tan19=0.34432761328966527 tan20=0.36397023426620234 tan21=0.3838640350354158tan22=0.4040262258351568 tan23=0.4244748162096047 tan24=0.4452286853085361tan25=0.4663076581549986 tan26=0.4877325885658614 tan27=0.5095254494944288tan28=0.5317094316614788 tan29=0.554309051452769 tan30=0.5773502691896257tan31=0.6008606190275604 tan32=0.6248693519093275 tan33=0.6494075931975104tan34=0.6745085168424265 tan35=0.7002075382097097 tan36=0.7265425280053609tan37=0.7535540501027942 tan38=0.7812856265067174 tan39=0.8097840331950072tan40=0.8390996311772799 tan41=0.8692867378162267 tan42=0.9004040442978399tan43=0.9325150861376618 tan44=0.9656887748070739 tan45=0.9999999999999999tan46=1.0355303137905693 tan47=1.0723687100246826 tan48=1.1106125148291927tan49=1.1503684072210092 tan50=1.19175359259421 tan51=1.234897156535051tan52=1.2799416321930785 tan53=1.3270448216204098 tan54=1.3763819204711733tan55=1.4281480067421144 tan56=1.4825609685127403 tan57=1.5398649638145827tan58=1.6003345290410506 tan59=1.6642794823505173 tan60=1.7320508075688767tan61=1.8040477552714235 tan62=1.8807264653463318 tan63=1.9626105055051503tan64=2.050303841579296 tan65=2.1445069205095586 tan66=2.246036773904215tan67=2.355852365823753 tan68=2.4750868534162946 tan69=2.6050890646938023tan70=2.7474774194546216 tan71=2.904210877675822 tan72=3.0776835371752526tan73=3.2708526184841404 tan74=3.4874144438409087 tan75=3.7320508075688776tan76=4.0107809335358455 tan77=4.331475874284153 tan78=4.704630109478456tan79=5.144554015970307 tan80=5.671281819617707 tan81=6.313751514675041tan82=7.115369722384207 tan83=8.144346427974593 tan84=9.514364454222587tan85=11.43005230276132 tan86=14.300666256711942 tan87=19.08113668772816tan88=28.636253282915515 tan89=57.289961630759144tan90=无取值

常见三角函数值有哪些?

1、sin(-α)=-sinα2、cos(-α)=cosα3、sin(π/2-α)=cosα4、cos(π/2-α)=sinα5、sin(π/2+α)=cosα6、cos(π/2+α)=-sinα7、sin(π-α)=sinα8、cos(π-α)=-cosα9、sin(π+α)=-sinα10、tanα=sinα/cosα11、tan(π/2+α)=-cotα12、tan(π/2-α)=cotα13、tan(π-α)=-tanα14、tan(π+α)=tanα扩展资料:常用的和角公式1、sin(α+β)=sinαcosβ+ sinβcosα2、sin(α-β)=sinαcosβ-sinB*cosα3、cos(α+β)=cosαcosβ-sinαsinβ4、cos(α-β)=cosαcosβ+sinαsinβ5、tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)

各角度的三角函数值是多少?

常用角的三角函数值是:30°,45°,60°。这三个角的正弦值和余弦值的共同点是:分母都是2,若把分子都加上根号,则被开方数就相应地变成了1,2,3。积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数值表和公式?

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。它有六种基本函数:函数名正弦余弦正切余切正割余割符号sincostancotseccsc正弦函数sin(A)=a/h余弦函数cos(A)=b/h正切函数tan(A)=a/b余切函数cot(A)=b/a附:部分特殊三角函数值sin0=0cos0=1tan0=0sin15=(根号6-根号2)/4cos15=(根号6+根号2)/4tan15=sin15/cos15(自己算一下)sin30=1/2cos30=根号3/2tan30=根号3/3sin45=根号2/2cos45=sin45tan45=1sin60=cos30cos60=sin30tan60=根号3sin75=cos15cos75=sin15tan75=sin75/cos75(自己比一下)sin90=cos0cos90=sin0tan90无意义sin105=cos15cos105=-sin15tan105=-cot15sin120=cos30cos120=-sin30tan120=-tan60sin135=sin45cos135=-cos45tan135=-tan45sin150=sin30cos150=-cos30tan150=-tan30sin165=sin15cos165=-cos15tan165=-tan15sin180=sin0cos180=-cos0tan180=tan0sin195=-sin15cos195=-cos15tan195=tan15sin360=sin0cos360=cos0tan360=tan0PS:其实只要熟记下0,30,45,60的就足够了,其他的都能通过诱导公式算出来满意请采纳

三角函数值表怎么算?

三角函数值表:数关系tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系tanα=sinα/cosα cotα=cosα/sinα正弦二倍角公式sin2α = 2cosαsinα推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA拓展公式:sin2A=2sinAcosA=2tanAcos2A=2tanA/[1+tan2A]余弦二倍角公式余弦二倍角公式有三组表示形式,三组形式等价:1.Cos2a=Cos2a-Sin2a=[1-tan2a]/[1+tan2a]2.Cos2a=1-2Sin2a3.Cos2a=2Cos2a-1推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A正切二倍角公式tan2α=2tanα/[1-tan2α]推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tan2A]扩展资料以下关系,函数名不变,符号看象限.sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα以下关系,奇变偶不变,符号看象限sin(90°-α)=cosαcos(90°-α)=sinαtan(90°-α)=cotαcot(90°-α)=tanαsin(90°+α)=cosαcos(90°+α)=-sinαtan(90°+α)=-cotαcot(90°+α)=-tanαsin(270°-α)=-cosαcos(270°-α)=-sinαtan(270°-α)=cotαcot(270°-α)=tanαsin(270°+α)=-cosαcos(270°+α)=sinαtan(270°+α)=-cotαcot(270°+α)=-tanα参考资料:百度百科-三角函数值

三角形特殊角的函数值表

常见的特殊角度的常用三角函数值如下:1、sin0°=sin180°=sin360°=cos90°=cos270°=0;2、sin90°=cos0°=cos360°=1;3、sin270°=cos180°=-1;4、tan0°=tan180°=tan360°=0;5、sin30°=sin150°=cos60°=cos300°=1/2;6、sin45°=sin135°=cos45°=cos315°=√2/2;7、sin60°=sin120°=cos30°=cos330°=√3/2;8、sin210°=sin330°=cos120°=cos240°=-1/2;9、sin225°=sin315°=cos135°=cos225°=-√2/2;10、sin240°=sin300°=cos150°=cos210°=-√3/2;11、 tan30°=tan210°=√3/3,12、tan45°=tan225°=1;13、tan60°=tan240°=√3;14、tan150°=tan330°=-√3/3;15、tan135°=tan315°=-1;16、tan120°=tan300°=-√3;
 首页 上一页  1 2 3 4 5 6 7 8 9 10 11  下一页  尾页